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Abstract. We consider the family MCd of monic centered polynomials of one complex
variable with degree d ≥ 2, and study the map �̂d : MCd → �̃d ⊂ Cd/Sd which maps
each f ∈ MCd to its unordered collection of fixed-point multipliers. We give an explicit
formula for counting the number of elements of each fiber �̂−1

d (λ̄) for every λ̄ ∈ �̃d except
when the fiber �̂−1

d (λ̄) contains polynomials having multiple fixed points. This formula is
not a recursive one, and is a drastic improvement of our previous result [T. Sugiyama. The
moduli space of polynomial maps and their fixed-point multipliers. Adv. Math. 322 (2017),
132–185] which gave a rather long algorithm with some induction processes.
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1. Introduction
This paper is a continuation of the author’s previous work [14].

We first remind our setting from [14]. Let MPd be the family of affine conjugacy classes
of polynomial maps of one complex variable with degree d ≥ 2, and Cd/Sd the set of
unordered collections of d complex numbers, where Sd denotes the dth symmetric group.
We denote by �d the map

�d : MPd → �̃d ⊂ Cd/Sd

which maps each f ∈ MPd to its unordered collection of fixed-point multipliers. Here,
fixed-point multipliers of f ∈ MPd always satisfy a certain relation by the fixed point
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theorem for polynomial maps (see §12 in [11]), which implies that the image of �d is
contained in a certain hyperplane �̃d in Cd/Sd .

As mentioned in [14], it is well known that the map �d : MPd → �̃d is bijective for
d = 2 and also for d = 3 (see [9]). For d ≥ 4, Fujimura and Nishizawa have done some
preliminary works in finding #(�−1

d (λ̄)) for λ̄ ∈ �̃d in their series of papers such as
[2, 3, 12]. Hereafter, #(X), or simply #X, denotes the cardinality of a set X. Fujimura
and Taniguchi [4] also constructed a compactification of MPd , which gave us a strong
geometric insight on the fiber structure of �d . Other compactifications of MPd were also
constructed independently by Silverman [13] and by DeMarco and McMullen [1]. For
rational maps and their periodic-point multipliers, McMullen [8] gave a general important
result. In a special case of [8], there is a famous result by Milnor [10] for rational maps of
degree two and their fixed-point multipliers. There is also a result by Hutz and Tepper [7]
for rational maps of degree three and their periodic-point multipliers of period less than or
equal to two. There are some other results [5, 6] concerning polynomial or rational maps
and their periodic-point multipliers. (See [14] for more details.)

Following the results above, in [14], we succeeded in giving, for every λ̄ =
{λ1, . . . , λd} ∈ �̃d , an algorithm for counting the number of elements of �−1

d (λ̄) except
when λi = 1 for some i. However, the algorithm was rather long and complicated. In this
paper, we make a drastic improvement to its algorithm; we no longer need induction
processes to find #(�−1

d (λ̄)) if we consider �−1
d (λ̄) counted with multiplicity (see

Theorem I). Moreover, if we consider the family MCd of monic centered polynomials
of degree d and the map �̂d : MCd → �̃d , instead of MPd and �d : MPd → �̃d , we
can always give an explicit expression of #(�̂−1

d (λ̄)) even when its multiplicity is ignored
(see Theorem II and Corollary III). Here, �̂d : MCd → �̃d is defined to be the composite
mapping of the natural projection MCd → MPd and �d . Interestingly, the formula for
finding #(�−1

d (λ̄)) in Theorem I has the form of the inclusion-exclusion formula.
There are five sections in this paper. In §§2 and 3, we shall review the results in [14]

more precisely and state Theorems I, II, and Corollary III, which are the main results in
this paper. Section 4 is devoted to the proof of Theorem I and §5 is devoted to the proof
of Theorem II. The main part in this paper is the proof of Theorem I in §4, which consists
of a good deal of combinatorial argument. Compared with the proof of Theorem I, the
proof of Theorem II in §5 is relatively easy under the assumption of [14]. However, by
combining Theorems I and II, we directly have Corollary III, which is, in some sense, a
monumental achievement of our study.

