
J. Fluid Mech. (2022), vol. 934, A39, doi:10.1017/jfm.2021.1151

Vortex-induced vibrations of a cylinder in
inelastic shear-thinning and shear-thickening
fluids

Umang N. Patel1, Jonathan P. Rothstein1 and Yahya Modarres-Sadeghi1,†
1Department of Mechanical and Industrial Engineering, University of Massachusetts,
Amherst, MA 01003, USA

(Received 13 July 2021; revised 14 December 2021; accepted 18 December 2021)

Vortex-induced vibrations (VIV) of a cylinder in a Newtonian fluid is a model problem
in fluid–structure interactions and has been studied extensively. In this work, we study
the influence of shear-thinning and shear-thickening fluids on the VIV response of a
one-degree-of-freedom flexibly-mounted cylinder. We consider a system with a mass ratio
of m∗ = 2 and zero structural damping in shear-thinning and shear-thickening power-law
fluidsatRe0 = 15andRe0 = 200,respectively,definedbasedonthezero-shear-rateviscosity
of the fluids. We investigate how the VIV amplitude and frequency, flow forces, and the
vorticity contours change as the reduced velocity, U∗, and fluid’s time constant, λ, change.
When the results are compared based on Re0, shear-thinning fluids enhance the oscillations
while shear-thickening fluids suppress them. If, however, we define a characteristic Reynolds
number, Rechar, based on a viscosity evaluated at the characteristic shear rate, γ̇ = U/D,
then at a constant Rechar, the amplitude of response stays very similar for the shear-thinning,
shear-thickening and Newtonian fluids. Despite this similarity, the observed far wake is
different: shear thinning amplifies the generation of vorticity and reduces the extent of the
wake, whereas shear thickening limits the generation of vorticity and extends the wake.
Our findings show that the local apparent viscosity observed close to the cylinder placed
in shear-thinning or shear-thickening fluids governs the VIV response of the cylinder.

Key words: flow-structure interactions, vortex shedding, separated flows

1. Introduction

When a flexible or flexibly-mounted bluff body is placed in flow, formation of vortices
downstream of the bluff body generates unsteady forces on the body, which in turn
cause the structure to oscillate. When the structure oscillates, the shedding frequency
and oscillation frequency are synchronized. This synchronization between the shedding
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frequency and oscillation frequency is called lock-in, and the resulting oscillations are
called vortex-induced vibration (VIV). VIV has been studied extensively for the cases
where a structure is placed in a Newtonian fluid. When a one-degree-of-freedom (1DOF)
cylinder is placed in Newtonian flow and it is free to oscillate in a direction perpendicular
to the direction of incoming flow (crossflow (CF) VIV), lock-in is observed for a range of
reduced velocities, U∗ (defined as U∗ = U/fnD, in which U is the velocity of the incoming
flow, D is the cylinder’s diameter, and fn is the natural frequency of the system in vacuum),
with amplitudes of oscillations of up to around one cylinder diameter (Sarpkaya 2004;
Williamson & Govardhan 2004). In the lock-in region, a 2S shedding pattern (in which
two single vortices are shed in the wake of the cylinder in each cycle of oscillations) or
a 2P shedding pattern (in which two pairs of vortices are shed in the wake in each cycle
of oscillations) is observed. If the 1DOF cylinder is free to oscillate in the direction of
flow (inline (IL) VIV) then oscillations are observed over two ranges of U∗ values, with
amplitudes of around 0.1D. The oscillations in the first range of reduced velocities are with
a symmetric shedding of vortices in the wake, and in the second range with an asymmetric
wake (Cagney & Balabani 2013a,b; Gurian, Currier & Modarres-Sadeghi 2019). When
the cylinder is free to oscillate in both the CF and IL directions (2DOF VIV), lock-in
occurs in both directions, and figure-eight trajectories are observed in the response of the
cylinder together with several different types of vortex shedding patterns, including 2T
shedding (in which two triplets of vortices are shed during each cycle of oscillations)
(Dahl, Hover & Triantafyllou 2007; Dahl et al. 2010). VIV has also been studied for
non-circular cross-sections, such as a square prism or a triangular prism, in which cases,
besides VIV, galloping response has been observed, due to the non-zero mean lift forces
that act on the structure (e.g. Nemes et al. 2012; Zhao et al. 2014; Seyed-Aghazadeh,
Carlson & Modarres-Sadeghi 2017; Carlson, Currier & Modarres-Sadeghi 2021). Studies
on VIV have been extended to cases of flexible continuous structures placed in flow, due
to the fact that in real-life applications, VIV is observed in long offshore structures such as
risers in oil platforms or mooring lines of floating wind turbines. When a flexible structure
undergoes VIV, synchronization can be observed between shedding of vortices and several
different modes of the structure at different locations along its length, resulting in mono-
or multi-modal oscillations of the structure (e.g. Vandiver 1993; Bourguet et al. 2011; Wu,
Ge & Hong 2012; Seyed-Aghazadeh, Edraki & Modarres-Sadeghi 2019).

When a fixed cylinder is placed in a shear-thinning or shear-thickening fluid (i.e. a
non-Newtonian fluid for which the viscosity, η, varies with shear rate, γ̇ ), there are
several differences between the flow behaviour in its wake and that of a cylinder placed
in a Newtonian fluid, which result in differences in forces that act on the cylinder in
these two cases. The critical Reynolds number (where, Re = ρUD/η, in which ρ is the
density of the fluid, U is the incoming flow velocity, D is the cylinder diameter, and
η is the dynamic viscosity of the fluid) to observe vortex shedding, which is known to
be Recrit = 47 for Newtonian fluids (Mathis, Provansal & Boyer 1984), decreases with
shear-thinning effects and increases with shear-thickening effects (Lashgari et al. 2012;
Şahin and Atalık 2019). Critical Reynolds numbers as low as Recrit = 3 for shear-thinning
fluids and as high as Recrit = 193 for shear-thickening fluids have been reported (Lashgari
et al. 2012), where Re is defined based on the zero-shear-rate viscosity, η0. In the range
of Reynolds numbers where the shedding is observed, the vortex shedding frequency
increases with shear-thinning effects and decreases with shear-thickening effects (Bailoor,
Seo & Mittal 2019; Şahin and Atalık 2019). Shear-thinning effects reduce the formation
length in the wake of a fixed cylinder, and shear-thickening effects increase the formation
length (Coelho & Pinho 2003a,b, 2004; Lashgari et al. 2012; Bailoor et al. 2019; Şahin and
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Atalık 2019). Shear-thinning effects reduce the drag coefficient (at least for low Reynolds
numbers Re ≤ 300) (Lashgari et al. 2012; Bailoor et al. 2019; Alam et al. 2021) and
intensify the magnitude of the vorticity in the region close to the cylinder, due to the
reduced shear stress associated with the shear-thinning effects that occur very close to the
cylinder (Lashgari et al. 2012). In these studies on shear-thinning and shear-thickening
fluid, Şahin and Atalık (2019) use a power-law fluid model in which viscosity, η, is
proportional to the shear rate, γ̇ , to the power n − 1, i.e. η = mγ̇ n−1, where m is the
consistency index, and n is the power-law coefficient. For Newtonian fluids, n = 1 and
m = η. In other studies mentioned here, the Carreau model is used in which the power-law
regime is preceded by a plateau at the zero-shear-rate viscosity and followed by a plateau
at the infinite-shear-rate viscosity.

