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A METHOD OF FORCED MONOTONICITY FOR CONJUGATE 
TYPE BOUNDARY VALUE PROBLEMS FOR ORDINARY 

DIFFERENTIAL EQUATIONS 

BY 

P. W. ELOE AND P. L. SAINTIGNON 

ABSTRACT. Let / = [a, b] Q R and let L be an nih order linear 
differential operator defined on Cn(I). Let 2 ^ k ^ n and let a ^ 
xi < x2 < • • . < xn = b. A method of forced mono tonicity is used 
to construct monotone sequences that converge to solutions of the 
conjugate type boundary value problem (BVP) Ly = f(x, y), 
y('~l\xj) = rtp where 1 ^ / ^ my, 1 ^ j ^ k, 2JLj m, = «, and 
/ : / X R —» R is continuous. A comparison theorem is employed and 
the method requires that the Green's function of an associated BVP 
satisfies certain sign conditions. 

Let n ^ 2, 2 ^ k ^ n, let I = [a, b] Q R, and let a = xx < x2 < . . . < 
xk — b. Let Pj(x) G C(7), 1 = / = n, and consider the nth order linear 
differential operator 

(1) Ly s / "> + M x ) / 1 ^ + . . . + Pn(x)y. 

We are concerned with the existence of solutions of the boundary value problem 
(BVP) 

(2) Ly=f(x,y), 

(3) /i-\x.) = rip \^i^mj9 \Hkj^k9 

where / : / X R —> R is continuous, 2/=i mj = n, and r̂  e R, 1 ^ /^= rrij, 
1 ^ j ^ k. We shall denote the conjugate type boundary conditions (3) by 
By = r. 

The equation Ly = 0 is disconjugate on / if the only solution of Ly = 0 
having n zeros on / , counting multiplicities, is y = 0. Levin [4] (or see [2] ) 
showed that if Ly = 0 is disconjugate on J, then the Green's function, G(x, s), 
of the BVP Ly = 0, By = 0 exists and satisfies the inequality 

(4) G(x, s)(x - jc,)m' . . . (JC - xkT
k = 0, xx < s < xk. 

We point out that Levin [4] obtained (4) in a more general setting where the 
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coefficients/?-^), 1 ~ i â n, in (1) are locally integrable on / . We shall assume 
that Ly = 0 is disconjugate on / and define subsets Ix and I2 of / such that 
/ = Ix U 72, Ix n I2 = <j>, and 

(5) G(x, s) ^ 0 for (JC, 5) G IX X /, G(JC, s) â 0 for (JC, s) e 72 X /. 

Seda [6] employs [5] to obtain the existence of solutions of the BVP (2), (3). 
Assuming that f(x, y) is monotone decreasing in y for each x e Ix and 
monotone increasing in y for each x e I2, he uses the method of upper and 
lower solutions to construct monotone iteration schemes to approximate 
solutions of the BVP (2), (3). Moreover, the limiting functions of these iteration 
schemes are solutions of the BVP (2), (3). Eloe and Grimm [3] also employ (5) to 
show existence of solutions of the BVP (2), (3). They assume that f(x, y) 
satisfies a Lipschitz condition in y and construct a method of forced mono-
tonicity in which the limiting functions of the iteration schemes provide a priori 
bounds on solutions of the BVP (2), (3) and, in general, are not solutions of the 
BVP (2), (3). 

In this paper, we shall assume tha t / (x , y) satisfies a Lipschitz condition my 
as in [3] and under a stronger assumption we shall construct a method of forced 
monotonicity by adding a linear term P(x)y to both sides of equation (2). The 
limiting functions of the iteration schemes are solutions of the BVP (2), (3). 
Werner [7] employs this method for systems of first order ordinary differential 
equations where the forcing term P(x) has continuous entries. In this paper, the 
scalar function P(x) is piecewise continuous on / and hence, locally integrable 
on /. 

Our method is a generalization of the procedure used by Bernfeld and 
Lakshmikantham [1]. Bernfeld and Lakshmikantham use a maximum principle 
to construct a monotone iteration scheme which yields monotone sequences 
that converge to extremal solutions of a second order BVP. By using signs of 
the Green's function, we get extremal solutions for an nth order BVP. 

We begin by stating a comparison theorem without proof. 

LEMMA. Let qx and q2 be locally integrable functions on I such that 
0 ^ #i(-x) = #2(x) almost everywhere on I. If both equations Ly = 0 and 
Ly + q2y = 0 are disconjugate on / , then the equation Ly -f qxy = 0 is 
disconjugate on I. 

