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Abstract

We consider a class of weakly interacting particle systems of mean-field type. The inter-
actions between the particles are encoded in a graph sequence, i.e. two particles are
interacting if and only if they are connected in the underlying graph. We establish a law
of large numbers for the empirical measure of the system that holds whenever the graph
sequence is convergent to a graphon. The limit is the solution of a non-linear Fokker–
Planck equation weighted by the (possibly random) graphon limit. In contrast with the
existing literature, our analysis focuses on both deterministic and random graphons: no
regularity assumptions are made on the graph limit and we are able to include gen-
eral graph sequences such as exchangeable random graphs. Finally, we identify the
sequences of graphs, both random and deterministic, for which the associated empirical
measure converges to the classical McKean–Vlasov mean-field limit.
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1. Introduction, organization, and set-up

In the last twenty years there has been a growing interest in complex networks and inhomo-
geneous particle systems. The classical mean-field framework (see e.g. [23], [26]), in which all
the particles are connected to each other, has been extended to include interactions described by
general networks. In these more general models, the interaction between two particles depends
on the weight of the edge connecting the two in an underlying network. Applications of these
models include mean-field games [9, 10], synchronization phenomena [2], neuroscience [25],
and statistical mechanics [27], among others.

The first mathematically rigorous results on McKean–Vlasov particle systems and graphs
appeared only recently [7, 16]: these consider certain graph sequences with diverging average
degree. Under suitable homogeneity conditions on the degrees, the system is described by the
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classical mean-field limit [26] as the number of particles tends to infinity. The cited works leave
several relevant questions unanswered: Is it possible to characterize the graph sequences for
which the system converges to the mean-field limit? How sensitive are the system dynamics to
the degree inhomogeneity in the underlying graph? The existing literature (see e.g. [4], [15],
[20]) focuses on a large class of particle systems and different graph regimes, i.e. from dense to
almost sparse graphs, yet they are unable to fully include the well-known class of exchangeable
random graphs [17] in their result.

Our aim is to prove that a law of large numbers for weakly interacting particle systems
can be proved for any dense random graph sequence, including exchangeable random graphs.
To keep the focus on the random graph limit viewpoint, we restrict the class of interacting
particles to weakly interacting oscillators, a class of systems that shows a remarkably rich
behavior [2, 25]. We note that, at the cost of more technicalities, our result could be extended
to more general particle systems. The main result of this work is a law of large numbers for the
empirical measure under the only assumption that the graph sequence converges in probability
in the space of graphons; see [19] for a complete tour on graphons. Namely, we tackle the
challenging case of a random graph limit, which includes pseudo-random graphs (see e.g. [3],
[12]) and exchangeable random graphs (see e.g. [17]). To the authors’ knowledge, this is the
first result in the literature that explicitly links random graph limits to empirical measures.

As a byproduct, we are able to identify deterministic and random graph sequences for
which the particle system behavior is approximately mean-field. We also provide an exam-
ple of a particle system undergoing a phase transition, where the critical threshold depends on
the randomness of the graph limit; see Proposition 3.2 and the example below.

1.1. Unlabeled graphons and empirical measures

To better illustrate our contribution, a clarification of the term graphon is in order. In the
literature of McKean–Vlasov particle systems, the term graphon is usually employed for
what the classical graph limits theory (we refer to [17], [19]) calls a labeled graphon, i.e.
a symmetric, bounded, and measurable function W : [0, 1] × [0, 1] →R. The space [0,1] is
known as the label space and it is used as particle index: roughly speaking, every x ∈ [0, 1]
corresponds to a particle and the interaction strength between two particles x and y is given by
the value of W(x, y).

The mathematical space of graphons is not merely given by labeled graphons but con-
structed via certain equivalence classes, that is,

W̃ = {Wϕ with ϕ : [0, 1] → [0, 1] measure-preserving map},
where Wϕ(x, y) = W(ϕ(x), ϕ(y)) for every x and y in [0,1]. The measure-preserving map ϕ
corresponds to a label permutation in a finite graph (note that ϕ need not be invertible in
the infinite setting; see [19, Proposition 7.10]). In other words, W̃ contains the connection
information of some labeled graphon W, while being independent of its labeling. Following
[17], we refer to this object as an unlabeled graphon. The space of graphons is the space of
unlabeled graphons with a suitable distance; see Section 2.3 for further details.

The notion of labeling is relevant when studying interacting particle systems. On the one
hand, we are interested in understanding the correlation between two particles and need their
labels to be fixed to suitably describe it. On the other hand, we want to describe the macroscopic
behavior, e.g. by studying the empirical measure, and there the labels do not play any role.
Hence, depending on the question we are interested in, the suitable modeling choice might be
labeled or unlabeled graphs. From a graphon viewpoint, considering unlabeled graphons is not
a technical recourse but in fact represents the cornerstone of the theory and the key ingredient
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to many of its interesting properties. As will become clear later, when describing the dynamics
of a particle population, the concept of labeled graphon is not satisfactory: different labeled
graphons can lead to exactly the same dynamics!

Our contribution stems from the previous considerations. We refer to Section 3.3 for a
comparison with the existing literature.

1.2. Organization

We now present the set-up and notation used, as well as the various distances between
probability measures that will be considered below. In Section 2 we give a brief introduction
to graphons and the main tools needed for this work.

In Section 3 we define the interacting particle system and the associated non-linear process.
Existence, uniqueness, and stability results for the non-linear process are presented imme-
diately afterwards; see Theorem 3.1. Our main result, Theorem 3.2, is given in Section 3.2.
Exchangeable random graphs are then discussed together with a propagation of chaos result;
see Section 3.4. Section 3.5 is devoted to the comparison with the classical mean-field behav-
ior and to a few important consequences of Theorem 3.2; the discussion is supported by two
explanatory examples.

In Section 4 we focus on the non-linear process. In particular, we discuss its relationship
with other characterizations already known in the literature. The proofs of the main results for
the non-linear process are given in Section 4.4.

Section 5 contains the proof of Theorem 3.2. Finally, in Appendix A we give a useful
characterization of convergence in probability for random graph sequences.

2. Setting and notations

We consider particle dynamics occurring on a finite time interval, say [0, T], which we fix
once and for all. We work on the filtered probability space (�,F , {Ft}t∈[0,T], P), where {F·}
is a filtration satisfying the usual conditions.

We use two different notations for expressing conditional probabilities: the one referring
to Brownian motions and initial conditions is denoted by P and its expectation by E; the one
referring to the randomness in the graph sequences, and/or in its limit object, is denoted by P

and its expectation by E.
The interval I := [0, 1] represents the space of (continuous) labels. We study functions

with values in the one-dimensional torus denoted by T :=R/(2πZ). The space of continu-
ous functions from [0, T] to T is denoted by C([0, T],T) and is endowed with the supremum
norm. For α > 0, the space of α-Hölder-continuous functions from T

2 to R is denoted by
Cα(T2). Given a separable metric space E, the space of probability measures over E is denoted
by P(E).

The various constants throughout the paper are always denoted by C or C′ and may vary
from line to line. An explicit dependence on a parameter α will be denoted by Cα .

2.1. Distance between probability measures

For two probability measures μ̄, ν̄ ∈P(C([0, T],T)), we define their distance by

DT (μ̄, ν̄) := inf
m∈γ (μ̄,ν̄)

{∫
sup

t∈[0,T]
|xt − yt|2m(dx, dy)

}1/2

, (2.1)

where γ (μ̄, ν̄) is the space of probability measures on C([0, T],T) × C([0, T],T) with first
marginal equal to μ̄ and second marginal equal to ν̄. This definition coincides with the
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2-Wasserstein distance between probability measures. The right-hand side of (2.1) can be
rewritten as

DT (μ̄, ν̄) = inf
X,Y

{
E

[
sup

t∈[0,T]
|Xt − Yt|2

]
: L(X) = μ̄, L(Y) = ν̄

}1/2

, (2.2)

where the infimum is taken on all random variables X and Y with values in C([0, T],T) and
law L equal to μ̄ and ν̄ respectively. From (2.1) we obtain that for every s ∈ [0, T]

sup
f

∣∣∣∣∫
T

f (θ ) μ̄s(dθ ) −
∫
T

f (θ ) ν̄s(dθ )

∣∣∣∣ ≤ Ds(μ̄, ν̄), (2.3)

where the supremum is taken over all 1-Lipschitz functions from T to R. Observe that these
definitions also make sense with T = 0 and C([0, T],T) replaced by T.

2.2. Distance between finite graphs

We denote [n] := {1, . . . , n} for n ∈N. Let ξ be a graph on n vertices. With an abuse of
notation, we let ξ denote its adjacency matrix as well, i.e. ξ = {ξij}i,j∈[n]. We consider simple
undirected graphs so that ξij = ξji and ξii = 0 for all 1 ≤ i ≤ j ≤ n.