The wake of a cylinder that is forced to oscillate in a shear-thinning fluid has
been investigated very recently as well. Hopkins & de Bruyn (2019) showed that the
effective viscosity, determined by averaging the viscosity around the circumference of
the cylinder and over one period of oscillations, depends significantly on the driving
frequency, and it reaches the minimum at a resonant frequency. Alam et al. (2021) studied
the vortex dynamics in the locked-in mode and non-locked-in mode of a transversely
oscillating cylinder in shear-thinning fluids at Re = 100, where Re is defined based on
the zero-shear-rate viscosity. They showed that the vortex separation length is shorter
in the shear-thinning fluids compared with the Newtonian fluid due to reduced viscous
diffusion near the vortices in the wake. This length decreases with smaller power-law
coefficient, n, and larger Carreau numbers, Cu = λU/D, where λ is a time constant of
the fluid. However, the effect of n is smaller at higher Cu. In shear-thinning fluids, the
2S vortex shedding mode is observed during locked-in forced oscillations. The paired
counter-rotating vortices (P+S and 2P vortex shedding modes) are observed during
non-locked-in forced oscillations. This finding implies that in a self-excited VIV case,
only 2S shedding would be observed in the wake. Alam et al. (2021) also show that the
vortices in a shear-thinning fluid have a stronger asymmetric pattern with higher levels of
unsteadiness while departing from the lock-in mode.

In the present work, we will study VIV of a 1DOF cylinder free to oscillate in the
CF direction and placed in inelastic power-law fluids. The goal is to understand the
shear-thinning and shear-thickening effects in the absence of elasticity on the self-excited
response of a 1DOF cylinder undergoing VIV, as a model problem in fluid–structure
interactions (FSI). We will discuss the effect of system parameters – such as the reduced
velocity, the time constant and the power-law coefficient of the fluid – on the VIV response
of the cylinder. We will also introduce a characteristic Reynolds number, which considers
the local effects due to shear-rate-dependent viscosity, and can collapse the observed
response of the cylinder placed in shear-thinning, shear-thickening or Newtonian fluid.

2. Problem formulation

2.1. Governing equations and numerical methods
We consider two-dimensional, incompressible flow of inelastic shear-thinning and
shear-thickening fluids in a domain containing a flexibly-mounted cylinder free to oscillate
in the crossflow direction. The fluid flow is governed by the unsteady, incompressible
Navier–Stokes (N–S) equations

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · 𝞽, (2.2)
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Figure 1. Steady shear rheology of (a) shear-thinning fluids with n = 0.36, η0 = 0.056 Pa s and
η∞ = 0.0035 Pa s, and (b) shear-thickening fluids with n = 1.2, η0 = 0.0035 Pa s and η0 − η∞ = 0.0085 Pa s,
for various time constant values using the Carreau model.

where 𝞽 = η�̇� and �̇� = ∇u + ∇uT . Unlike in a Newtonian fluid, here, the viscosity is
a function of shear rate. Shear-rate-dependent viscosity has been described using the
Carreau model as (Morrison 2001)

η = η∞ + (η0 − η∞)[1 + (γ̇ λ)2](n−1)/2, (2.3)

where η0 is the zero-shear-rate viscosity, η∞ is the infinite-shear-rate viscosity, n is the
power-law coefficient, which describes the slope of increasing or decreasing viscosity
curve, and λ is a time constant of the fluid. The value of λ determines the shear rate
at which the transition occurs from zero-shear-rate plateau to power-law regime. With
increasing time constant, transition occurs at lower shear rates. In the Carreau model, γ̇

describes the local shear rate based on the second invariant IIγ̇ of the strain rate tensor as

γ̇ = +
√

IIγ̇
2

= +
√

�̇� : �̇�
2

. (2.4)

Figure 1 shows the shear-rate-dependent viscosity for several time constants of
shear-thinning and shear-thickening fluid used here. The characteristic shear rate, defined
as the ratio of the incoming flow velocity and the cylinder diameter, γ̇char = U/D, is shown
in the figure using a vertical line. For all the cases presented here, the maximum shear rate
remains in a range such that the viscosity does not reach the infinite-shear-rate viscosity
plateau.

The finite volume method is used to discretize the N–S equations. Unsteady N–S
equations are solved using a coupled algorithm where the momentum equation and
pressure-based continuity equations are solved together. A quadratic upwind interpolation
for convective kinematics (QUICK) scheme has been applied to discretize the convective
terms in the momentum equation. The least squares cell-based method is used to spatially
discretize the gradients in the convection and diffusion terms. Pressure and velocity are
stored at the cell centres. Since momentum equations require the value of pressure at
the face between two adjacent cells of the unstructured grid, the PRESTO (PREssure
STaggering Option) scheme has been used to interpolate pressure at the face. The PRESTO
scheme uses discrete continuity balance for a staggered control volume about the face to
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compute pressure at the face. A second-order implicit scheme has been used for temporal
discretization of the transient derivative terms. Convergence tolerances for continuity and
both velocity components are set to 10−6. Once the fluid equations are solved, the net force
acting on the cylinder in the y-direction (the crossflow direction) is used to calculate the
displacement of the cylinder using its equation of motion.

The equation of motion for a flexibly-mounted cylinder is obtained using Newton’s
second law of motion as

mÿ + cẏ + ky = 1
2ρCyDU2, (2.5)

where

Cy =

∮
[η(∇u + ∇uT) · n + pn] · j ds

1
2ρDU2

, (2.6)

in which y is the position of the centre of the cylinder, m is its mass, c is a damping
coefficient, k is the spring constant, ρ is the density of the fluid, Cy is the force coefficient
acting on the cylinder in the y-direction, n is the normal unit vector, and j is the unit vector
in the y-direction.