2. Main result 1
In this section, we always consider �−1

d (λ̄) counted with multiplicity and deal with
improvements to the algorithm for finding #(�−1

d (λ̄)). We first fix our notation.
For d ≥ 2, we put

Polyd := {f ∈ C[z] | deg f = d} and Aut(C) := {γ (z) = az + b | a, b ∈ C, a �= 0}.
Since γ ∈ Aut(C) naturally acts on f ∈ Polyd by γ · f := γ ◦ f ◦ γ −1, we can define its
quotient MPd := Polyd/Aut(C), which we usually call the moduli space of polynomial
maps of degree d. We put Fix(f ) := {z ∈ C | f (z) = z} for f ∈ Polyd , where Fix(f ) is
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considered counted with multiplicity. Hence, we always have #(Fix(f )) = d . Since the
unordered collection of fixed-point multipliers (f ′(ζ ))ζ∈Fix(f ) of f ∈ Polyd is invariant
under the action of Aut(C), we can naturally define the map �d : MPd → Cd/Sd by
�d(f ) := (f ′(ζ ))ζ∈Fix(f ). Here, Sd denotes the dth symmetric group which acts on Cd

by the permutation of coordinates. Note that a fixed point ζ ∈ Fix(f ) is multiple if and
only if f ′(ζ ) = 1.

By the fixed point theorem for polynomial maps, we always have
∑

ζ∈Fix(f ) 1/

(1 − f ′(ζ )) = 0 for f ∈ Polyd if f has no multiple fixed point. (See §12 in [11] or
Proposition 1.1 in [14] for more details.) Hence, putting �d := {(λ1, . . . , λd) ∈ Cd |∑d

i=1
∏

j �=i (1 − λj ) = 0} and �̃d := �d/Sd , we have the inclusion relation �d(MPd) ⊆
�̃d ⊆ Cd/Sd . We therefore have the map

�d : MPd → �̃d

by f 
→ (f ′(ζ ))ζ∈Fix(f ), which is the main object of our study.
In this paper, we again restrict our attention to the map �d on the domain where

polynomial maps have no multiple fixed points, that is, on the domains

Vd := {(λ1, . . . , λd) ∈ �d | λi �= 1 for every 1 ≤ i ≤ d} and Ṽd := Vd/Sd ,

which are Zariski open subsets of �d and �̃d , respectively. Here, note that we also have

Vd =
{
(λ1, . . . , λd) ∈ Cd

∣∣∣∣ λi �= 1 for every 1 ≤ i ≤ d ,
d∑

i=1

1
1 − λi

= 0
}

.

Throughout this paper, we always denote by λ̄ the equivalence class of λ ∈ �d in �̃d ,
that is, λ̄ = pr(λ), where pr : �d → �̃d denotes the canonical projection. Hence, for λ =
(λ1, . . . , λd) ∈ �d , we sometimes express λ̄ = {λ1, . . . , λd} ∈ �̃d . We never denote by
λ̄ the complex conjugate of λ in this paper.

The objects defined in the following definition play a central roll in [14] and also in this
paper.

Definition 2.1. For λ = (λ1, . . . , λd) ∈ Vd , we put

I(λ) :=
⎧⎨⎩{I1, . . . , Il}

∣∣∣∣∣∣
l ≥ 2, I1 � · · · � Il = {1, . . . , d},

Iu �= ∅ for every 1 ≤ u ≤ l,∑
i∈Iu

1/(1 − λi) = 0 for every 1 ≤ u ≤ l

⎫⎬⎭,

where I1 � · · · � Il denotes the disjoint union of I1, . . . , Il . By definition, each element
of I(λ) is considered to be a partition of {1, . . . , d}. The partial order ≺ in I(λ) is defined
by the refinement of partitions, namely, for I, I′ ∈ I(λ), the relation I ≺ I′ holds if and
only if I′ is a refinement of I as partitions of {1, . . . , d}.

For λ ∈ Vd and for I ∈ I ∈ I(λ), we put λI := (λi)i∈I .

In the above definition, note that the condition I ∈ I ∈ I(λ) for I is equivalent to
the conditions ∅ � I � {1, . . . , d} and

∑
i∈I 1/(1 − λi) = 0. Hence, we always have

λI ∈ V#I for λ ∈ Vd and I ∈ I ∈ I(λ) by definition. Also note that #I ≥ 2 holds for every
I ∈ I ∈ I(λ).

The following object is also very important in this paper.

https://doi.org/10.1017/etds.2022.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.120


3780 T. Sugiyama

Definition 2.2. For λ ∈ Vd , we put

I′(λ) := I(λ) ∪ {{{1, . . . , d}}}.
The partial order ≺ in I(λ) is naturally extended to the partial order ≺ in I′(λ).