Let A = {Aij}i,j∈[n] be an n × n real matrix. The cut-norm of A is a well-known norm for (not
necessarily square) finite matrices (see e.g. [1], [19]); it is defined as

‖A‖� := 1

n2
max

S,T⊂[n]

∣∣∣∣∣ ∑
i∈S,j∈T

Aij

∣∣∣∣∣. (2.4)

It is well known that this norm is equivalent to the 
∞ → 
1 norm [1]

‖A‖∞→1 := sup
si,tj∈{±1}

n∑
i,j=1

Aijsitj.

For two graphs ξ and ξ ′ on the same set of vertices, we define the distance d� as

d�(ξ, ξ ′) := ‖ξ − ξ ′‖�.

2.3. Labeled and unlabeled graphons

The following definitions come from the book by Lovász [19], whose notation we adopt.
Recall that I = [0, 1] and let

W := {W : I2 →R bounded symmetric and measurable}
be the space of kernels; we tacitly consider two kernels to be equal if and only if the subset
of I2 where they differ has zero Lebesgue measure on I2. A graphon is a kernel W such that
0 ≤ W ≤ 1. Let W0 denote the space of graphons. The cut-norm of W ∈W is defined as

‖W‖� := max
S,T⊂I

∣∣∣∣∫
S×T

W(x, y) dx dy

∣∣∣∣, (2.5)

where the maximum is taken over all measurable subsets S and T of I. It is well known that
‖W‖� is equivalent to the norm of W seen as an operator from L∞(I) → L1(I) [19, Theorem
8.11]. This is defined as

‖W‖∞→1 := sup
‖g‖∞≤1

‖Wg‖1,

where (Wg)(x) := ∫
I W(x, y)g(y) dy for x ∈ I and g ∈ L∞(I).
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The metric induced by ‖·‖�, or equivalently by ‖·‖∞→1, in the space of graphons W0 is
again denoted by d�(·, ·). Definitions (2.4) and (2.5) are consistent in the sense that to each
graph ξ is associated a graphon Wξ ∈W0 such that ‖ξ‖� = ‖Wξ‖�. The graphon Wξ is usually
defined almost everywhere as

Wξ (x, y) =
n∑

i,j=1

ξij 1[ i−1
n , i

n )×[ j−1
n

j
n )(x, y) for x, y ∈ I. (2.6)

Note that Wξ depends on the labeling of ξ . Indeed, different labelings of ξ yield graphs that
have large d�-distance in general. This motivates the definition of the so-called cut-distance.
For two graphs ξ , ξ ′ with the same number of nodes, the cut-distance is defined as

δ̂�(ξ, ξ ′) := min
ξ̂
′ d�(ξ, ξ̂ ′), (2.7)

where the minimum ranges over all labelings of ξ ′. The cut-distance is also defined for
graphons as follows. For two graphons W, V ∈W0, their cut-distance is

δ�(W, V) := min
ϕ∈SI

d�(W, Vϕ), (2.8)

where the minimum ranges over SI , the space of invertible measure-preserving maps from I
into itself, and where Vϕ(x, y) := V(ϕ(x), ϕ(y)) for x, y ∈ I.

Remark 2.1. There are at least two ways to compare the graphs ξ, ξ ′ as unlabeled objects:
either by directly computing their distance δ̂� or by computing the distance δ� between
Wξ and W

ξ
′ . These turn out to be equivalent as the number of vertices tends to infinity [19,

Theorem 9.29]. Formally, for every two graphs ξ, ξ ′ on n vertices, it holds that

δ�(Wξ ,W
ξ
′ ) ≤ δ̂�(ξ, ξ ′) ≤ δ�(Wξ ,W

ξ
′ ) + 17√

log n
.

We always write δ�(ξ, ξ ′) := δ�(Wξ ,W
ξ
′).

Contrary to d�, the cut-distance δ� is a pseudometric on W0 since the distance between
two different graphons can be zero. This leads to the definition of the unlabeled graphon W̃
associated to W. For a graphon W, W̃ is defined as the equivalence class of W including all
V ∈W0 such that δ�(W, V) = 0. For notation’s sake, we drop both the superscript and the
adjective unlabeled when the context is clear.

The quotient space obtained in such a way is denoted by W̃0 and we refer to it as the space
of unlabeled graphons. A celebrated result of graph limits theory is that (W̃0, δ�) is a compact
metric space [19, Theorem 9.23].

We will not go into the details of graph convergence, for which we refer to the exhaustive
source [19]. We only recall that a sequence of graphs {ξ (n)}n∈N converges to the graphon W ∈
W̃0 if and only if δ�(Wξ (n) ,W) → 0 as n → ∞ [19, Theorem 11.22].

3. The models and main results

3.1. The models

We introduce our two main models: a weakly interacting particle system (3.1) and a non-
linear process (3.3).
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3.1.1. Weakly interacting oscillators on graphs. Let {ξ (n)}n∈N be a sequence of undirected,
labeled graphs. For n ∈N, the adjacency matrix of ξ (n) is given by the n × n symmetric
matrix {ξ (n)

ij }i,j=1,...,n, where ξ (n)
ij = 1 whenever the vertices i and j are connected and ξ (n)

ij = 0

otherwise. Let {θ i,n}i=1,...,n be the family of oscillators on T
n that satisfy⎧⎪⎪⎨⎪⎪⎩

dθ i,n
t = F

(
θ

i,n
t

)
dt + 1

n

n∑
j=1

ξ
(n)
ij �

(
θ

i,n
t , θ

j,n
t

)
dt + dBi

t, 0< t< T,

θ
i,n
0 = θ i

0, i ∈ {1, . . . , n},
(3.1)

where F and � are bounded, uniformly Lipschitz functions and {Bi}i∈N is a sequence of
independent and identically distributed (i.i.d.) Brownian motions on T. The initial condi-
tions {θ i

0}i∈N are i.i.d. random variables sampled from some probability distribution μ̄0 ∈P(T)
which is fixed once and for all.

Remark 3.1. At the cost of more technical details, one can relax the hypothesis on the initial
conditions and require independent but not identically distributed {θ i

0}i∈N. Instead we keep the
proofs simple, following the classical propagation of chaos arguments; see e.g. [26].

Many interesting examples of interacting oscillators fit this framework, such as the
Kuramoto model, the plane rotator model, and other generalizations; see e.g. [16, § 1.2], [3],
and also Section 3.5. The applications of interacting oscillators range from modeling synchro-
nization phenomena (see e.g. [2]) to neuroscience (e.g. [25]), as well as for studying statistical
mechanics properties of complex systems [27].

We are interested in studying the empirical measure associated to (3.1). This is defined as
the (random) probability measure on T such that

μn
t := 1

n

n∑
j=1

δ
θ

j,n
t

(3.2)

for every t ∈ [0, T]. Alternatively, one can also consider the empirical measure μn of the
trajectories, that is, on

μn = 1

n

n∑
j=1

δθ j,n ∈P(C([0, T],T)),

where θ j,n = (θ j,n
t )t∈[0,T] ∈ C([0, T],T) is the trajectory on [0, T] of particle j for j = 1, . . . , n.

The two are equally considered in the literature; see e.g. [15, Remark 1.1]) for the relation
between the two.

3.1.2. The non-linear process. Fix a graphon W ∈ W̃0 and a uniform random variable U on I.
Consider the solution θ = {θt}t∈[0,T] to the following system:⎧⎨⎩ θt = θ0 +

∫ t

0
F(θs) ds +

∫ t

0

∫
I

W(U, y)
∫
T

�(θs, θ )μy
s(dθ ) dy ds + Bt,

μ
y
t =L(θt | U = y) for y ∈ I, t ∈ [0, T],

(3.3)

where the initial condition θ0 has law L(θ0) = μ̄0 and is taken to be independent of U. The
Brownian motion B is independent of the previous sequence {Bi}i∈N, of U, of the initial
condition θ0, and also independent of the sequence ξ (n).
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The next theorem on existence and uniqueness of the solution to equation (3.3) is proved in
Section 4, together with well-posedness with respect to W. For the latter, see Remark 4.4.

Theorem 3.1. Suppose that F and � are bounded, uniformly Lipschitz functions. For every
uniform random variable U on I, there exists a unique pathwise solution to (3.3).

If μ̄ ∈ C([0, T],P(T)) denotes the law of the solution θ = {θt}t∈[0,T] and μx the law of θ
conditioned on U = x, then μ̄ solves the following non-linear Fokker–Planck equation in the
weak sense:

∂tμ̄t(θ ) = 1

2
∂2
θ μ̄t(θ ) − ∂θ [μ̄t(θ )F(θ )] − ∂θ

[∫
I×I

W(x, y)μx
t (θ )

∫
T

�(θ, θ̃)μy
t (dθ̃) dy dx

]
,

(3.4)
with initial condition μ̄0 ∈P(T).

3.2. Main result

We are now able to present our main result. Afterwards, we present an application to
exchangeable random graphs and a propagation of chaos result.