Using the diameter, D, as a length scale and the incoming flow velocity, U, as a velocity
scale, the equation of motion (2.5) can be written in a non-dimensional form as

m∗Y ′′ +
(

2π

U∗

)2

m∗Y = 1
2

Cy, (2.7)

where

Y = y
D

, T = tU
D

, Y ′′ = d2Y
dT2 , (2.8a–c)

and

m∗ = m
ρD2 and U∗ = U

fnD
(2.9a,b)

are the mass ratio and the reduced velocity, respectively, where

fn = 1
2π

√
k
m

. (2.10)

In (2.7), we have assumed zero structural damping to promote maximum amplitude
of oscillations. The second-order ordinary differential equations are converted into two
first-order equations and solved using an iterative solver. Following the velocity of the
cylinder, the mesh nodes are moved using the diffusion-based smoothing method, in which
we solve the modified Laplace equation

∇ · (β ∇u) = 0, (2.11)

xnew = xold + u �t, (2.12)

where u is the point velocity field used to modify the position of mesh nodes, xold and xnew
are the point positions before and after the mesh motion, respectively, and �t is the time
step. In the modified Laplace equation, β is a constant or variable diffusion field, chosen to
govern the mesh motion. We have defined β based on the boundary distance, as β = 1/la,
where l is the distance of the cell centre from the selected boundary, and parameter
a describes how the cylinder’s motion diffuses through the surrounding mesh: a = 0
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Shear-thinning Shear-thickening Newtonian

Power-law coefficient, n 0.36 1.2 1
Zero-shear Reynolds number, Re0 15 200 200
Mass ratio, m∗ 2 2 2
Reduced velocity, U∗ 1–9 1–11 2–11
Structural damping ratio, ζ 0 0 0

Table 1. System parameters used in the simulations.

indicates uniform diffusion, and a = 1 and a = 2 indicate linear and quadratic diffusion,
respectively, where mesh nodes close to the cylinder move more than mesh nodes far from
the cylinder. In the present work, we have used uniform diffusion. Re-meshing would occur
only if the quality of mesh anywhere in the domain deteriorates below provided tolerance
values during the smoothing step. Parameters used in the simulations are shown in table 1.

Figure 2 shows the 30D × 16D two-dimensional domain that is meshed using a
structured grid. The total number of grid nodes is 40 968. The mesh in the domain
comprises two zones: the inner zone and the outer zone. The mesh around the cylinder in
the inner zone moves along with it as a rigid body, thus maintaining the quality of the mesh
near the cylinder. This arrangement facilitates the deformation of the mesh elements lying
in the outer zone due to the cylinder movement. The slip boundary condition (zero velocity
gradient) is applied at the top and bottom walls. The flow is uniform and steady at the inlet.
At the fluid–solid interface, no slip and no mass flux conditions are applied. The reduced
velocity is varied by changing the natural frequency of the system while keeping the mass
ratio and the incoming flow velocity constant. This approach of changing the reduced
velocity is chosen to keep the Reynolds number Re0, defined based on the zero-shear-rate
viscosity (Re0 = ρUD/η0), constant. The value of the Reynolds number has been chosen
such that the maximum local Reynolds number in the domain stays within the laminar
flow regime. The simulations are run for approximately 100 oscillation cycles, depending
on the onset of the steady state. When the transient is passed, the steady-state results are
collected for at least 20 oscillation cycles and used for analysis.

3. Verification

We have compared our results with published data for the case of VIV of a Newtonian
fluid. This comparison is summarized in figure 3, where the dimensionless amplitude
of the cylinder response, A∗ = A/D, is plotted versus the reduced velocity, U∗. In all
cases shown in this plot, the Reynolds number is Re = 150, the mass ratio is m∗ = 2,
and the structural damping is ζ = 0. In all cases, the amplitude of oscillations increases
initially, as the reduced velocity is increased, and then with further increase in the reduced
velocity, the amplitude starts decreasing monotonically until it goes to zero. The maximum
amplitude of oscillations in the present case and in the results by Borazjani & Sotiropoulos
(2009) is A∗ = 0.54, and in the results by Ahn & Kallinderis (2006) is only slightly larger,
A∗ = 0.56. The onset and the width of the lock-in range are also in agreement among all
three sets of results. Toward the end of the lock-in range, the amplitudes of the present
results are slightly smaller than those from the other two cases. For all cases, the lock-in
range extends from U∗ = 3 to U∗ = 8, and as soon as the structure starts to oscillate, the
shedding frequency follows the oscillation frequency, instead of following the Strouhal
law, indicating that lock-in has occurred. Overall, this comparison shows that our results
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Figure 2. Schematic of the domain with mesh and boundary conditions.
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Borazjani & Sotiropoulos (2009)

Ahn. & Kallinderis (2006)

9

Figure 3. The dimensionless (a) amplitude, A∗, and (b) frequency, f ∗, of the VIV response for a cylinder free
to oscillate in the CF direction and placed in Newtonian flow, found in the present study and the published
results of Borazjani & Sotiropoulos (2009) and Ahn & Kallinderis (2006) at Re = 150, m∗ = 2 and ζ = 0.

are in agreement with the results of previous studies on predicting the onset and the width
of the lock-in range, as well as the amplitude of oscillations.

4. Response of a 1DOF cylinder in the flow of shear-thinning fluid

The rheology of shear-thinning fluid used here has been described using a Carreau model
as shown in figure 1(a). We have used a zero-shear-rate viscosity of η0 = 0.056 Pa s, an
infinite-shear-viscosity of η∞ = 0.0035 Pa s and a power-law coefficient of n = 0.36, and
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we have varied the time constant from λ = 0.1 s to λ = 5 s (Cu ≈ 1 to Cu ≈ 40). In all
the results presented in this section, unless explicitly mentioned, a non-zero displacement
(0.6D) and a zero velocity are given as the initial conditions of the cylinder. Based on
these parameters, the Reynolds number at the inlet of the domain is Re0 = 15. For a
flexibly-mounted cylinder placed in a Newtonian fluid at this Reynolds number, VIV is
not expected. For Newtonian fluids, the critical Reynolds number to observe shedding of
vortices in the wake of a cylinder is Recrit = 47 (Mathis et al. 1984; Jackson 1987; Dušek,
Gal & Fraunié 1994). However, recent studies have shown that VIV can be observed in
the subcritical Reynolds number range, i.e. for Re < 47 (Mittal & Singh 2005; Kou et al.
2017; Dolci & Carmo 2019; Boersma et al. 2021). The minimum Reynolds number needed
to observe subcritical VIV is Re = 18 (Kou et al. 2017), and VIV has been observed
experimentally for Reynolds numbers as low as Re = 19 (Boersma et al. 2021). As a
result, with an incoming Reynolds number of Re0 = 15 in the present work, any observed
oscillations will be purely due to the shear-thinning effects of the fluid. In a Newtonian
fluid, when VIV starts at Re = 19, its response amplitude increases with Reynolds number
up to Re = 33, after which the response reaches a plateau (Boersma et al. 2021).