By definition, I′(λ) is obtained from I(λ) by adding exactly one element I0 :=
{{1, . . . , d}}. Here, I0 is the unique minimum element of I′(λ) with respect to the partial
order ≺. Moreover, I0 is considered to be a partition of {1, . . . , d} which, in practice, does
not partition {1, . . . , d}. We also have the equality

I′(λ) =
⎧⎨⎩{I1, . . . , Il}

∣∣∣∣∣∣
l ≥ 1, I1 � · · · � Il = {1, . . . , d},

Iu �= ∅ for every 1 ≤ u ≤ l,∑
i∈Iu

1/(1 − λi) = 0 for every 1 ≤ u ≤ l

⎫⎬⎭.

We already have the following theorem by Main Theorem III and Remark 1.8 in [14]
and by Theorem B and Proposition C in §6 in [14].

THEOREM 2.3. We can define the non-negative integer eI(λ) for each d ≥ 4, λ ∈ Vd , and
I ∈ I(λ), and can also define the non-negative integer sd(λ) for each d ≥ 2 and λ ∈ Vd

inductively by the equalities

sd(λ) = (d − 2)! −
∑

I∈I(λ)

(
eI(λ) ·

d−2∏
k=d−#I+1

k

)
(2.1)

for d ≥ 2 and λ ∈ Vd , and

eI(λ) =
∏
I∈I

((#I − 1) · s#I (λI )) (2.2)

for d ≥ 4, λ ∈ Vd , and I ∈ I(λ). Here, in the case #I = 2, we put
∏d−2

k=d−#I+1 k =∏d−2
k=d−1 k = 1.
If we consider �−1

d (λ̄) ‘counted with multiplicity’ for d ≥ 2 and λ ∈ Vd , then we have

#(�−1
d (λ̄)) = sd(λ).

Remark 2.4. For d = 2 or 3, we always have I(λ) = ∅ for every λ ∈ Vd by definition.
Hence, by equation (2.1), we have s2(λ) = (2 − 2)! = 1 for every λ ∈ V2 and s3(λ) =
(3 − 2)! = 1 for every λ ∈ V3. For d ≥ 4, every eI(λ) and sd(λ) are determined uniquely
and can actually be found by equations (2.1) and (2.2) by induction on d, since 2 ≤ #I < d

holds for I ∈ I ∈ I(λ) with λ ∈ Vd .

In the rest of this paper, we always assume that eI(λ) and sd(λ) are the non-negative
integers defined in Theorem 2.3.

We already made a minor improvement to the above algorithm by Main Theorem III in
[14] and by Proposition D in §6 in [14], as in the following.
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THEOREM 2.5. The non-negative integer eI(λ) for λ ∈ Vd and I ∈ I(λ) defined in
Theorem 2.3 also satisfies the equality

eI(λ) =
( ∏

I∈I
(#I − 1)!

)
−

∑
I′ ∈ I(λ)

I′ � I, I′ �= I

(
eI′(λ) ·

∏
I∈I

( #I−1∏
k=#I−χI (I′)+1

k

))
, (2.3)

where we put χI (I
′) := #({I ′ ∈ I′ | I ′ ⊆ I }) for I′ � I and I ∈ I. Here, in the case

χI (I
′) = 1, we put

∏#I−1
k=#I−χI (I′)+1 k = ∏#I−1

k=#I k = 1.

Remark 2.6. By definition, we always have
∑

I∈I χI (I
′) = #I′ for I′ � I.

Remark 2.7. We can also find sd(λ) only by using equations (2.1) and (2.3). The algorithm
using equations (2.1) and (2.3) is a little simpler than the algorithm in Theorem 2.3.

Remark 2.8. We present a rough outline of the proof of Theorem 2.5 in this remark, since
the proof can be an easy exercise for the proof of Theorem I in this paper. (See ‘Proof of
Proposition D’ on pp. 175–177 in [14] for details.) In the case where d = #I and λ = λI ,
equation (2.1) is equivalent to the following:

(#I − 1)! = (#I − 1)s#I (λI ) +
∑

I∈I(λI )

(
eI(λI ) ·

#I−1∏
k=#I−#I+1

k

)
. (2.4)

Plugging equation (2.4) into
∏

I∈I(#I − 1)! and using equation (2.2) carefully, we have
equation (2.3).