Theorem 3.2. Assume the hypothesis of Theorem 3.1 and further suppose that � ∈ C1+ε(T2)
for some ε > 0. Let {ξ (n)}n∈N be a sequence of random graphs. Assume that there exists a
random variable W in W̃0 to which ξ (n) converges in P-probability, or equivalently such that

lim
n→∞ E

[
δ�

(
ξ (n),W

)] = 0. (3.5)

Suppose that the initial conditions {θ i
0}i∈N are i.i.d. random variables with law μ̄0 and are

independent of {ξ (n)}n∈N. Then

μn −→ μ̄ in P × P-probability, as n → ∞, (3.6)

where the convergence is in P(C([0, T],T))) and μ̄ is a random variable depending only on
the randomness of W, that is, for almost every ω ∈�, μ̄(ω) solves equation (3.4) starting from
μ̄0, with graphon W(ω).

The hypothesis (3.5) on the graph convergence is very general. Indeed, it holds for any ξ (n)

in W , meaning that ξ (n) can take values in R rather than {0, 1}; recall the definition of kernels
in Section 2.3. Moreover, the sequence ξ (n) can be deterministic or random; if it is random,
we also cover the convergence in probability to a random graphon limit W. In this last case,
well-posedness and measurability of equation (3.4) are granted by Theorem 4.1.

Looking at the proof of Theorem 3.2, we remark that if the limiting graphon W is determin-
istic, the initial conditions {θ i

0}i∈N can depend on the graph sequence {ξ (n)}n∈N. In other words,
Theorem 3.2 also holds if {θ i

0}i∈N is independent of the randomness in W but not necessarily
on the whole sequence {ξ (n)}n∈N. The relationship between the randomness left in W and the
randomness in ξ (n) is further discussed in Section 3.5.

Requiring that � ∈ C1+ε(T2) for ε > 0 has no specific physical meaning. It is a technical
assumption to ensure the convergence of estimates involving the Fourier coefficients of �; we
refer to the proof of Theorem 3.2 in Section 5.

3.3. Comparison with the existing literature

Weakly interacting particle systems on graph sequences converging to graphons have
already been considered in a series of works, both in the stochastic setting [4, 20, 24] and
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in the deterministic one [11, 22]. Most of these results vary in terms of the class of particle
systems considered, the notion of convergence of the graph sequence, or the hypothesis on
the initial condition. To our knowledge, no result in the literature considers graph sequences
issued from random graphons. In addition, we are not aware of any result directly using the
cut-distance as we do.

We focus on dense graph sequences where, roughly speaking, the average degree in the
graph is proportional to the number of vertices. All the cited results are established in more gen-
erality with respect to the graph density, i.e. they consider random graph sequences in different
regimes, from dense to almost sparse. There is no common agreement on the terminology used
for dense/sparse graphs; we refer to [13] for a presentation of the subject.

In the deterministic setting, Medvedev and co-authors (see [11], [22], and references
therein) were the first to consider random graph sequences arising from a graphon. They focus
on a restricted class of deterministic models, as the (deterministic) Kuramoto model. In the
stochastic setting, Luçon [20] consider particle systems defined on R

d with additive noise and
a transport term in the dynamics; the initial conditions are assumed to be independent but not
identically distributed. The hypothesis on the convergence of the graph sequence is somewhat
involved as it is not expressed in terms of the cut-norm: the labeled graph limit must satisfy
some extra regularity assumption, such as continuity or integrability. Oliveira and Reis [24]
focus on a system of interacting particles on R where the dynamics is defined by means of a
Hamiltonian, and the initial conditions are taken to be i.i.d. They establish a large deviation
principle for the empirical measure by explicitly using the cut-norm for the convergence of
graph sequences. The proofs are based on large deviation techniques. The labeled graph limit
must be Lipschitz.

Bayraktar et al. [4] consider interacting particle systems on R
d with multiplicative noise.

The graph sequences arise from deterministic graphons under regularity assumptions that are
comparable to ours (namely, only measurability for establishing the law of large numbers).
They establish a law of large numbers and a propagation of chaos property. Their proof is
based on careful trajectorial estimates as well as a polynomial representation of the interaction,
suitable for the use of the cut-norm. They do not consider random graph limits.

3.4. Applications to exchangeable graphs

Recall that an exchangeable random graph ξ = {ξij}i,j∈N (see [17]) is an infinite array of
jointly exchangeable binary random variables, that is, it satisfies

P(ξij = eij, 1 ≤ i, j ≤ n) = P(ξij = eσ (i)σ (j), 1 ≤ i, j ≤ n) (3.7)

for all n ∈N, all permutations σ on {1, . . . , n}, and all eij ∈ {0, 1}.
Remark 3.2. Any finite deterministic graph ξ leads to an exchangeable random graph by
performing a uniform random sampling on its associated graphon Wξ ; see (2.6) and [19, §10].

More generally, for W ∈ W̃0 one may construct an exchangeable random graph ξW , usually
called a W-random graph, defined for i and j in N by

ξW
ij = W(Ui,Uj), (3.8)

where {Ui}i∈N is a sequence of i.i.d. uniform random variables on I. As recalled by the next
theorem, the converse is also true: every exchangeable random graph can be obtained in this
way, provided that W is random.
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The characterization of exchangeable random graphs is a consequence of the works of
Hoover, Aldous, and Kallenberg; see [17] and references therein. We recall their main result
here.

Theorem 3.3. ([17, Theorem 5.3], [19, Theorem 11.52].) Let ξ = {ξij}i,j∈N be an exchangeable
random graph. Then ξ is a W-random graph for some random W ∈ W̃0. Moreover, let ξ (n) :=
{ξij}i,j=1,...,n for every n ∈N. It holds that

ξ (n) −→ W P-a.s. in W̃0, (3.9)

as n → ∞.

We are now ready to state the main corollary of Theorem 3.2, which deals with exchange-
able random graphs.

Corollary 3.1. Let ξ = {ξij}i,j∈N be an exchangeable random graph and let W be the limit of
ξ (n) := {ξij}i,j=1,...,n in the sense of Theorem 3.3. Assume that the initial conditions {θ i

0}i∈N are
i.i.d. and independent of {ξ (n)}n∈N. Then

μn −→ μ̄, in P × P-probability, as n → ∞,

where μ̄ is the solution to (3.4) starting from μ̄0 with graphon W.

We say that ξ = {ξ (n)}n∈N is a sequence of exchangeable graphs when the random vari-
ables {ξ (n)

ij }i,j=1,...,n are exchangeable for each n ∈N. Observe that ξ is not necessarily an

exchangeable random graph as in (3.7). Whenever ξ = {ξ (n)}n∈N is a sequence of exchangeable
graphs, the particles {θ i,n}i=1,...,n are exchangeable as well (recall that the initial conditions
are assumed i.i.d.) and, in particular, their joint distribution is symmetric, i.e. invariant under
permutation of the labels. Observe that this is not true when the graph is not exchangeable.
A classical result by Sznitman [26, Proposition 2.2] is that the law of large numbers for the
empirical measure of a symmetric joint distribution of particles is equivalent to the propagation
of chaos property. From equation (3.6), we can thus deduce a propagation of chaos statement
for the particle system (3.1). This is illustrated in the next proposition.

Proposition 3.1. Assume the hypothesis of Theorem 3.2. If ξ = {ξ (n)}n∈N is a sequence of
exchangeable graphs, then for every k ∈N,

lim
n→∞ L(

θ1,n, . . . , θk,n) =
k∏

i=1

L(θ ) =
k∏

i=1

μ̄,

where L stands for the law in P × P-probability and μ̄ is the solution to (3.4).

We omit the proof of Proposition 3.1.

3.5. Mean-field behavior and two explanatory examples

Theorem 3.2 allows for a better understanding of the relationship between random graph
sequences and the behavior of the empirical measure.

(1) It highlights the difference between the randomness present in the graph ξ (n) for every
n ∈N and the randomness left in the limit W.
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(2) It presents a new class of random Fokker–Planck equations as possible limit descriptions
for the empirical measure μn.

As a byproduct, Theorem 3.2 yields a precise characterization of the graph sequences for
which the empirical measure converges to the mean-field limit. Let us recall what we mean by
mean-field limit and first discuss this last issue; we then address (1) and (2) with the help of
two examples.

Consider system (3.1) on a sequence of complete graphs, i.e. ξ (n)
ij ≡ 1 for every i, j, and

n. It is well known [23, 26] that the empirical measure μn converges to the mean-field limit
ρ ∈ C([0, T],P(T)), defined as the unique solution to the following McKean–Vlasov equation:

∂tρt(θ ) = 1

2
∂2
θ ρt(θ ) − ∂θ [ρt(θ )F(θ )] − p ∂θ

[
ρt(θ )

∫
T

�(θ, θ̃ ) ρt(dθ̃ )

]
, (3.10)

with initial condition μ̄0 and p = 1. Existence and uniqueness for the solution to (3.10) hold
under our assumptions on F, �, and μ̄0; see again [23] and [26].