4.1. The observed response for different time constants
Figure 4 shows the dimensionless amplitude, A∗, and frequency, f ∗, of the cylinder’s
displacements (figure 4a,b) and the transverse (CF) force coefficient, Cy, and frequency,
f ∗
Cy

, that act on the cylinder (figure 4c,d) as a function of reduced velocity, U∗, for time
constants varying from λ = 0.15 s to λ = 5 s (Cu = 1.2 to Cu = 40). The amplitude of
oscillations is normalized by the cylinder diameter, D, and the frequency is normalized by
the natural frequency of the system in vacuum, fn.

For the fluid with the largest time constant presented here, λ = 5 s (Cu = 40), the
amplitude response of the cylinder in figure 4(a) resembles a typical VIV response for
a Newtonian fluid, albeit at an incoming Reynolds number lower than the minimum
Reynolds number for which VIV can be observed for a Newtonian fluid. As the time
constant is decreased, however, the amplitude of oscillations, as well as the width of
the lock-in range, decreases. At λ = 0.15 s (Cu = 1.2), no oscillation is observed, and
VIV is completely suppressed for all reduced velocities. For all cases where oscillations
are observed, the oscillation frequency stays constant at a value close to f ∗ = fo/fn = 1
(figure 4b). In this range, the frequency of fluctuating force in the direction of oscillation,
f ∗
Cy

, stays close to f ∗ = 1 as well (figure 4d), indicating that the shedding frequency and the
oscillation frequency are synchronized, lock-in is observed, and the observed oscillations
are indeed VIV. The magnitude of the CF force coefficients shown in figure 4(c) amplifies
when the cylinder starts oscillating for all cases with different time constants. The largest
magnitude of the CF force coefficient is observed for the largest time constant tested.

The onset of oscillations for λ = 5 s (Cu = 40) is at U∗ = 3 (figure 4a), and it is delayed
with decreasing time constant. Consequently, the width of the lock-in range decreases in
the case of shear-thinning fluid with decreasing time constant. The onset of VIV depends
on the Strouhal number associated with the shear-thinning fluid. As shown by Bailoor et al.
(2019), the Strouhal number (St = fsD/U) increases for stronger shear-thinning effects
(i.e. larger time constant, λ, or smaller power-law coefficient, n). This suggests that as the
time constant is decreased in the cases discussed here, the Strouhal number decreases,
and as a result the shedding frequency decreases for a constant incoming flow velocity.
Then the shedding frequency matches the natural frequency of the system at higher
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Figure 4. The dimensionless (a) oscillation amplitude, A∗, and (b) oscillation frequency, f ∗, as well as (c) the
force coefficient in the CF direction, Cy, and (d) the force frequency, f ∗

Cy
, versus the reduced velocity, U∗, for

shear-thinning fluids with different time constants, λ.
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reduced velocities, and the onset of lock-in is delayed, as observed in the results of
figure 4(a).

4.2. Distribution of local Reynolds numbers
As shown in figure 1, the time constant of a fluid determines the onset of transition from
the zero-shear-rate viscosity plateau to the power-law regime. With increasing λ, shear
thinning of the viscosity occurs at lower shear rates. As a result, the fluid around the
cylinder has a viscosity that depends on both the local shear rate (defined in equation (2.4))
and the time constant of the fluid. This can be observed in figure 5, where the spatial
distribution of the local Reynolds number, defined as Re = ρUD/η, where η is the
local viscosity of the fluid calculated from the shear rate at that location, is presented
for a constant reduced velocity, and four different values of λ: one corresponding to a
case with no oscillations (figure 5a) and others corresponding to cases with oscillations
(figure 5b–d). The contours of local Reynolds number shown in figure 5 indicate the
variation in the viscosity depending on the shear rate in the domain. The time constant
determines how far from the cylinder the shear-thinning effect extends. A smaller time
constant corresponds to a shear-thinning effect only in close proximity to the cylinder.
From the figure, we observe that the shear-thinning effect extends up to a considerable
distance downstream from the cylinder for a larger time constant. The reach of the
shear-thinning effect in the domain can be understood from the histograms of local
Reynolds number for various time constant values. A fixed rectangular bounding box
of size 15D × 7D has been created around the cylinder, and the local Reynolds number
at each grid-cell inside the box is calculated. Histograms of the local Reynolds number
inside the bounding box for four different time constant values are shown in figure 5. For
λ = 0.4 s (Cu = 3), where no oscillation is observed, most of the flow is dominated with
Reynolds numbers below Re = 20, because shear-thinning occurs only in the regions very
close to the cylinder where the shear rate is maximum. As the time constant is increased
and the shear rate needed for shear thinning to occur is decreased, the percentage of the
flow at large local Reynolds numbers gradually increases until the flow is sufficiently
dominated by inertial effects for vortices to separate and shed from the cylinder and drive
VIV. We have used the percentage of grid-cells to plot the histograms of local Reynolds
number. Since the grid is concentrated close to the cylinder, the results are biased towards
the viscosity close to the cylinder.

Note that the incoming Reynolds number, Re0, which is defined based on zero-shear-rate
viscosity, is the same for all cases shown in figure 5, but the distribution of the local
Reynolds number in proximity to the cylinder is quite different. Thus this definition
of Reynolds number does not describe the local flow sufficiently and, as a result, it is
incapable of predicting a priori the critical conditions necessary for vortex separation
and shedding for a shear-thinning fluid. Instead, a new dimensionless parameter is needed
that takes the local effects into account by considering the local shear rate and the fluid
rheology. Here we define a characteristic Reynolds number, Rechar = ρUD/ηchar, based
on a characteristic viscosity, ηchar, of the flow. The characteristic viscosity is evaluated
using the Carreau model at the characteristic shear rate defined by the ratio of the
incoming flow velocity and the cylinder diameter, γ̇char = U/D. At a given Re0, the
characteristic Reynolds number increases with increasing time constant for shear-thinning
fluids. The characteristic Reynolds numbers for the four cases shown in figure 5 are (a)
Rechar = 30, (b) Rechar = 59, (c) Rechar = 100, and (d) Rechar = 152. When compared
with the histograms in each of the subplots, Rechar closely approximates the peak in the
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Figure 5. Histograms of the local Reynolds numbers around a cylinder undergoing VIV in a shear-thinning
fluid with (a) λ = 0.4 s (Cu = 3), (b) λ = 1.5 s (Cu = 12), (c) λ = 5 s (Cu = 40), and (d) λ = 20 s
(Cu = 158), all at U∗ = 4. The incoming Reynolds number is Re0 = 15 for all cases. All the cells inside the
bounding box (dashed blue rectangle) of size 15D × 7D have been used to create the histograms. A snapshot
of the spatial distribution of the local Reynolds numbers is shown for each case. The bin size is 5 in these
histograms.

local Reynolds number resulting from shear thinning of the fluid close to the cylinder wall.
Based on this definition of the characteristic Reynolds number, VIV is not observed for
Rechar = 30, but is observed for Rechar = 59 and larger, indicating that similar to what has
been observed for the Newtonian case, a critical characteristic Reynolds number exists for
the onset of VIV in shear-thinning fluids.