In this paper, we make a drastic improvement to the above algorithm as in the following.

THEOREM I. The non-negative integer sd(λ) for d ≥ 2 and λ ∈ Vd defined in Theorem 2.3
is expressed in the form

(d − 1)sd(λ) =
∑

I∈I′(λ)

(
{−(d − 1)}#I−1 ·

∏
I∈I

(#I − 1)!
)

. (2.5)

Hence, if we consider �−1
d (λ̄) ‘counted with multiplicity’ for d ≥ 2 and λ ∈ Vd , then we

have

#(�−1
d (λ̄)) = −

∑
I∈I′(λ)

(
{−(d − 1)}#I−2 ·

∏
I∈I

(#I − 1)!
)

. (2.6)

Theorem I is proved in §4.

Remark 2.9. By Theorem I, we no longer need induction processes to find #(�−1
d (λ̄)) if

we consider �−1
d (λ̄) counted with multiplicity. We only need to find I′(λ) and to compute

straightforward the right-hand side of equation (2.6).
However, there are some minor defects in the form of equation (2.6) comparing with

equation (2.1). By equation (2.1), we can easily see the inequality sd(λ) ≤ (d − 2)!;
however, it cannot be easily seen by equation (2.6). The sum of the absolute value

https://doi.org/10.1017/etds.2022.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.120


3782 T. Sugiyama

∑
I∈I′(λ)((d − 1)#I−2 · ∏

I∈I(#I − 1)! ) in the right-hand side of equation (2.6) can be
much greater than (d − 2)!.

Remark 2.10. Each term in the right-hand side of equation (2.5) {−(d − 1)}#I−1 ·∏
I∈I(#I − 1)! is positive or negative, according to whether #I is odd or even. Moreover,

if I ∈ I′(λ) and I′ ≺ I, then we automatically have I′ ∈ I′(λ). Hence, equation (2.5) is
considered to be a kind of inclusion-exclusion formula.

Remark 2.11. Theorem I is derived from Theorem 2.3 with no extra information. Hence,
the proof of Theorem I is self-contained and requires no prerequisites under the assumption
of Theorem 2.3, whereas its proof is highly non-trivial. The proof consists of a good deal
of combinatorial argument.

3. Main result 2
In this section, we proceed to the next step, in which we discuss the possibility of improving
the algorithm for counting the number of discrete elements of �−1

d (λ̄). Therefore, in this
section, �−1

d (λ̄) is not considered counted with multiplicity; �−1
d (λ̄) is considered to be

a set. In this setting, we have already obtained an algorithm for counting the number of
discrete elements of �−1

d (λ̄) by using {sd ′(λ′) | 2 ≤ d ′ ≤ d , λ′ ∈ Vd ′ } in the third and
fourth steps in Main Theorem III in [14]. To review the result more precisely and to discuss
further properties, we first fix our notation.

The following objects are important in this section.

Definition 3.1. For λ = (λ1, . . . , λd) ∈ Vd , we put

K(λ) :=
⎧⎨⎩K

∣∣∣∣∣∣
∅ � K ⊆ {1, . . . , d},
i, j ∈ K ⇒ λi = λj ,

i ∈ K , j ∈ {1, . . . , d} \ K �⇒ λi �= λj

⎫⎬⎭.

Note that if we put K(λ) =: {K1, . . . , Kq}, then K1, . . . , Kq are mutually disjoint,
and the equality K1 � · · · � Kq = {1, . . . , d} holds by definition; and hence K(λ) is a
partition of {1, . . . , d}.
Definition 3.2. We denote the family of monic centered polynomials of degree d by

MCd :=
{
f (z) = zd +

d−2∑
k=0

akz
k

∣∣∣∣ ak ∈ C for 0 ≤ k ≤ d − 2
}

,

denote the composite mapping of MCd ⊂ Polyd � Polyd/Aut(C) = MPd by p :
MCd → MPd , and also denote the composite mapping of p : MCd → MPd and
�d : MPd → �̃d by �̂d : MCd → �̃d , that is, �̂d := �d ◦ p.