Nehari [5, Theorem 4.1] states and proves this lemma for the case where qx 

and q2 are continuous in / . We omit the proof since Nehari's proof carries over 
to the case where qx and q2 are locally integrable on / . 

Now, let / be as in (2) and assume that there exists a constant P > 0 such 
that 

(6) \f(x9yx) -f(x,y2)\ â P\yx - y2\ 

for all (x, yx), (x, y2) in / X R. Let Ix and I2 be defined by (5) and define 
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P, X G / , , 
P(X) I P,x*I2. 

We now consider the BVP 

(7) Ly + P(x)y = f(x, y) + P(x)y, 

(8) By = r. 

Assume that the equations Ly — Py = 0 and Ly + Py = 0 are disconjugate 
on / . It then follows by the Lemma that the equation Ly + P(x)y = 0 is 
disconjugate on I. Hence, again using the result of Levin [4] (or see [2] ), the 
Green's function, H(x, s), of the BVP Ly + P(x)y = 0, By = 0 exists and 
satisfies (4). In particular, H(x, s) ^ 0 for (x, s) G Ix XI, H(x, s) â 0 for 
(x, s) G I2 X I. 

Let /,.(x) be the unique solution of the BVP Ly + P(x)y = 0, By = r and 
define an integral operator K on C(I) by 

(9) Ky(x) = /,(*) + jf / /(x, *)[/(*, y(s) ) + P ( * M ' ) ]&. 

By properties of H(x, s) (see [4] ), K:C(I) -> Cw _ 1( / ) where 

M l - n i a x { l b l l o J | / | l o , . . . , l i y , , " 1 ) l l o } , 

H ^ l l o = max \yV\x) |, 0 ^j ^ n - 1, 
Jt€E/ 

for ^ G C " - V ) - As usual, <J> is a solution of the BVP (7), (8) if and only if ^ is a 
fixed point of the operator K defined by (9). 

THEOREM. Let L be given by (1) and letf'.I X R —> R be continuous and satisfy 
(6). Assume the equations Ly — Py = 0 and Ly + Py = 0 are disconjugate on I. 
Assume there exist functions Vj(x) and wx(x) in C(I) satisfying 

/vj(x) = w^x), x G / j , Vj(x) ^ H>J(X), x G 72, 

(10) Bv}(x) = £W,(JC) = r, 

^Lv^x) ë / ( x , Vj(x) ), x G /, Lwj(x) ^ / ( x , ^ ( x ) ), x G / . 

77z£« there exists a solution, <t>, of the BVP satisfying 

vx(x) ^ <j>(x) ^ w^x), x G Ix andvx{x) â <f>(x) â w^x), x G /2 . 

Moreover, for m = 1, 2, 3, . . . define sequences vm+1(x) = Kvm(x), ww+1(x) = 
Kwm(x). Then the sequences converge to solutions v(x) and w(x) respectively of the 
BVP (2), (3) such that 

0 1 ) Vm(X) = Vm + lO) = V(X) = w O ) = %i+l(*) = %,(*)> * G 71> 

Vm00 = Vm + lO0 = V(X) = W(JC) ^ Wm + ,(X) â Wm(x), X G I2, 
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for each m. Furthermore, any solution u of the BVP (2), (3) satisfying 
vx(x) è w(x) ^ wx(x), x G Il9 vx(x) â u(x) â wx(x), x <E I2 satisfies 
v(x) ^ u(x) ^ w(x), x G / j , v(x) =i w(x) ^ w(x), x G /2 . 

REMARK. Note that for the BVP (7), (8), F(x, y) = f(x9 y) + P{x)y satisfies 
that F is monotone decreasing in y for each x G Ix and monotone increasing in 
y for each x G 72. Thus, the above theorem is essentially proved by Seda 
[6, Theorem 2]. 

PROOF. Let J>, Z G C(I) such thatj^x) ^ z(x), x G 71?^(x) ^ z(x), x G 72. 
Then 

(12) *>(x) ^ i£:(x), x G Il9 Ky(x) ^ #z(x), x G /2 . 

To see this, note that for s G I9f(s9y(s) ) + P(s)y(s) ^ f(s, z(s) ) + P(s)z(s). 
Since H(x9 s) ^ 0 for (x, s) G ^ X 7, and H(x9 s) ^ 0 for (x, 5) G 72 X 7, (12) 
follows from (9). Also, 

(13) vx(x) ^ v2(x) ^ w2(x) â w^x), x G 7l5 

v t(x) ^ v2(x) ^ w2(x) ^ w^x), x G 72. 