The shedding of vortices at Re0 = 15 in a shear-thinning fluid is purely a result of the
shear-thinning effect. How far these vortices are sustained in the wake of a cylinder, and
their strength, depend upon the type of shear-thinning fluid. If the shear-thinning effect for
a fluid is not strong enough (i.e. the time constant of the fluid is not large enough), then
the vortices are observed only in close proximity to the cylinder. The strength of these
vortices is not enough to generate large-amplitude oscillations of the cylinder as observed
in a Newtonian fluid. Thus we observe reduction in the amplitude of oscillations as the
time constant is decreased in a shear-thinning fluid, as observed in figure 4(a).
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4.3. The response at constant reduced velocities and for varying time constants
In the previous subsection, we discussed the response of a 1DOF system placed in a
shear-thinning fluid as the reduced velocity was varied. In this subsection, we focus on
the influence of fluid rheology on the system’s response as other system parameters stay
constant. To do so, we use the time constant, λ, as an independent variable and investigate
how the response of the system changes for two constant reduced velocities of U∗ = 4 and
U∗ = 6, as two sample cases. The Reynolds number has been kept constant at Re0 = 15
for all these cases. Figure 6 shows the amplitude, A∗, and frequency, f ∗, of response, the
CF force coefficient, Cy, the ratio of the third harmonic to the first harmonic of the CF
forces, Cy,3/Cy,1, and the phase between the displacement and the CF force, φ, for the two
sample reduced velocities as λ is varied from λ = 0 s to λ = 5 s (Cu = 0 to Cu = 40).

As shown in figure 6(a), the onset of VIV is at λ = 0.5 s (Cu ≈ 4, Rechar ≈ 34) and
λ = 0.2 s (Cu ≈ 2, Rechar ≈ 22) for U∗ = 4 and U∗ = 6, respectively. The critical value
for characteristic Reynolds number is different for different U∗. The VIV amplitude
increases rapidly before it reaches its peak at λ = 1.5 s (Cu ≈ 12, Rechar ≈ 59) and
λ = 0.8 s (Cu ≈ 6, Rechar ≈ 43) for U∗ = 4 and U∗ = 6, respectively. By increasing the
time constant further, the amplitude decreases slightly for both reduced velocities. The
decrease in amplitude is more noticeable in the case of U∗ = 6. When the time constant of
the shear-thinning fluid approaches the largest values tested (approximately at λ = 20 s,
Cu = 158), most of the fluid in the wake of the cylinder is at the infinite-shear-rate
viscosity and, as a result, the fluid essentially is no longer shear-thinning and the VIV
response of the cylinder approaches Newtonian-like behaviour. This is manifested in
the form of a plateau in the amplitude at higher time constants. Figure 6(b) shows the
variation of frequency of oscillations with time constant for U∗ = 4 and U∗ = 6, where the
frequency of oscillations is normalized by the natural frequency of the system in vacuum.
The f ∗ behaviour in the case of U∗ = 6 is very similar to the f ∗ behaviour that is typically
observed in a Newtonian case when f ∗ is plotted versus U∗. Initially, f ∗ is smaller than1.
Then, as λ is increased, f ∗ crosses1. This point of crossing 1 corresponds to a switch in the
phase between the displacement and force from φ = 0◦ to φ = 180◦, and the appearance
of a large contribution of the third harmonic force (at values of around λ = 2.4 s (Cu = 19)
in the present case). The slight decrease in the amplitude of oscillations for larger values of
λ in this case can also be explained by the sudden change in the phase difference, since the
displacement of the cylinder and the CF force are out of phase when λ > 2.4 s (Cu > 19).

In the case of U∗ = 4, however, f ∗ remains lower than 1 for all values of λ, and the large
third harmonic component of the force and the sudden phase shift are not observed in the
response. For this reduced velocity, the amplitude of oscillations stays constant for larger
λ values, since the CF displacement and the CF force stay in phase.

Figure 7 shows the Lissajous curves for several different values of the time constant. As
the time constant increases, the Lissajous curves rotate in the counterclockwise direction.
For U∗ = 4 (figure 7a), the Lissajous curves are located in the first and third quadrants,
corresponding to a phase difference of φ = 0◦, which means that the displacement and
the force coefficient are positively correlated. For U∗ = 6 (figure 7b), the Lissajous curves
move to the second and fourth quadrants for λ > 2.4 s (Cu > 19). This corresponds to the
phase jump to φ = 180◦, which means that the displacement and the force coefficient are
negatively correlated. The two lobes at the extreme ends in the Lissajous curves represent
the third harmonic contribution of the force. It is clear from figure 7 that the contribution
of the third harmonic increases for increasing time constants, when the Lissajous curves
stay in the first and third quadrants. In figure 7(b), the maximum contribution of the third
harmonic is observed when the Lissajous curve crosses the vertical axis and enters the
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Figure 6. The dimensionless (a) amplitude, A∗, and (b) frequency, f ∗, of oscillations, as well as (c) the CF
force coefficient, Cy, (d) the ratio of the third harmonic to the first harmonic force in the CF direction, Cy,3/Cy,1,
and (e) the phase difference between the CF displacement and the CF force, φ, for U∗ = 4 and U∗ = 6 versus
the time constant, λ.
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Figure 7. Lissajous curves of the CF displacement of the cylinder versus the coefficient of the CF force for
shear-thinning fluids with different time constants λ at (a) U∗ = 4, and (b) U∗ = 6. The incoming Reynolds
number is Re0 = 15 for all cases.

second quadrant, after which the forcing and displacement become out of phase, and the
contribution of higher harmonics decreases.