Suppose that the graph sequence is converging to a deterministic limit; we discuss the case
of a random limit after the first example. Theorem 3.2 implies that for every sequence {ξ (n)}n∈N
which converges to some flat graphon W ≡ p ∈ [0, 1], the empirical measure μn in the limit
satisfies equation (3.10) with corresponding p. Since the convergence of ξ (n) to a non-constant
graphon gives rise to equation (3.4), which is – at least formally – different from (3.10), we
conclude that if the sequence ξ (n) converges to a constant graphon, then the limit of μn is
formally mean-field. The graphs with such asymptotic behavior are known in the literature as
pseudo-random graphs; see [3], [12], and [19, §11.8.1].

We now address the issues (1) and (2) with two explanatory examples. The mean-field
comparison when the graph limit is random is discussed after the next example.

3.5.1. Example I: W-random graphs. Fix p ∈ (0, 1) and let g be a random variable on (0, 1)
with mean

√
p and distribution function given by Fg. Let {gi}i∈N be a sequence of i.i.d. copies

of g. Conditionally on {gi}i∈N, ξ (n)
ij is defined as

ξ
(n)
ij ∼ Ber(gigj), independently for each 1 ≤ i< j ≤ n. (3.11)

The graph ξ (n) is the dense analogue of the inhomogeneous random graph, also known as a
rank-1 model; see e.g. [6] and [8]. In this model, gi corresponds to the weight associated with
particle i and, loosely speaking, the closer gi is to 1, the more connections are formed by
particle i. We expect that assigning different distributions to g leads to different behaviors for
the empirical measure (3.2).

The construction made in (3.11) yields a binary array {ξ (n)
ij }i,j=1,...,n of exchangeable random

variables. In particular, the edges have the same expected value E[ξ (n)
ij ] = p, for every i = j. We

are interested in comparing the empirical measure of the system (3.1) defined on the graph
(3.11) to the empirical measure of the corresponding annealed system that is obtained from
(3.1) by replacing ξ (n)

ij with their expected value. More precisely, the annealed system is defined
as the solution to

dθ i,n
t = F

(
θ

i,n
t

)
dt + p

n

n∑
j=1

�
(
θ

i,n
t , θ

j,n
t

)
dt + dBi

t, (3.12)

for which the asymptotic behavior is known to be the mean-field limit (3.10).
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The behavior of system (3.1) on the graph sequence (3.11) is described in the limit by (3.12)
only when g is deterministic and equal to

√
p. Recall the definition of a W-random graph given

in (3.8): we see that ξ (n) is a Wg-random graph with

Wg(x, y) = F−1
g (x) F−1

g (y) for x, y ∈ I,

where F−1
g is the pseudo-inverse of Fg. In particular, the P-a.s. limit of ξ (n) is given by Wg and

thus the limit of μn by the solution to equation (3.4) with W = Wg. Theorems 3.2 and 4.1 imply
that if Wg is arbitrarily close to the constant graphon p in the cut-distance, i.e. if Var[g] � 1,
then the empirical measure of the system associated to ξ (n) is arbitrarily close to the mean-
field limit of the annealed system (3.12). In this case, {ξ (n)}n∈N is close to an Erdös–Rényi
graph sequence, for which the mean-field behavior is already known; see [15]. Finally, observe
that choosing a suitable deterministic sequence of the weights {gi}i∈[n], e.g. gi = F−1

g (i/n) for

i ∈ [n], would lead to a random graph ξ (n) which is not exchangeable. In particular, E[ξ (n)
ij ] is

not constant and changes for every i and j. Nonetheless, the sequence ξ (n) still converges to the
same limit Wg, P-a.s. in the realization of the Bernoulli random variables and possibly at the
cost of requiring some regularity on Wg; see [19, §11.4].

This example illustrates how the randomness related to the exchangeability in the sequence
ξ (n) is lost in the limit of μn, as it is lost in the graph limit Wg. In this sense, adding exchange-
ability to system (3.1) does not yield any averaging property on the empirical measure μn.
Moreover, adding the extra randomness through Bernoulli random variables in (3.11) does not
alter this fact. In other words, taking ξ (n)

ij = gigj ∈ [0, 1] yields yet again the same limit for μn.

Until now, we have focused on deterministic limits for the sequence ξ (n). We now consider
the case where the limit W is random, and we address the relationship between the resulting
system and the mean-field limit ρ given in (3.10). One might be led to conjecture that it is
possible to recover the mean-field behavior by, for example, averaging the limit dynamics with
respect to the randomness in W. In the next example, we formulate this remark in a rigorous
way. We show that this is in general not possible, although it may lead to a new class of
asymptotic behaviors which are interesting in their own right, as pointed out in (2) above.

3.5.2. Example II: random mean-field behavior. Consider the growing preferential attachment
graph ξpa constructed iteratively as follows; see also [19, Example 11.44]. Begin with a single
node and, assuming that at the nth step there are already n nodes, create a new node with label
n + 1 and connect it to each node i ∈ {1, . . . , n} with probability (dn(i) + 1)/(n + 1) where
dn(i) is the degree of node i at step n and each connection is made independently of the others.
Denote the corresponding random graph by ξ (n+1)

pa .
Roughly speaking, the behavior of ξpa depends crucially on the first steps of the construc-

tion and it stabilizes to a homogeneous structure as n grows. This is illustrated in the next
proposition.

Proposition 3.2. ([19, Proposition 11.45].) With probability 1, the sequence {ξ (n)
pa }n∈N con-

verges to a random constant graphon.

Consider a particle system defined on the graph sequence {ξ (n)
pa }n∈N. The empirical measure

converges to the solution of equation (3.10) with a random p. In other words, μn converges
to a random mean-field limit. Integrating (3.10) with respect to this randomness and denoting
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E[ρt] by ρ̄t for every t ∈ [0, T], we obtain that ρ̄ ∈ C([0, T],P(T)) satisfies

∂tρ̄t(θ ) = 1

2
∂2
θ ρ̄t(θ ) − ∂θ [ρ̄t(θ )F(θ )] − ∂θ

[
E

[
p ρt(θ )

∫
T

�(θ, θ̃ )ρt(dθ̃ )

]]
(3.13)

for t ∈ [0, T]. Note that (3.13) is not written in closed form because of the third term on the
right-hand side, which is not linear in ρ and p. In this sense, ρ̄ does not formally satisfy
the mean-field limit, i.e. it is not a solution to (3.10) with some deterministic p ∈ [0, 1]. By
definition, ρ̄ is a mixture of mean-field limits, weighted by the distribution of p.

To have an intuitive understanding of what ρ̄ may look like, consider the stochastic
Kuramoto model without natural frequencies [5], [14] defined on the sequence ξ (n)

pa . The model
is defined as the solution to

dθ i,n
t = K

n

n∑
j=1

ξ
(n)
ij sin

(
θ

j,n
t − θ

i,n
t

)
dt + dBi

t (3.14)

for i = 1, . . . , n and t ∈ [0, T]. It corresponds to (3.1) with the choices F ≡ 0 and �(θ, ψ) =
−K sin (θ −ψ). An application of Theorem 3.2 and Proposition 3.2 implies that the empirical
measure of (3.14) converges to the solution of

∂tρt(θ ) = 1

2
∂2
θ ρt(θ ) + pK∂θ [ρt(θ )( sin ∗ρt)(θ )], (3.15)

where ∗ stands for the convolution operator. It is well known that the system (3.15) undergoes
a phase transition as the coupling strength pK crosses the critical threshold pK = 1. Hence the
phase transition for this specific model occurs at a random critical threshold. Depending on
the sampled value of p, one obtains stable synchronous solutions in the supercritical regime
(pK > 1), or uniformly distributed oscillators on T (0 ≤ pK < 1). The solution to equation
(3.15) can be written down explicitly (see again [5], [14]) and, integrating over the randomness
of p, gives a superposition of synchronous and asynchronous states which, in general, is not a
mean-field solution, i.e. it does not solve (3.15) for some fixed p ∈ [0, 1].

4. The non-linear process

We introduce a non-linear process (4.4) which has already been considered in the literature
[4, 11, 20, 21, 24] as the natural candidate if the particles in (3.1) are not exchangeable and
their labels are fixed from the initial condition. This process is useful for studying the evolution
of a tagged particle with a specific profile of connections, as stressed in [20].

Contrary to our setting, some regularity in the – now labeled – graphon is usually assumed
to show the convergence of the empirical measure (3.2). We will exploit the non-linear process
with fixed labels (4.4) to better understand (3.3) and to establish existence and uniqueness.