In the above definition, the map p is surjective since every affine conjugacy class of
polynomial maps contains monic centered polynomials. Moreover, two monic centered
polynomials f , g ∈ MCd are affinely conjugate if and only if there exists a (d − 1)th
radical root a of 1 such that the equality g(z) = af (a−1z) holds. Hence, the group
{a ∈ C | ad−1 = 1} ∼= Z/(d − 1)Z naturally acts on MCd , and the induced mapping
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p : MCd/(Z/(d − 1)Z) → MPd is an isomorphism. Since MCd
∼= Cd−1, we also have

MPd
∼= Cd−1/(Z/(d − 1)Z). Here, the action of Z/(d − 1)Z on MCd is not free for

d ≥ 3, and MPd has the set of singular points Sing(MPd) for d ≥ 4. Hence, in some sense,
the map p : MCd → MPd can be considered to be a ‘desingularization’ of MPd for d ≥ 4.

We already have the following theorem by Remark 1.9 in [14].

THEOREM 3.3. For d ≥ 2 and λ ∈ Vd , we put K(λ) =: {K1, . . . , Kq} and denote by gw

the greatest common divisor of #K1, . . . , #K(w−1), (#Kw) − 1, #K(w+1), . . . , #Kq for
each 1 ≤ w ≤ q. If gw = 1 holds for every 1 ≤ w ≤ q, then we have

#(�−1
d (λ̄)) = sd(λ)

(#K1)! · · · (#Kq)!
= sd(λ)∏

K∈K(λ)(#K)!
, (3.1)

where sd(λ) is the non-negative integer defined in Theorem 2.3 and rewritten in Theorem I.
Here, note that �−1

d (λ̄) is not considered counted with multiplicity, and hence #(�−1
d (λ̄))

denotes the number of discrete elements of �−1
d (λ̄).

In the case of gw ≥ 2 for some w, we also have an algorithm for finding #(�−1
d (λ̄)) in the

third and fourth steps in Main Theorem III in [14]. However, it contains induction processes
and is much more complicated than equation (3.1); and hence we omit to describe it again
in this paper.

As we already mentioned in Remark 1.9 in [14], we find that for d ≥ 4 and for λ ∈
Vd , the inequality gw ≥ 2 holds for some w only if λ̄ ∈ �d(Sing(MPd)). Since MCd is a
‘desingularization’ of MPd , it is natural to expect that the map �̂d = �d ◦ p : MCd → �̃d

is simpler than the map �d : MPd → �̃d itself. In the following, we consider MCd instead
of MPd , and also consider �̂d : MCd → �̃d instead of �d : MPd → �̃d .

We now state the second main theorem in this paper.

THEOREM II. For d ≥ 2, λ ∈ Vd , and �̂d : MCd → �̃d , we have

#(�̂−1
d (λ̄)) = (d − 1)sd(λ)∏

K∈K(λ)(#K)!
, (3.2)

where sd(λ) is the non-negative integer defined in Theorem 2.3 and rewritten in Theorem I.
Here, note that �̂−1

d (λ̄) is not considered counted with multiplicity, and hence #(�̂−1
d (λ̄))

denotes the number of discrete elements of �̂−1
d (λ̄).

Theorem II is proved in §5.

Remark 3.4. Theorem II holds for every λ ∈ Vd with no exception, and has no induction
process. Hence, we can say that the fiber structure of the map �̂d : MCd → �̃d is simpler
than the fiber structure of the map �d : MPd → �̃d , or moreover we can also say that the
complexity of the map �d : MPd → �̃d is composed of the two complexities: one of them
is the complexity of the map �̂d : MCd → �̃d and the other is the complexity of the map
p : MCd → MPd . Therefore, in some sense, consideration of the map �̂d is more essential
than that of the map �d in the study of fixed-point multipliers for polynomial maps.

Remark 3.5. Theorem II is proved by a closer look at Propositions 4.3 and 9.1 in [14].

Combining Theorems I and II, we have the following.
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COROLLARY III. For d ≥ 2, λ ∈ Vd , and �̂d : MCd → �̃d , we have

#(�̂−1
d (λ̄)) =

∑
I∈I′(λ)({−(d − 1)}#I−1 · ∏

I∈I(#I − 1)! )∏
K∈K(λ)(#K)!

.

4. Proof of Theorem I
In this section, we prove Theorem I. We assume d ≥ 2 and λ = (λ1, . . . , λd) ∈ Vd , and
denote by I0 = {{1, . . . , d}} the minimum element of I′(λ), which are fixed throughout
this section.