4.4. Subcritical instability in shear-thinning fluids
The results presented in the previous subsections were all for cases where a non-zero
initial displacement was given to the structure. Over a range of λ values, we found that
oscillations are not observed if the structural initial conditions stay at zero. Figure 8(a)
shows a sample amplitude plot for U∗ = 4 in which the amplitude of response is plotted
versus λ for cases with both zero and non-zero initial conditions. A range is observed in the
figure from λ = 0.5 s (Cu ≈ 4, Rechar ≈ 34) to λ = 0.7 s (Cu ≈ 6, Rechar ≈ 40) for which
two stable solutions exist: a zero response, and a non-zero response. This plot exhibits a
subcritical instability for the flexibly-mounted structure. Similarly to the subcritical VIV
that have been observed in a 1DOF system placed in a Newtonian fluid (Mittal & Singh
2005; Boersma et al. 2021), if the cylinder is not given non-zero initial conditions in this
range of λ values, then it remains at its initial equilibrium position and no vortices are
shed in its wake (figure 8b). If, however, the cylinder is given an initial disturbance, then
its wake becomes unstable, vortices are shed, and the cylinder undergoes VIV (figure 8c).
The initial disturbance provides an additional shear rate due to the relative motion of the
cylinder, which drives the Reynolds number up in regions close to the cylinder and pushes
it past the critical Re that is needed to observe VIV. By analysing the histograms of local
Reynolds numbers inside a bounding box of 15D × 7D for two cases where oscillations
are observed – i.e. λ = 0.5 s (Cu ≈ 4) with an initial disturbance, and λ = 0.75 s
(Cu ≈ 6) without any initial disturbance – we find that the distributions are quite similar,
with comparable maximum Re values of 116 and 127, respectively.

4.5. Wake for shear-thinning fluids
In this subsection, we discuss the flow pattern in the wake of the cylinder as it undergoes
VIV. The Reynolds number is kept constant at Re0 = 15 for all cases. The vorticity
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Figure 8. (a) Dimensionless amplitudes of the CF response, A∗, versus the time constant, λ, for simulations
with zero and non-zero initial conditions (IC) at U∗ = 4. Vorticity fields for λ = 0.6 s (Cu ≈ 5) when (b) zero
or (c) non-zero initial displacement is given. The incoming Reynolds number is Re0 = 15 for all cases. In the
figure, ωz is the z-component of the vorticity.

contours are plotted for various time constants of the fluid in figure 9, where wake patterns
are shown for increasing time constants from top to bottom for U∗ = 4 (a–e) and U∗ = 6
( f –j). The snapshots in each row are at different time constants, but they are chosen such
that in each row, the extent of the wake is similar. Vortex shedding is not observed for
the first sample cases for each reduced velocity, and the cylinder does not oscillate. For all
the other cases the cylinder oscillates, and vortex shedding is observed in the wake. For
all these cases, a 2S shedding pattern is observed in the wake, in which one single vortex
is shed from each side of the cylinder during each cycle of oscillations (Williamson &
Roshko 1988). The vortex shedding frequency and the amplitude of oscillations for U∗ = 4
are higher than those for U∗ = 6. The lateral distance between counter-rotating vortices
is larger for U∗ = 4 due to higher amplitude of oscillations. The length of recirculation
bubble is larger for U∗ = 6, because the oscillation frequency is lower at this reduced
velocity when compared with U∗ = 4, and the shear layers are cut at a slower rate by the
cylinder and they can stretch themselves farther in the wake of the cylinder. The strength of
generated vortices depends on the time constant of the fluid. For small time constants, the
vorticity generated is small (since a smaller time constant results in a smaller characteristic
Reynolds number and therefore a smaller vorticity) and very localized, and it diffuses
faster without making an impact on the energy transferred to the cylinder. Therefore, the
VIV amplitude is small for low values of the time constant and it increases with increasing
time constant due to the increase in the strength of vortices. As the time constant is
increased, the vorticity diffusion decreases due to the reduction in viscous dissipation,
and the vortices advect farther until reaching the Newtonian limit.

5. Response of a 1DOF cylinder in the flow of shear-thickening fluids

In this section, we consider the response of a 1DOF flexibly-mounted cylinder placed
in the flow of shear-thickening fluids. The rheology of the shear-thickening fluid has been
described using the Carreau model as shown in figure 1(b). We have used a zero-shear-rate
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Figure 9. Wake patterns for shear-thinning fluids at U∗ = 4 (a–e) and U∗ = 6 ( f –j) at different λ and Rechar
values. For all cases, the snapshot is taken when the cylinder is at the centre and moving up. The incoming
Reynolds number is Re0 = 15 for all cases.

viscosity of η0 = 0.0035 Pa s and a power-law coefficient of n = 1.2, and we have set the
Reynolds number based on the incoming flow to be Re0 = 200.

5.1. Lock-in for shear-thickening fluids
We have conducted VIV simulations for shear-thickening fluids for time constants varying
from λ = 1.5 s (Cu ≈ 10) to λ = 650 s (Cu ≈ 4293). The dimensionless amplitude and
frequency of oscillations, as well as the CF force coefficient and frequency, are shown
in figure 10. Since the incoming Reynolds number, Re0, in this case is larger than the
minimum required to observe VIV in a Newtonian fluid, we have added the response
of the system in a Newtonian fluid to figure 10 as well (λ = 0, Cu = 0). The response
of the system in shear-thickening fluids is qualitatively very similar to the Newtonian
response; however, the lock-in range is shifted to the right and the amplitude of oscillations
is decreased as the time constant is increased. The shift of the onset of the lock-in
range to the right is due to the fact that the Strouhal number decreases with increasing
shear-thickening effects, opposite to what we discussed for the shear-thinning fluid in § 4.
For shear-thickening fluid, we observe that the largest amplitude of oscillations occurs
at the smallest value of the time constant, as opposed to what we observed for the
shear-thinning fluid. For all cases where oscillations are observed, the shedding frequency
and the oscillation frequency are synchronized and lock-in is observed. The width of the
lock-in range and the VIV amplitude decrease with increasing time constant. Oscillations
are observed for λ values as high as λ = 600 s (Cu ≈ 3962), although for a very
small range of reduced velocities. The corresponding characteristic Reynolds number for
λ = 600 s (Cu ≈ 3962) is Rechar = 18. For λ = 650 s (Cu ≈ 4293, Rechar = 17), no
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oscillation is observed. Therefore, for the shear-thickening fluid considered here, the
critical Re to observe VIV is Rechar = 18.

When the time constant increases, the shear-thickening effect becomes more prominent,
and the shedding frequency decreases. Then the shedding frequency reaches the
natural frequency of the system at higher dimensional flow velocities, and therefore
synchronization (and the onset of lock-in) occurs at a higher reduced velocity, as observed
in the plots of figure 10. As the time constant is increased, the dimensionless oscillation
frequency, f ∗, decreases slightly, and while it stays close to one, for larger values of the
time constant (i.e. λ ≥ 200 s (Cu ≥ 1321)), the dimensionless frequency never reaches
one. This implies that for these larger values of λ, the phase jump from 0◦ to 180◦ is not
observed and the flow forces stay in phase with displacement for all reduced velocities.