Before introducing (4.4), we define some other tools for dealing with empirical measures
and graphons. Notably, we introduce an equivalence relation between probability measures on
I ×T inspired by graph limits theory; see (4.2). This will allow us to prove Theorem 4.1, where
we establish that the empirical measure is Hölder-continuous with respect to the underlying
graphon.
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4.1. Distances between probability measures

Let MT be the space of probability measures on I × C([0, T],T) with first marginal equal
to the Lebesgue measure λ on I, that is,

MT := {μ ∈P(I × C([0, T],T)) : p1 ◦μ= λ},
where p1 is the projection map associated to the first coordinate. For μ ∈MT the following
decomposition holds:

μ(dx, dθ ) =μx(dθ )λ(dx), x ∈ I,

where μx ∈P(C([0, T],T)) for almost every x ∈ I. From now on, we denote the Lebesgue
measure λ(dx) on I simply by dx. For μ, ν ∈MT , define their distance by

dT (μ, ν) :=
(∫

I
D2

T (μx, νx) dx

)1/2

. (4.1)

Remark 4.1. Observe that the previous expression makes sense, as

I � x �→μx ∈P(C([0, T],T))

is a λ-measurable function. This is because we consider μ ∈P(I × C([0, T],T)). If one con-
siders P(C([0, T],T))I , as done in [4], then an extra assumption is required, namely that every
η= {ηx}x∈I ∈P(C([0, T],T))I is λ-measurable in x ∈ I.

Remark 4.2. Observe that the previous definitions make sense also with T = 0 and C([0, T],T)
replaced by T. In particular, M0 is the space of probability measures on I ×T with first
marginal equal to the Lebesgue measure λ on I, that is,

M0 = {μ0 ∈P(I ×T) : p1 ◦μ0 = λ}
and

d0(μ0, ν0) =
(∫

I
D2

0(μx
0, ν

x
0) dx

)1/2

for μ0, ν0 ∈M0.

Inspired by the graphon framework, one can define the following relation of equivalence on
MT (the case T = 0 is analogous): for μ, ν ∈MT ,

μ∼ ν if and only if there exists ϕ ∈ SI such that μx = νϕ(x), x-a.s. (4.2)

Endow the quotient space MT/∼ with the induced distance given by

d̃T (μ, ν) := inf
ϕ∈SI

dT (μ, νϕ),

where we have used the notation νϕ = {νϕ(x)}x∈I . Observe that if μ∼ ν, then

μ̄=
∫

I
μx dx =

∫
I
νϕ(x) dx =

∫
I
νx dx = ν̄.

In particular, for every ϕ ∈ SI ,

D2
T (μ̄, ν̄) = D2

T (μ̄, ν̄ϕ) ≤
∫

I
D2

T (μx, νϕ(x)) dx = d2
T (μ, νϕ).

By taking the infimum with respect to ϕ ∈ SI , we obtain

DT (μ̄, ν̄) ≤ d̃T (μ, ν). (4.3)
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4.2. The non-linear process with fixed labels

Fix a labeled graphon W ∈W0 together with an initial condition μ0 ∈M0. Consider the
process θ = {θx}x∈I that solves the system⎧⎨⎩ θx

t = θx
0 +

∫ t

0
F(θx

s ) ds +
∫ t

0

∫
I

W(x, y)
∫
T

�(θx
s , θ )μy

s(dθ ) dy ds + Bx
t ,

μx
t =L(θx

t ) for x ∈ I, t ∈ [0, T],
(4.4)

where {θx
0}x∈I is a random vector such that L(θx

0 ) =μx
0 for x ∈ I and {Bx}x∈I a sequence of

i.i.d. Brownian motions independent of {θx
0}x∈I . The following proposition shows existence

and uniqueness for the solution of (4.4). The proof follows a classical argument by Sznitman
[26] and is postponed to Section 4.3.

Proposition 4.1. There exists a unique pathwise solution θ = {θx}x∈I to (4.4). If νx ∈
C([0, T],P(T)) denotes the law of θx for x ∈ I, then I � x �→ νx ∈P(C([0, T],T)) is Lebesgue-
measurable. For every x ∈ I, νx satisfies the following non-linear Fokker–Planck equation in
the weak sense:

∂tμ
x
t (θ ) = 1

2
∂2
θ μ

x
t (θ ) − ∂θ [μx

t (θ )F(θ )] − ∂θ

[
μx

t (θ )
∫

I
W(x, y)

∫
T

�(θ, θ ′)μy
t (dθ ′) dy

]
(4.5)

with initial condition μx
0 ∈P(T).

The process {θx}x∈I is indexed by the space of labels I. For two different labels x and y in I,
the behavior of particles θx and θy may vary depending on their connection profile encoded in
W and the two marginals μx and μy may vary as well. Similar results in different settings have
already been shown in [4], [9], [20], [21], and [24].

It is interesting to know that the law μ= {μx}x∈I ∈MT is continuous with respect to the
cut-norm (or equivalently in d�-distance) in W0, as already remarked in [4, Theorem 2.1] for
systems much more general than those considered here. Exploiting the compactness of T and
some extra regularity of �, we are able to prove that the map W �→μW is Hölder-continuous,
as shown in the next proposition.

Proposition 4.2. Assume the hypothesis of Theorem 3.2. There exists a positive constant C,
depending only on � and T, such that if μW and μV denote the laws of the solutions to (4.4)
with W ∈W0 and V ∈W0 respectively, then

dT
(
μW , μV) ≤ C‖W − V‖1/2

� .

The proof is based on classical trajectorial estimates and Fourier analysis. As � is a function
on the torus, it is possible to apply Fourier-type arguments to factorize it into its two compo-
nents; this is the key point to make the graphon norm ‖·‖ appear and prove Proposition 4.2.
The full proof is postponed to Section 4.3.

The above proposition can be translated in terms of the cut-distance δ� (recall (2.8)) and
the space of graphons W̃0.

Theorem 4.1. Assume the hypothesis of Theorem 3.2. Then there exists a positive constant C,
depending only on � and T, such that if μ̄W and μ̄V denote the laws of the solutions to equation
(3.3) associated with graphons W and V respectively, it holds that

DT
(
μ̄W , μ̄V) ≤ C δ�(W, V)1/2. (4.6)
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The proof of Theorem 4.1 is a straightforward consequence of Proposition 4.2; it is given
in Section 4.4.

The 2-Wasserstein distance DT (recall the definition (2.1)) could be replaced by the p-
Wasserstein distance in (2.1) for p ≥ 1. This would lead to a Hölder exponent in (4.6) as large
as 1/p. We stick to p = 2 but any choice could be possible, modulo a different constant C.

Observe that Theorems 3.1 and 4.1 imply that the following mapping is continuous:

� : (W̃0, δ�) → (C([0, T],P(T)),DT ),

W �→ μ̄W ,

where μ̄W is the law of θ solving equation (3.3) with graphon W. In particular, to every random
variable W in W̃0 corresponds a random variable μ̄W with values in C([0, T],P(T)), i.e. for
almost every ω ∈�, μ̄W (ω) = μ̄W(ω).

Remark 4.3. We point out that Theorem 4.1 allows us to conclude that two solutions to equa-
tion (3.4) are close as probability measures if the corresponding graphons are close in W̃0.
However, whether two different graphons can lead to similar behaviors in the particle system is
still not clear. In other words, we are not able to provide any lower bound complementary to the
upper bound given in equation (4.6). To our knowledge, this aspect may be model-dependent
and needs further investigation.

4.2.1. Relation between label and unlabeled non-linear processes. Consider a probability dis-
tribution μ0 ∈M0 such that

∫
I μ

x
0 dx = μ̄0. The solution to (3.4) is given by μ̄= ∫

I μ
x dx,

where μx is the law of θx solving (4.4) with initial condition μx
0 and labeled graphon W. In

other words, θ has the same law as θU solution to (4.4), where U is a uniform random variable
in I independent of the other randomness in the system. As the following remark shows, the
law μ̄ of θ depends on neither the representative W nor μ0.

Remark 4.4. Let ϕ ∈ SI , i.e. ϕ is an invertible measure-preserving map from I to itself, and let
ν = {νx}x∈I be the law of {θϕ(x)}x∈I solving (4.4). By a change of variables, θϕ(x) solves

θ
ϕ(x)
t = θ

ϕ(x)
0 +

∫ t

0
F
(
θϕ(x)

s

)
ds +

∫ t

0

∫
I

W(ϕ(x), ϕ(y))
∫
T

�
(
θϕ(x)

s , θ
)
μϕ(y)

s (dθ ) dy ds + Bϕ(x)
t

and can be rewritten with V = Wϕ and ψx = θϕ(x) as

ψx
t = θ

ϕ(x)
0 +

∫ t

0
F
(
ψx

s

)
ds +

∫ t

0

∫
I

V(x, y)
∫
T

�
(
ψx

s , θ
)
νy

s (dθ ) dy ds + Bϕ(x)
t , (4.7)

which has the same law as (4.4) with labeled graphon V and initial conditions {θϕ(x)}x∈I .
Observe that the laws ν and μ associated to (4.7) and (4.4), respectively, differ only in

the labeling of the vertices but their distance in MT is not zero due to the initial conditions
and the fact that ‖W − V‖� = ‖W − Wϕ‖� is, in general, different from zero. However, if one
looks at μ̄= ∫