First we put

eI0(λ) := (d − 1)sd(λ)

for I0 = {{1, . . . , d}} ∈ I′(λ). Then, equation (2.2) for I ∈ I(λ) is rewritten in the form

eI(λ) =
∏
I∈I

e{I }(λI ). (4.1)

Here, {I } denotes the minimum element of I′(λI ). Moreover, equation (2.1) is rewritten in
the form

eI0(λ) = (d − 1)! −
∑

I∈I(λ)

(
eI(λ) ·

d−1∏
k=d−#I+1

k

)
, (4.2)

which is also equivalent to the equality

(d − 1)! =
∑

I∈I′(λ)

(
eI(λ) ·

d−1∏
k=d−#I+1

k

)

since for I0 ∈ I′(λ), we have eI0(λ) · ∏d−1
k=d−#I0+1 k = eI0(λ) · ∏d−1

k=d k = eI0(λ). Equa-
tion (2.5), which we would like to prove in this section, is also rewritten in the form

eI0(λ) =
∑

I∈I′(λ)

(
{−(d − 1)}#I−1 ·

∏
I∈I

(#I − 1)!
)

. (4.3)d

Hence, to prove Theorem I, it suffices to derive equation (4.3)d from equations (4.1)
and (4.2).

In the following, we show equation (4.3)d by induction on d.
For d = 2 or 3, we have sd(λ) = 1 and I′(λ) = {I0} for every λ ∈ Vd . Hence, for

λ ∈ Vd , we always have

eI0(λ) = (d − 1)sd(λ) = d − 1

and also have∑
I∈I′(λ)

(
{−(d − 1)}#I−1 ·

∏
I∈I

(#I − 1)!
)

= {−(d − 1)}#I0−1 ·
∏
I∈I0

(#I − 1)!

= {−(d − 1)}1−1 · (d − 1)! = (d − 1)! .

Since d − 1 = (d − 1)! for d = 2 or 3, we have equations (4.3)2 and (4.3)3.
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In the following, we assume d ≥ 4 and show equation (4.3)d by the assumption of
equations (4.3)2, (4.3)3, . . . , (4.3)d−1, (4.1), and (4.2).

For each I ∈ I(λ) with λ ∈ Vd , we put I =: {I1, . . . , Il}. Then, by using equations (4.1)
and (4.3)d ′ for 2 ≤ d ′ < d, we have the following equalities:

eI(λ) =
∏
I∈I

e{I }(λI ) =
l∏

u=1

e{Iu}(λIu)

=
l∏

u=1

( ∑
I′u∈I′(λIu )

[
{−(#Iu − 1)}#I′u−1 ·

∏
I ′
u∈I′u

(#I ′
u − 1)!

])

=
∑

I′1∈I′(λI1 )

· · ·
∑

I′l∈I′(λIl
)

l∏
u=1

[
{−(#Iu − 1)}#I′u−1 ·

∏
I ′
u∈I′u

(#I ′
u − 1)!

]

=
∑

I′ ∈ I(λ)

I′ � I

[( ∏
I ′∈I′

(#I ′ − 1)!
)

·
( l∏

u=1

{−(#Iu − 1)}χIu (I′)−1
)]

(4.4)

since we have the equality

{I′1 � · · · � I′l | I′1 ∈ I′(λI1), . . . , I′l ∈ I′(λIl
)} = {I′ ∈ I(λ) | I′ � I}

by definition. Here, since I � I holds for I ∈ I(λ), we have I ∈ {I′ ∈ I(λ) | I′ � I}.
Note that in equation (4.4), χIu(I

′) = #({I ′ ∈ I′ | I ′ ⊆ Iu}) is the function defined in
Theorem 2.5.

Substituting equation (4.4) into equation (4.2), we have

eI0(λ)

= (d − 1)! −
∑

I∈I(λ)

{ ∑
I′ ∈ I(λ)

I′ � I

( ∏
I ′∈I′

(#I ′ − 1)!
)

·
( ∏

I∈I
{−(#I − 1)}χI (I′)−1

)}
·

d−1∏
k=d−#I+1

k

= (d − 1)! −
∑

I′∈I(λ)

{ ∏
I ′∈I′

(#I ′ − 1)!
}

·
{ ∑

I ∈ I(λ)

I ≺ I′

( ∏
I∈I

{−(#I − 1)}χI (I′)−1
)

·
d−1∏

k=d−#I+1

k

}
.