5.2. Wake for shear-thickening fluids
The flow pattern in the wake of the cylinder is shown by plotting normalized vorticity for
selected values of time constants at a constant reduced velocity of U∗ = 6. Similar to the
wake in a shear-thinning case (figure 9), for all cases where oscillations are observed, a
2S shedding pattern is observed in the wake of the cylinder. At the lowest time constant
(figure 11e), the wake looks very similar to the wake of a cylinder undergoing VIV in a
Newtonian fluid. With increasing time constant (moving up from figure 11e to figure11a),
shear thickening causes the viscosity to increase in areas of high shear rates, limiting the
magnitude of the vorticity. Thus the maximum vorticity in case of shear-thickening fluids
is less than that in the case of shear-thinning fluids, but enough to shed the vortices and
cause oscillations. The extent of the wake is not limited by the shear-thickening effect since
the diffusion becomes less dominant moving away from the cylinder, and the vortices are
swept downstream by advection.

For each shear-thickening case on the left in figure 11, we show a shear-thinning case
at approximately the same Rechar value on the right to compare the wake in detail. The
Reynolds number at the inlet is Re0 = 200 for the shear-thickening cases and Re0 = 15 for
the shear-thinning cases. In figure 11, the double-headed arrow upstream of the cylinder
shows the peak to peak amplitude of the cylinder’s oscillations. The comparison shows
how the shear-thinning and shear-thickening rheology of the fluid lead to a significantly
different wake despite the same Rechar and similar amplitudes of oscillations, A∗. The
sizes of the vortices and the recirculation bubble in shear-thickening cases are larger
than those in shear-thinning cases. For the same Rechar, the extent of the wake is longer
in shear-thickening cases, since the advection becomes dominant moving away from
the cylinder. In the shear-thinning cases, the maximum vorticity is larger than that in
shear-thickening cases; however, the vorticity is diffused faster in shear-thinning cases,
which results in wakes that extend much less than those in the case of shear-thickening
fluid.

6. The response of a 1DOF cylinder placed in shear-thinning or shear-thickening
flows at the same characteristic Reynolds number

In this section, we focus on the response of a 1DOF cylinder placed in the flow of different
shear-thinning and shear-thickening fluids, while keeping the characteristic Reynolds
number, Rechar, constant. We have achieved this constant characteristic Reynolds number
by selecting several combinations of power-law coefficient, n, and time constant, λ.
The steady shear rheology of these fluids is shown in figure 12, in which the curves
intersect the characteristic shear rate line (the vertical line) at the same point, indicating
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Figure 10. The dimensionless (a) amplitude, A∗, and (b) frequency, f ∗, of oscillations as well as the (c) CF
force coefficient, Cy, and (d) frequency, f ∗

Cy
, versus the reduced velocity, U∗, for shear-thickening fluids with

different time constants. The power-law coefficient is kept constant at n = 1.2. The incoming Reynolds number
is Re0 = 200 for all cases.
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Figure 11. Wake patterns for shear-thickening (a–e) and shear-thinning ( f –j) fluids at U∗ = 6, at different
λ and Rechar values. The cases for comparison are chosen in such a way that in each row the characteristic
Reynolds numbers for the shear-thickening and shear-thinning cases are approximately the same. The incoming
Reynolds numbers are Re0 = 200 and Re0 = 15 for shear-thickening and shear-thinning cases, respectively. For
all cases, the snapshot is taken when the cylinder is at the centre and moving up.

constant characteristic Reynolds number for all cases. For all these cases, the reduced
velocity is kept constant at U∗ = 6. This particular numerical experiment is designed
for understanding the effect of the power-law coefficient, n, of the shear-thinning and
shear-thickening fluids on the amplitude of oscillations and the wake structure when Rechar
is kept constant.

The histogram and the spatial distribution of the local Reynolds numbers for selected
shear-thinning and shear-thickening cases are shown in figure 13. The distribution
of local Reynolds number is quite different for shear-thinning cases compared with
shear-thickening cases. The shear-thinning cases are dominated by low Reynolds numbers
globally as seen in figure 13(a,b), while high Reynolds numbers are observed only in
close proximity to the cylinder. This local concentration of high Reynolds numbers is
enough to drive VIV with amplitudes of A∗ = 0.45 and A∗ = 0.43 for shear-thinning
cases of figures 13(a) and 13(b), respectively. In shear-thickening cases (figure 13c,d),
the local Reynolds numbers in proximity to the cylinder are much smaller than the
incoming Reynolds number of Re0 = 200; however, the drop of the Reynolds number
is not significant enough to suppress VIV. Thus we observe VIV at an amplitude of
A∗ = 0.39 for the shear-thickening cases (figure 13c,d), which is very close to the
amplitude of oscillations for the shear-thinning cases. Overall, at the same Rechar, when the
fluid rheology is changed from shear-thinning (n = 0.1 and n = 0.6) to shear-thickening
(n = 1.4 and n = 1.9), the VIV amplitude drops only very slightly from A∗ = 0.45 to
A∗ = 0.39, and the frequency of oscillations drops from fo/fn = 0.9 to fo/fn = 0.78. The
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Figure 12. Steady shear rheology of shear-thinning and shear-thickening fluids with different combinations of
power-law coefficient, n, and time constant, λ, using the Carreau model. These combinations are chosen such
that the characteristic Reynolds number remains constant at Rechar = 30 for all cases.

transition from shear-thinning to shear-thickening fluids causes the near wake regime
to shift from advection-dominated to diffusion-dominated. This explains the drop in
frequency and the slight decrease in the VIV amplitude. The fact that we have observed
similar VIV amplitudes for both shear-thinning and shear-thickening cases, despite the
differences in the global distribution of the Reynolds number, suggests that Rechar can
collapse the results for the VIV response of a 1DOF cylinder placed in a shear-thinning or
shear-thickening fluid.