I μ
x dx and ν̄ = ∫

I ν
x dx, they coincide as probability measures in the sense that

DT (μ̄, ν̄) = 0. In particular, the law of the solution to equation (3.3) is also equivalent to ψU ,
where ψx solves (4.7), and U is uniformly distributed on I.
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4.3. Proofs for the non-linear process (4.4) with fixed labels

Proof of Proposition 4.1. The proof follows a classical argument given in [26, Lemma 1.3].
Consider ν ∈MT and {θx,ν}x∈I solving

θ
x,ν
t = θx

0 +
∫ t

0
F
(
θx,ν

s

)
ds +

∫ t

0

∫
I

W(x, y)
∫
T

�
(
θx,ν

s , θ
)
νy

s (dθ ) dy ds + Bx
t , (4.8)

where the initial conditions and the Brownian motions are the same as (4.4). Observe that
by Remark 4.1, the mapping I � x �→ νx

s ∈P(T) is Lebesgue-measurable for every s ∈ [0, T].
Since F and � are bounded Lipschitz functions, there exists a unique solution to (4.8), which
we denote by �(ν) ∈MT . The solution of (4.8) is constructed as the limit of a Cauchy
sequence of elements of MT . Since these are measurable as functions of x ∈ I, the mapping
I � x �→ Law(θx,ν) ∈P(C([0, T],T)) is also Lebesgue-measurable. Thus the map

� : (MT , dT ) → (MT , dT ),

ν→�(ν)

is well-defined. A solution to (4.4) is a fixed point of � and any fixed point of � is a solution
to (4.4).

For μ, ν ∈MT , consider the processes θx,μ and θx,ν , with x ∈ I. We estimate their
distance as∣∣θx,μ

t − θ
x,ν
t

∣∣2 ≤ C
∫ t

0

∣∣F(
θx,μ

s

) − F
(
θx,ν

s

)∣∣2 ds

+ C
∫ t

0

∣∣∣∣∫
I

W(x, y)

(∫
T

�
(
θx,μ

s , θ
)
μy

s(dθ ) −
∫
T

�
(
θx,ν

s , θ
)
νy

s (dθ )

)
dy

∣∣∣∣2

ds.

Adding and subtracting the quantity �(θx,μ
s , θ )νy

s (dθ ) in the second integral, and using that
F and � are Lipschitz-continuous functions and that F, �, and W are bounded, we get

≤ C
∫ t

0

∣∣θx,μ
s − θx,ν

s

∣∣2 ds + C
∫ t

0

∫
I

∣∣∣∣∫
T

�
(
θx,μ

s , θ
)[
μy

s − νy
s

]
(dθ )

∣∣∣∣2

dy ds.

From (2.3) we obtain ∣∣∣∣∫
T

�
(
θx,μ

s , θ
)(
μy

s − νy
s

)
(dθ )

∣∣∣∣ ≤ Ds(μ
y, νy)

from which, using (4.1), we deduce∣∣θx,μ
t − θ

x,ν
t

∣∣2 ≤ C
∫ t

0

∣∣θx,μ
s − θx,ν

s

∣∣2 ds + C
∫ t

0
d2

s (μ, ν) ds.

The definition of DT (2.2) and an application of Gronwall’s lemma lead to

d2
T (�(μ), �(ν)) ≤

∫
I

E
[

sup
t∈[0,T]

∣∣θx,μ
t − θ

x,ν
t

∣∣2
]

dx ≤ C
∫ T

0
d2

s (μ, ν) ds. (4.9)

From the last relation we obtain the uniqueness of solutions to (4.4).
We prove that a solution exists by iterating (4.9). Indeed, for k ≥ 1 and μ ∈MT , we get

d2
T (�k+1(μ), �k(μ)) ≤ Ck Tk

k!
∫ T

0
d2

t (�(μ), μ) dt.
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In particular, {�k(μ)}k∈N is a Cauchy sequence for k large enough, and its limit is the fixed
point of �. Note that dt(�(μ), μ)<∞ since we are working on the compact space T.

For the second part of Proposition 4.1, apply Itô’s formula to f (θx
t ) with f ∈ C∞

0 to get

f (θx
t ) = f (θx

0 ) + 1

2

∫ t

0
∂2
θ f (θx

s ) ds +
∫ t

0
∂θ f (θx

s ) F(θx
s ) ds

+
∫ t

0
∂θ f (θx

s )

[∫
I

W(x, y)
∫
T

�(θx
s , θ )μy

s(dθ ) dy

]
ds +

∫ t

0
∂θ f (θx

s ) dBx
s .

Integrating with respect to P yields the weak formulation of (4.5). �

Next we move to the proof of Proposition 4.2.

Proof of Proposition 4.2. Let {θx,W}x∈I and {θx,V}x∈I be the two non-linear processes
associated to W and V respectively. We compare the two solutions: as in the proof of
Proposition 4.1, by adding and subtracting the term

W(x, y)�
(
θx,V

r , θ
)(
μy,W

r −μy,V
r

)
in the integrals, we get

∣∣θx,W
s − θx,V

s

∣∣2 ≤ C
∫ s

0

∣∣F(
θx,W

r

) − F
(
θx,V

r

)∣∣2 dr

+ C
∫ s

0

∣∣∣∣∫
I

W(x, y)
∫
T

(
�

(
θx,W

r , θ
) − �

(
θx,V

r , θ
))
μy,W

r (dθ ) dy

∣∣∣∣2

dr

+ C
∫ s

0

∣∣∣∣∫
I

W(x, y)
∫
T

�
(
θx,V

r , θ
)(
μy,W

r −μy,V
r

)
(dθ ) dy

∣∣∣∣2

dr

+ C
∫ s

0

∣∣∣∣∫
I

(W(x, y) − V(x, y))
∫
T

�
(
θx,V

r , θ
)
μy,V

r (dθ ) dy

∣∣∣∣2

dr.

Using that F and � are Lipschitz-continuous functions and that F, �, and W are bounded, we
get

∣∣θx,W
s − θx,V

s

∣∣2 ≤ C
∫ s

0

∣∣θx,W
r − θx,V

r

∣∣2 dr + C
∫ s

0
d2

r

(
μW , μV)

dr

+
∫ s

0

∣∣∣∣∫
I

(W(x, y) − V(x, y))

(∫
T

�
(
θx,V

s , θ
)
μy,V

r (dθ )

)
dy

∣∣∣∣2

dr.

After taking the supremum over s ∈ [0, t], the expectation E and integrating with respect to
x ∈ I, we are able to apply Gronwall’s lemma as in (4.9) to get

d2
t

(
μW , μV) ≤

∫
I

E
[

sup
s∈[0,t]

∣∣θx,W
s − θx,V

s

∣∣2
]

dx ≤ C

(∫ t

0
d2

s

(
μW , μV)

ds + G

)
, (4.10)

where G is given by

G =
∫ t

0
E

[∫
I

∣∣∣∣∫
I

(W(x, y) − V(x, y))

(∫
T

�
(
θx,V

s , θ
)
μy,V

s (dθ )

)
dy

∣∣∣∣2

dx

]
ds. (4.11)
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Applying Gronwall’s inequality to (4.10) yields

d2
t

(
μW , μV) ≤ CG.

The proof is concluded provided that G ≤ C′‖W − V‖�, for some constant C′ > 0.
We take advantage of the Fourier series representation of �. As we are working on the torus,

we can factorize � into its two components, that is,

�(θ, ψ) =
∑

k,l∈Z
�kl eikθeilψ, θ, ψ ∈T, (4.12)

where

�kl =
∫
T2
�(θ, ψ) ei(kθ+lψ) dθ dψ .

The condition � ∈ C1+ε allows us to have a decay estimate on the Fourier coefficients �kl.
Indeed, classical results on the asymptotic of Fourier series [18, pp. 24–26] imply that

C� :=
∑

k,l∈Z
(kl)1+ε|�kl|2 <∞. (4.13)

Plugging this expression into (4.11), we obtain that∫
I

∣∣∣∣∫
I

(W(x, y) − V(x, y))

(∫
T

�
(
θx,V

s , θ
)
μy,V

s (dθ )

)
dy

∣∣∣∣2

dx

=
∫

I

∣∣∣∣∣∑
kl

�kl eikθx,V
s

∫
I

(W(x, y) − V(x, y))

(∫
T

eilθμy,V
s (dθ )

)
dy

∣∣∣∣∣
2

dx.

Multiplying and dividing by (kl)(1+ε)/2, we are left with

≤
∫

I

∣∣∣∣∣∑
kl

(
(kl)(1+ε)/2�kl eikθx,V

s
)

(
(kl)−(1+ε)/2

∫
I

(W(x, y) − V(x, y))

(∫
T

eilθμy,V
s (dθ )

)
dy

)∣∣∣∣∣
2

dx

≤ C�
∑

kl

(kl)−1−ε
∫

I

∣∣∣∣∫
I

(W(x, y) − V(x, y))

(∫
T

eilθμy,V
s (dθ )

)
dy

∣∣∣∣2

dx,

where in the second step we applied the Cauchy–Schwarz inequality and (4.13). Using that W
and V are bounded, as well as the fact that∣∣∣∣∫

I
(W(x, y) − V(x, y))

(∫
T

eilθμy,V
s (dθ )

)
dy

∣∣∣∣ ≤ 1,

we conclude

G ≤ C sup
‖a‖∞,‖b‖∞≤1

∫
I

∣∣∣∣∫
I

(W(x, y) − V(x, y))(a(y) + ib(y)) dy

∣∣∣∣ dx

≤ C‖W − V‖∞→1.