(4.5)

Here, equation (4.3)d, which we would like to prove in this section, is equivalent to the
equality

eI0(λ) = (d − 1)! +
∑

I∈I(λ)

(
{−(d − 1)}#I−1 ·

∏
I∈I

(#I − 1)!
)

,

which is also equivalent to

eI0(λ) = (d − 1)! +
∑

I′∈I(λ)

[{ ∏
I ′∈I′

(#I ′ − 1)!
}

· {−(d − 1)}#I′−1
]

. (4.6)
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Hence, comparing equations (4.5) and (4.6), we find that to prove equation (4.3)d, we only
need to show the following equality for each I′ ∈ I(λ):

{−(d − 1)}#I′−1 = −
∑

I ∈ I(λ)

I ≺ I′

( ∏
I∈I

{−(#I − 1)}χI (I′)−1
)

·
d−1∏

k=d−#I+1

k. (4.7)

Here, equation (4.7) is equivalent to the equality

∑
I ∈ I′(λ)

I ≺ I′

( d−1∏
k=d−#I+1

k

)
·
( ∏

I∈I
{−(#I − 1)}χI (I′)−1

)
= 0 (4.8)

since for I0 ∈ I′(λ) and I′ ∈ I(λ), we have I0 ≺ I′ and( d−1∏
k=d−#I0+1

k

)
·
∏
I∈I0

{−(#I − 1)}χI (I′)−1 =
( d−1∏

k=d

k

)
· {−(d − 1)}#I′−1 = {−(d − 1)}#I′−1.

Hence, to prove Theorem I, we only need to show equation (4.8) for every d ≥ 4, λ ∈ Vd ,
and I′ ∈ I(λ). In the following, instead of expressing

∑
I∈I′(λ), I≺I′ for I′ ∈ I(λ), we simply

express
∑

I≺I′ , because if I is a partition of {1, . . . , d} and I ≺ I′ for I′ ∈ I(λ), then we
automatically have I ∈ I′(λ).

To prove equation (4.8), we make use of the following.

Definition 4.1. For I′ ∈ I(λ) with #I′ = l and for k ∈ Z, we put

fl,k :=
∑

I≺I′, #I=k

∏
I∈I

{−(#I − 1)}χI (I′)−1.

Remark 4.2. For I′ ∈ I(λ) with #I′ = l and for I ≺ I′, we always have 1 ≤ #I ≤ l. Hence,
if k ≤ 0 or k ≥ l + 1, then we have fl,k = 0 by definition.

Example 4.3. Let us find fl,l and fl,1 for l ≥ 2 in this example.
Since {I | I ≺ I′, #I = l} = {I′}, we have

fl,l =
∏
I∈I′

{−(#I − 1)}χI (I′)−1 =
∏
I∈I′

{−(#I − 1)}1−1 = 1.

Let us consider fl,1 next. Since {I | I ≺ I′, #I = 1} = {I0}, we have

fl,1 =
∏
I∈I0

{−(#I − 1)}χI (I′)−1 = {−(d − 1)}l−1.

Example 4.4. Let us also find f4,2 in this example. For I′ ∈ I(λ) with #I′ = 4, we can put
I′ = {I1, I2, I3, I4}, and in this expression, we have {I | I ≺ I′, #I = 2} = {I1, . . . , I7},
where

I1 = {I1, I2 � I3 � I4}, I2 = {I2, I1 � I3 � I4},
I3 = {I3, I1 � I2 � I4}, I4 = {I4, I1 � I2 � I3},
I5 = {I1 � I2, I3 � I4}, I6 = {I1 � I3, I2 � I4}, and I7 = {I1 � I4, I2 � I3}.
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We put #Iu =: iu for 1 ≤ u ≤ 4. Note that the equality i1 + i2 + i3 + i4 = d holds. We
have ∏

I∈I1

{−(#I − 1)}χI (I′)−1 = {−(i1 − 1)}1−1 · {−(i2 + i3 + i4 − 1)}3−1,

∏
I∈I5

{−(#I − 1)}χI (I′)−1 = {−(i1 + i2 − 1)}2−1 · {−(i3 + i4 − 1)}2−1,

for instance, which implies

4∑
u=1

∏
I∈Iu

{−(#I − 1)}χI (I′)−1 =
4∑

u=1

(i1 + i2 + i3 + i4 − iu − 1)2 =
4∑

u=1

(d − iu − 1)2

= 4(d − 1)2 − 2(d − 1)d +
4∑

u=1

i2
u,

7∑
u=5

∏
I∈Iu

{−(#I − 1)}χI (I′)−1 = (i1 + i2 − 1)(i3 + i4 − 1) + (i1 + i3 − 1)(i2 + i4 − 1)

+ (i1 + i4 − 1)(i2 + i3 − 1) = 2
∑

1≤u<v≤4

iuiv − 3d + 3.