For the same Rechar, the wakes for shear-thinning and shear-thickening cases are quite
different even though the amplitudes are very similar. The flow patterns in the wake
of a cylinder are shown for shear-thinning, Newtonian and shear-thickening cases in
figure 14. The magnitude of the vorticity is the maximum in the case of shear-thinning
fluids (figure 14a,b). This is expected because shear thinning in the high-shear-rate regime
causes the drop in viscosity, and advection becomes important. Moving away from the
cylinder, the shear rate decreases and diffusion overpowers advection. Consequently, the
generated vortices diffuse as soon as they enter into the low-shear-rate regime. Thus the
extent of the wake for fluids with higher shear-thinning effect is smaller. As we move
from shear-thinning fluids to shear-thickening fluids (figure 14d,e), the maximum vorticity
decreases gradually. In the high-shear-rate regime, due to the shear-thickening effect,
viscosity increases, which causes the reduction in the generation of vorticity. However,
at this Rechar value, the increase in viscosity is not enough to curb the shedding of
the vortices, and the vortices are strong enough to cause the cylinder to oscillate at an
amplitude of A∗ = 0.39, similar to the shear-thinning cases. As seen in figure 14(d,e), for
shear-thickening fluids, the extent of the wake is the largest amongst all the cases. For
shear-thickening fluids, diffusion dominates the advection in the high-shear-rate regime.
The advection then dominates moving away from the cylinder as the shear-thickening
effect becomes less prominent due to reduced shear rate. Although the strength of vortices
is comparatively low, the increased relative importance of advection helps them to travel a
longer distance downstream before they get diffused.
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Figure 13. Histograms of the local Reynolds numbers around a cylinder undergoing VIV in shear-thinning
(first row) and shear-thickening fluids (second row) at U∗ = 6 and Rechar = 30: (a) n = 0.1, λ = 0.33 s
(Cu = 2), (b) n = 0.6, λ = 1.1 s (Cu = 7), (c) n = 1.4, λ = 3 s (Cu = 20), and (d) n = 1.9, λ = 0.55 s
(Cu = 4). All the cells inside the bounding box (dashed blue rectangle) of size 15D × 7D are used to create the
histograms.

7. Conclusions

We have studied numerically the VIV response of a one-degree-of-freedom cylinder
in shear-thinning (n = 0.36) and shear-thickening (n = 1.2) fluids at Re0 = 15 and
Re0 = 200, respectively, for a mass ratio of m∗ = 2 and a zero structural damping. Our
simulations are performed over a wide range of reduced velocities, U∗, and fluid time
constants, λ. Our goal was to study the effect of the fluid time constant on the VIV response
at constant power-law coefficient, n. The choice of n was rather arbitrary, and we chose
n = 0.36 for shear-thinning fluids, because this value has been used in studies on blood
flow. For shear-thickening fluids, we chose n = 1.2 simply to stay within a similar range
of viscosity and characteristic Reynolds number.

For the cases with shear-thinning fluids, the observed VIV response at the largest value
of the time constant, λ = 5 s (Cu ≈ 40), resembles the response observed in a Newtonian
case, albeit at an incoming Reynolds number where VIV would not have been observed
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Figure 14. The wake of a cylinder undergoing VIV in shear-thinning, Newtonian and shear-thickening fluids,
at the same characteristic Reynolds number, Rechar = 30, and a fixed reduced velocity of U∗ = 6: (a) n = 0.1,
λ = 0.33 s (Cu = 2), (b) n = 0.6, λ = 1.1 s (Cu = 7), (c) n = 1, (d) n = 1.4, λ = 3 s (Cu = 20), and
(e) n = 1.9, λ = 0.55 s (Cu = 4). For all cases, the snapshot is taken when the cylinder is at the centre and
moving up.

in a Newtonian case. The lock-in range extends from U∗ = 3 to U∗ = 8.5 for λ = 5 s
(Cu ≈ 40), and the maximum amplitude is around A∗ = 0.55. The amplitude and the
width of the lock-in range decrease with decreasing λ, and for λ = 0.15 s (Cu = 1.2), no
VIV is observed. For the cases where the cylinder oscillates, the vortex shedding frequency
and the oscillation frequency are synchronized, and lock-in is observed. At a constant
reduced velocity, no oscillation is observed for small time constants. With increasing
time constants, the shear-thinning effect becomes stronger, vortices are shed, and VIV is
observed. The amplitude of VIV increases with increasing time constant before it reaches
a plateau. The VIV response at the highest presented value of the time constant, λ = 5 s
(Cu ≈ 40), approaches the Newtonian limit. We have also observed a subcritical instability
in shear-thinning fluids at U∗ = 4. In a range of 0.5 s < λ < 0.7 s (4 < Cu < 5.55), the
cylinder could either undergo VIV if it is given an initial disturbance, or remain at its
original equilibrium position if it is not disturbed.

For shear-thickening fluids with smaller time constants, the VIV response looks very
similar to the VIV response of a cylinder in a Newtonian fluid at post-critical Reynolds
numbers. With increasing time constant, the shear-thickening effect becomes stronger and
the viscosity in the high shear rate regime increases. Thus the VIV amplitude and the
width of the lock-in range decrease with increasing time constant. At large time constants,
in proximity to the cylinder, diffusion dominates advection, limiting the generation of
vorticity, and VIV is completely suppressed at λ = 650 s (Cu ≈ 4293) for all reduced
velocities.
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For both shear-thinning and shear-thickening cases undergoing VIV, a 2S shedding
pattern is observed in the wake. For shear-thinning fluids, the extent of the wake
and the strength of vortices increase gradually with increasing time constant as the
advection dominates over diffusion. For small time constants, the vorticity generated
is small and very localized, and results in VIV with small amplitudes. The extent of
the wake is not limited by the shear-thickening effect since the diffusion becomes less
dominant moving away from the cylinder, and advection kicks in. The sizes of the
vortices and the recirculation bubble in shear-thickening cases are larger than those in
shear-thinning cases. The frequency of oscillations and the shedding frequency gradually
decrease when the fluid rheology is shifted from shear-thinning to shear-thickening. In
proximity to the cylinder, advection dominates for shear-thinning fluids and diffusion
dominates for shear-thickening fluids. Thus the maximum generated vorticity is larger
in the shear-thinning cases. The advection-dominated regime away from the cylinder in
shear-thickening fluids helps the vortices to move downstream, therefore the extent of the
wake is larger in shear-thickening fluids.

When the response of the cylinder is compared using the zero-shear Reynolds number,
Re0, shear-thinning fluids enhance the oscillations while shear-thickening fluids suppress
them. The VIV response is very sensitive to the rheology of the fluid and the shear rate.
To consider the effect of fluid rheology and the shear rate in a single parameter, we have
defined the characteristic Reynolds number using the viscosity at the characteristic shear
rate, U/D. To show how well Rechar describes the flow in proximity to the cylinder, we
consider shear-thinning and shear-thickening fluids with different combinations of the
power-law coefficient, n, and the time constant, λ, such that all of them lead to a constant
Rechar = 30, and all at a fixed reduced velocity of U∗ = 6. We show that although the
distribution of local Re is quite different for shear-thinning and shear-thickening cases even
at a constant Rechar, the VIV amplitude is quite similar for all the cases, and Rechar can be
used to collapse the data for both shear-thinning and shear-thickening cases. We also show
that the critical values of Rechar for the onset of VIV are Rechar,crit ≈ 22 for shear-thinning
fluids and Rechar,crit ≈ 18 for shear-thickening fluids, both comparable with the critical
Reynolds number for the onset of VIV in a Newtonian fluid, i.e. Recrit ≈ 19.
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