Since the norm ‖ · ‖∞→1 is equivalent to the cut-norm (2.5), the proof is concluded. �
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4.4. Proofs for the non-linear process (3.3)

Proof of Theorem 3.1. The first part follows directly from Proposition 4.1 and Remark 4.4.
The proof of (3.4) is similar to the proof of (4.5), but note that we are now integrating with
respect to the randomness in U as well. �

Proof of Theorem 4.1. Let θU,W and θU,V be the two solutions to (3.3) associated to W and
V respectively, coupled by taking the same uniform random variable U. Let μx,W and μx,V

represent the laws of θU,W and θU,V conditioned on U = x, for x ∈ I.
Consider ϕ ∈ SI an invertible measure-preserving map. Recall that θϕ(U),V also satisfies

equation (3.3) with Vϕ ; see Remark 4.4. We compare the trajectories θU,W and θϕ(U),V .
Consider the difference between the equations satisfied by θU,W and θϕ(U),V , add and

subtract the term
W(U, y)�

(
θϕ(U),V

r , θ
)(
μy,W

r −μϕ(y),V
r

)
to obtain that∣∣θU,W

s − θϕ(U),V
s

∣∣2

≤ C
∫ s

0

∣∣F(
θU,W

r

) − F
(
θϕ(U),V

r

)∣∣2 dr

+ C
∫ s

0

∣∣∣∣∫
I

W(U, y)
∫
T

(
�

(
θϕ(U),W

r , θ
) − �

(
θϕ(U),V

r , θ
))
μϕ(y),W

r (dθ ) dy

∣∣∣∣2

dr

+ C
∫ s

0

∣∣∣∣∫
I

W(U, y)
∫
T

�
(
θϕ(U),V

r , θ
)(
μy,W

r −μϕ(y),V
r

)
(dθ ) dy

∣∣∣∣2

dr

+ C
∫ s

0

∣∣∣∣∫
I

(W(U, y) − Vϕ(U, y))
∫
T

�
(
θϕ(U),V

r , θ
)
μϕ(y),V

r (dθ ) dy

∣∣∣∣2

dr.

The first two integrals on the right-hand side are bounded by C
∫ s

0

∣∣θU,W
r − θ

ϕ(U),V
r

∣∣2 dr, using
that F and � are Lipschitz-continuous, while the third integral on the right-hand side can be
estimated using (2.3) and the fact that 0 ≤ W ≤ 1. Thus we get∣∣∣∣∫

I
W(U, y)

∫
T

�
(
θϕ(U),V

r , θ
)(
μy,W

r −μϕ(y),V
r

)
(dθ ) dy

∣∣∣∣2

≤
∫

I
D2

r

(
μy,W , μϕ(y),V)

dy

= d2
r

(
μW ,

(
μV)ϕ)

,

where we have used the notation
(
μV

)ϕ for {μϕ(y),V}y∈I .
Taking the supremum over s ∈ [0, t] and the expectation with respect to the Brownian

motions, the initial conditions, and the random variable U, we obtain∫
I

E
[

sup
s∈[0,t]

∣∣θx,W
s − θϕ(x),V

s

∣∣2
]

dx ≤ C
∫ t

0

∫
I

E
[

sup
r∈[0,s]

∣∣θx,W
r − θϕ(x),V

r

∣∣2
]

dx ds

+ C
∫ t

0
d2

s

(
μW ,

(
μV)ϕ) ds + CG, (4.14)

where G is given by

G =
∫ t

0
E

[∫
I

∣∣∣∣∫
I

(W(x, y) − Vϕ(x, y))
∫
T

�
(
θϕ(x),V

s , θ
)
μϕ(y),V

s (dθ ) dy

∣∣∣∣2

dx

]
ds.
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In the proof of Proposition 4.2 we proved the following estimates:

d2
t

(
μW ,

(
μV)ϕ) ≤

∫
I

E
[

sup
s∈[0,t]

∣∣θx,W
s − θϕ(x),V

s

∣∣2
]

dx,

G ≤ C′‖W − Vϕ‖� for some C′ > 0.

Applying these bounds to (4.14) and using Gronwall’s inequality twice as in the previous proof,
yields

d2
t

(
μW ,

(
μV)ϕ) ≤ C‖W − Vϕ‖�.

By taking the infimum with respect to ϕ ∈ SI and recalling the definition of the cut-distance
(2.8) together with (4.3), we obtain

Dt
(
μ̄W , μ̄V) ≤ d̃t

(
μW , μV) ≤ C δ�(W, V)1/2.

The proof is concluded. �

5. Proof of Theorem 3.2

In order to prove Theorem 3.2, we couple the system (3.1) to a sequence of identically
distributed copies of the non-linear process θ , which is obtained by sampling {Ui}i∈N i.i.d.
uniform random variables and choosing the same initial conditions and Brownian motions
of (3.1).

For every i ∈N, denote these copies by θ i = θ (Ui). In particular, θ i is defined as the solution
for t ∈ [0, T] to

θ i
t = θ i

0 +
∫ t

0
F
(
θ i

s

)
ds +

∫ t

0

∫
I

W(Ui, y)
∫
T

�
(
θ i

s, θ
)
μy

s(dθ ) dy ds + Bi
t. (5.1)

Observe that {θ i}i∈N is an exchangeable sequence and, in particular, that the variables θ i are
independent random variables when conditioned on the randomness of W.

Before the proof of Theorem 3.2, we give a trajectorial estimate.

Lemma 5.1. Under the hypothesis of Theorem 3.2, it holds that

lim
n→∞ E× E

[
1

n

n∑
i=1

sup
t∈[0,T]

∣∣θ i,n
t − θ i

t

∣∣2

]
= 0.

Proof. As before, we compare the trajectories θ i,n and θ i, by studying the equation satisfied
by

∣∣θ i,n
s − θ i

s

∣∣2; recall (3.1) and (5.1). Add and subtract the term

(
ξ

(n)
ij − W(Ui,Uj)

)
�

(
θ i

r, θ
j
r

)
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in the integrals, to get∣∣θ i,n
s − θ i

s

∣∣2 ≤ C
∫ s

0

∣∣F(
θ i,n

r

) − F
(
θ i

r

)∣∣2 dr

+ C
∫ s

0

∣∣∣∣∣1

n

n∑
j=1

ξ
(n)
ij

(
�

(
θ i,n

r , θ j,n
r

) − �
(
θ i

r, θ
j
r

))∣∣∣∣∣
2

dr

+ C
∫ s

0

∣∣∣∣∣1

n

n∑
j=1

(
ξ

(n)
ij − W(Ui,Uj)

)
�

(
θ i

r, θ
j
r

)∣∣∣∣∣
2

dr

+ C
∫ s

0

∣∣∣∣∣1

n

n∑
j=1

W(Ui,Uj)�
(
θ i

r, θ
j
r

) −
∫

I
W(Ii, y)

∫
T

�
(
θ i

r, θ
)
μy

r(dθ ) dy

∣∣∣∣∣
2

dr.

We now use the Lipschitz property of � and F, sum over i and take the supremum over s ∈
[0, t], together with the expectation E× E, for which we just write E for simplicity:

E

[
1

n

n∑
i=1

sup
s∈[0,t]

∣∣θ i,n
s − θ i

s

∣∣2

]

≤ C
∫ t

0
E

[
1

n

n∑
i=1

sup
q∈[0,r]

∣∣θ i,n
q − θ i

q

∣∣2

]
dr

+ C
∫ t

0
E

[
1

n

n∑
i=1

∣∣∣∣∣1

n

n∑
j=1

(
ξ

(n)
ij − W(Ui,Uj)

)
�

(
θ i

r, θ
j
r

)∣∣∣∣∣
2]

dr

+ C
∫ t

0

1

n

n∑
i=1

E

[∣∣∣∣∣1

n

n∑
j=1

W(Ui,Uj)�
(
θ i

r, θ
j
r

) −
∫

I
W(Ui, y)

∫
T

�
(
θ i

r, θ
)
μy

r(dθ ) dy

∣∣∣∣∣
2]

dr.