To see this, note that v^x) = /r(x) + /7 # ( x , s^Lv^s) + P(s)vx(s) ]ds and by 
(10) , LVX(S) + P(5)V!(5) ^ / ( $ , VX(S)) + P ^ C s ) , 5 G 7. T h u s , Vx(x) ^ V2(x) , 

x G Il9 vx(x) ^ v2(x), x G 72. The inequalities for wx(x) and w2(x) 
follow similarly. From (12) and (13) it now follows inductively that for each 
m = 1, 2, 3, . . . , 

(14) vm(x) â vm+1(x) â wm + 1(x) ^ wm(x), x G 71? 

Vm(*) = Vm + l ( * ) = W m + l ( * ) = ^ ( x ) , X G 7 2 . 

By properties of H(x9 s) (see [4] or [2]) the sequences (v^(x) } and 
(vt^(x) }, 0 ^ / ^ n - 1, are equicontinuous and uniformly bounded. By (14) 
and (9), the sequences {v^(x) } and [wj£(x) } converge pointwise in 7 and 
hence, the sequences (vm(x) } and (wm(x) } converge in Cn~x(I) to functions 
v(x) and w(x), respectively, such that (11) holds. It now follows from (9) that 
v(x) = Kv(x) and w(x) = Kw(x). Thus, v(x) and w(x) satisfy the BVP (7), (8); 
in particular, v(x) and w(x) are in Cn(I) and satisfy the BVP (2), (3). 

REMARK. For simplicity, we assume that the bound (6) holds on 7 X R. It is 
necessary only that the bound (6) holds on the compact domain bounded by the 
curves vx(x), wx(x) and the lines x = a9 x = b. 

EXAMPLE. Consider the BVP 

(15) / " = y2 4- 1, 

(16) y(0) =y(l/2) = y(\) = 0. 
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Let Ix = [1/2, 1] and I2 = [0, 1/2) and let VJ(JC) = - x ( x - l / 2 ) ( x - 1) and 

wj(x) = — Vj(x). Since 

max |vj(x) | = \ /3/36 and 
*e[0, l ] 

I /O , J i ) - / ( * , yi)\ = \y\ + yi\ b i ~ 2̂1 

we choose P = \ /3 /18; (6) holds on the compact domain bounded by the 
curves Vj(x), wx(x) and the lines x = 0, x = 1. 

The equa t ions / " — Py = 0 and y'" + Py = 0 are disconjugate on [0, 1]. 
To see this, we employ the Pôlya criterion for disconjugacy [2]. Let Q3 = P. 
Then yx(x) = eQx, y2(x) = e'

(Q/2)x sin(V3/2) Qx, and y3(x) = -e~
(Q/2)x 

cos(\/3/2) Qx forms a Markov system of solutions of y"r — Py = 0 on [0, 1]; 
that is, W(yx)(x) > 0, 0 ^ , , j2)(x) > 0, and W(yx, y2, y3)(x) > 0 on [0, 1] 
where ^ d e n o t e s the usual Wronskian determinant. Similarly, yx(x) = e~@x, 
y2(x) = e

(Q/2)x sin(V3/2) Qx, and y3(x) = -e
{Q/2)x cos(V5/2) Qx forms a 

Markov system of solutions of y'" + Py = 0 on [0, 1]. 
Since vx(x) and w^x) satisfy (10), the theorem applies and there exists 

a solution of BVP (15), (16) satisfying v{(x) ^ <j>(x) ^ w}(x), x e Il9 and 
Vj(x) S <j)(x) â Wj(x), X G I2. 

Moreover, define 

{—P 1/2 ^ x ^ 1 
/-, I / Z _ x _ i, 
P, 0 ^ x< 1/2, 

and construct sequences (vw+1(x) } and (wm + 1(x) } such that vm + 1(x) is the 
solution of the BVP 

/ " + P(x)y = (vw(x))2 + 1 + P(x)vm(x), 

j (0) = ^(1/2) = j , ( l ) = 0, 

and wm + 1(x) is the solution of the BVP 

/ " + P(x)y = (wm(x)f + 1 + P(x)wm(x), 

y(0) =y(\/2)=y(\) = 0. 

Then the sequences (vm(x) } and {wm(x) } converge to solutions v(x) and H>(X), 

respectively, of the BVP (15), (16), such that (11) is satisfied. 
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