Observe that the last term is bounded by a constant divided by n since by taking the conditional
expectation with respect to θ j and Uj, we obtain for i = j

E
[
W(Ui,Uj)�

(
θ i

s, θ
j
s

)] =
∫

I
W(Ui, y)

∫
T

�
(
θ i

s, θ
)
μy

s(dθ ) dy

and, conditionally on W, the random variables {θ i}i∈N are i.i.d.
Turning to the second term, we will prove that

E

[
1

n

n∑
i=1

∣∣∣∣∣1

n

n∑
j=1

(
ξ

(n)
ij − W(Ui,Uj)

)
�

(
θ i

s, θ
j
s

)∣∣∣∣∣
2]

≤ C E[δ�(ξ (n),W(n))] + o(1), (5.2)

where W(n) := {W(Ui,Uj)}i,j=1,...,n is a W-random graph with n vertices; see (3.8). This
together with a Gronwall argument implies that

E

[
1

n

n∑
i=1

sup
s∈[0,t]

∣∣θ i,n
t − θ i

t

∣∣2

]
≤ C E

[
δ�(ξ (n),W(n))

] + o(1)

and the claim follows by taking the limit for n which tends to infinity and the fact that W(n)

converges P-a.s. to W; recall Theorem 3.3.
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Turning to (5.2), we use an argument similar to (4.11)–(4.13). Recall that since � ∈ C1+ε, it
admits a Fourier series (4.12) with coefficients �kl such that∑

k,l∈Z
(kl)1+ε|�kl|2 <∞.

Plugging its Fourier expression in the left-hand side of (5.2), multiplying and dividing by
(kl)(1+ε)/2, we get

E

[
1

n

n∑
i=1

∣∣∣∣∣1

n

n∑
j=1

(
ξ

(n)
ij − W(Ui,Uj)

)
�

(
θ i

s, θ
j
s

)∣∣∣∣∣
2]

= E

[
1

n

n∑
i=1

∣∣∣∣∣1

n

n∑
j=1

(
ξ

(n)
ij − W(Ui,Uj)

) ∑
k,l

�kle
iθ i

skeiθ j
sl

∣∣∣∣∣
2]

≤ CE

[∑
k,l

(kl)−1−ε 1

n

n∑
i=1

∣∣∣∣∣1

n

n∑
j=1

(
ξ

(n)
ij − W(Ui,Uj)

)
eiθ i

skeiθ j
sl

∣∣∣∣∣
2]
,

where we used the Cauchy–Schwarz inequality as in the proof of Theorem 4.1. Observe that∑
kl (kl)−1−ε is convergent and that |eiθ i

sk| ≤ 1 for all k and s: we can thus bound the previous
term P-a.s. by

E

[
sup

si,tj∈{±1}

∣∣∣∣∣ 1

n2

n∑
i,j=1

(
ξ

(n)
ij − W(Ui,Uj)

)
sitj

∣∣∣∣∣
]

.

Recall that W(n) = {W(Ui,Uj)}i,j=1,...,n is a W-random graph with n vertices. Since the particles
{θ i}i∈N are exchangeable, every computation done so far holds for any order of {θ i}i=1,...,n and,
in particular, of {Ui}i=1,...,n. In particular, the last inequality holds for every relabeling of W(n).

From the definition of δ̂� (2.7), one can thus take the labeling of {Ui}i=1,...,n for every n ∈N,
such that

E

[
sup

si,tj∈{±1}

∣∣∣∣∣ 1

n2

n∑
i,j=1

(
ξ

(n)
ij − W(Ui,Uj)

)
sitj

∣∣∣∣∣
]

=E
[
δ̂�

(
ξ (n),W(n))].

Using the asymptotic equivalence of δ̂� with δ� (see Remark 2.1), the claim is proved and the
proof is concluded. �

Proof of Theorem 3.2. The equivalence between the convergence in P-probability of ξ (n)

and equation (3.9) is proved in Lemma A.1. We turn to the proof of the convergence of μn.
It is well known that the bounded Lipschitz distance (recall (2.3)) metrizes the weak con-

vergence and defines a distance between probability measures. In particular, in order to show
that μn converges in P × P-probability to μ̄ in P(C([0, T],R)), it is enough to prove that

lim
n→∞ E× E

[∣∣∣∣∫ f (θ )μn(dθ ) −
∫

f (θ )μ̄(dθ )

∣∣∣∣] = 0,

for every f bounded and Lipschitz function with values in C([0, T],R).
Using the fact that μ̄ is the law of {θ i}i∈N (recall (5.1)), it is enough to show that

lim
n→∞

1

n

n∑
j=1

E× E[|f (θ j,n) − f (θ j)|] = 0.
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This is implied by the fact that f is Lipschitz and by Jensen’s inequality. Indeed,

1

n

n∑
j=1

E× E[|f (θ j,n) − f (θ j)|] ≤E× E

[
1

n

n∑
j=1

sup
t∈[0,T]

∣∣θ j,n
t − θ

j
t

∣∣2

]1/2

,

which goes to zero as n → ∞ by Lemma 5.1. �

Appendix A. Graph convergence and random graphons

A.1. Convergence in probability

The characterization of the convergence in distribution for a sequence of graphs was orig-
inally given in [17]. Here we give a useful notion of convergence in W̃0 by means of the
cut-distance δ�, which is equivalent to the convergence in probability for graph sequences.

Lemma A.1. Assume that {ξ (n)}n∈N is a sequence of random graphs and W is a random
graphon in W̃0. Then ξ (n) converges in P-probability to W if and only if (3.5) holds, i.e. if
and only if

lim
n→∞ E[δ�(ξ (n),W)] = 0.

Proof. Recall that (W̃0, δ�) is a compact metric space, so that the convergence of ξ (n) in
probability is equivalent to

lim
n→∞ P(δ�(ξ (n),W)> ε) = 0 for all ε > 0. (A.1.)

Observe that the sequence of positive real random variables {δ�(ξ (n),W)}n∈N is uniformly
bounded by 1. Equation (A.1) is then equivalent to the convergence in L1, i.e. equivalent
to (3.5).
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interacting diffusions on Erdős–Rényi graphs. Stoch. Dyn. 20, 2050010.
[16] DELATTRE, S., GIACOMIN, G. AND LUÇON, E. (2016). A note on dynamical models on random graphs and

Fokker–Planck equations. J. Statist. Phys. 165, 785–798.
[17] DIACONIS, P. AND JANSON, S. (2008). Graph limits and exchangeable random graphs. Rend. Mat. 28, 33–61.
[18] KATZNELSON, Y. (2004). An Introduction to Harmonic Analysis, 3rd edn (Cambridge Mathematical Library).

Cambridge University Press.
[19] LOVÁSZ, L. (2012). Large Networks and Graph Limits (Colloquium Publications 60). American Mathematical

Society.
[20] LUÇON, E. (2020). Quenched asymptotics for interacting diffusions on inhomogeneous random graphs. Stoch.

Process. Appl. 130, 6783–6842.
[21] LUÇON, E. AND STANNAT, W. (2014). Mean field limit for disordered diffusions with singular interactions.

Ann. Appl. Prob. 24, 1946–1993.
[22] MEDVEDEV, G. S. (2019). The continuum limit of the Kuramoto model on sparse random graphs. Commun.

Math. Sci. 17, 883–898.
[23] OELSCHLÄGER, K. (1984). A martingale approach to the law of large numbers for weakly interacting stochastic

processes. Ann. Prob. 12, 458–479.
[24] OLIVEIRA, R. I. AND REIS, G. H. (2019). Interacting diffusions on random graphs with diverging average

degrees: hydrodynamics and large deviations. J. Statist. Phys. 176, 1057–1087.
[25] RODRIGUES, F. A., PERON, T. K. D., JI, P. AND KURTHS, J. (2016). The Kuramoto model in complex

networks. Phys. Rep. 610, 1–98.
[26] SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In Ecole d’Eté de Probabilités de Saint-Flour XIX -

1989 (Lecture Notes Math. 1464), ed. P.-L. Hennequin, pp. 165–251. Springer, Berlin and Heidelberg.
[27] VAN ENTER, A. C. D. AND RUSZEL, W. M. (2009). Gibbsianness versus non-Gibbsianness of time-evolved

planar rotor models. Stoch. Process. Appl. 119, 1866–1888.

https://doi.org/10.1017/jpr.2023.34 Published online by Cambridge University Press

https://arxiv.org/abs/1610.03762
https://arxiv.org/abs/2003.13180
https://doi.org/10.1017/jpr.2023.34

	Introduction, organization, and set-up
	Unlabeled graphons and empirical measures
	Organization

	Setting and notations
	Distance between probability measures
	Distance between finite graphs
	Labeled and unlabeled graphons

	The models and main results
	The models
	Weakly interacting oscillators on graphs.
	The non-linear process.

	Main result
	Comparison with the existing literature
	Applications to exchangeable graphs
	Mean-field behavior and two explanatory examples
	Example I: W-random graphs.
	Example II: random mean-field behavior.


	The non-linear process
	Distances between probability measures
	The non-linear process with fixed labels
	Relation between label and unlabeled non-linear processes.

	Proofs for the non-linear process (4.4) with fixed labels
	Proofs for the non-linear process (3.3)

	Proof of Theorem 3.2
	Appendix A. Graph convergence and random graphons
	Convergence in probability

	Acknowledgements
	Funding information
	Competing interests
	References