Hence, we have

f4,2 =
7∑

u=1

∏
I∈Iu

{−(#I − 1)}χI (I′)−1

= 4(d − 1)2 − 2(d − 1)d +
4∑

u=1

i2
u + 2

∑
1≤u<v≤4

iuiv − 3d + 3

= 2d2 − 9d + 7 +
( 4∑

u=1

iu

)2

= 3d2 − 9d + 7.

Example 4.5. By a similar computation to Example 4.4, we have the following for l ≤ 5:

f2,1 = −d + 1, f3,1 = (d − 1)2, f4,1 = {−(d − 1)}3, f5,1 = {−(d − 1)}4,

f2,2 = 1, f3,2 = −2d + 3, f4,2 = 3d2 − 9d + 7, f5,2 = −4d3 + 18d2 − 28d + 15,

f3,3 = 1, f4,3 = −3d + 6, f5,3 = 6d2 − 24d + 25,

f4,4 = 1, f5,4 = −4d + 10,

f5,5 = 1.

The following is the key proposition to prove equation (4.8).

PROPOSITION 4.6. The number fl,k defined in Definition 4.1 is a function of l, k, and d,
and does not depend on the choice of I′ ∈ I(λ) with #I′ = l. Moreover, for l, k ∈ Z with
l ≥ 2, we have the equality

fl+1,k = fl,k−1 − (d − k)fl,k .
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PROPOSITION 4.7. Admitting Proposition 4.6, we have equation (4.8) for every d ≥ 4,
λ ∈ Vd , and I′ ∈ I(λ). Hence, Proposition 4.6 implies Theorem I.

Proof of Proposition 4.7. If #I′ = 2, then we can put I′ = {I1, I2} and have {I | I ≺ I′} =
{I0, I′}. Hence, we have

∑
I≺I′

( d−1∏
k=d−#I+1

k

)
·
( ∏

I∈I
{−(#I − 1)}χI (I′)−1

)
= 1 · {−(d − 1)}2−1 + (d − 1) · {−(#I1 − 1)}1−1 · {−(#I2 − 1)}1−1

= −(d − 1) + (d − 1) = 0.

In the case where #I′ ≥ 3, we put #I′ =: l + 1. Then we have l ≥ 2 and have the
following equalities by Proposition 4.6:

∑
I≺I′

( d−1∏
k=d−#I+1

k

)
·
( ∏

I∈I
{−(#I − 1)}χI (I′)−1

)

=
l+1∑
k=1

( d−1∏
k′=d−k+1

k′
)

· fl+1,k

=
l+1∑
k=1

( d−1∏
k′=d−k+1

k′
)

· (fl,k−1 − (d − k)fl,k)

=
l+1∑
k=1

( d−1∏
k′=d−k+1

k′
)

· fl,k−1 −
l+1∑
k=1

( d−1∏
k′=d−k+1

k′
)

· (d − k)fl,k

=
l∑

k=0

( d−1∏
k′=d−k

k′
)

· fl,k −
l+1∑
k=1

( d−1∏
k′=d−k

k′
)

· fl,k

=
( d−1∏

k′=d

k′
)

· fl,0 −
( d−1∏

k′=d−(l+1)

k′
)

· fl,l+1 = 0,

which completes the proof of Proposition 4.7.

In the rest of this section, we shall prove Proposition 4.6. We make use of the following
polynomial to prove Proposition 4.6.

Definition 4.8. For l, k ∈ Z with l ≥ 2, we define Jl(k) as follows: if k ≤ 0 or k ≥ l + 1,
then we put Jl(k) = ∅; if 1 ≤ k ≤ l, then we put

Jl(k) :=
{
{J1, . . . , Jk}

∣∣∣∣ J1 � · · · � Jk = {1, . . . , l},
Jv �= ∅ for every 1 ≤ v ≤ k

}
,
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where J1 � · · · � Jk denotes the disjoint union of J1, . . . , Jk . Moreover, for l, k ∈ Z with
l ≥ 2, we put

gl,k(X1, . . . , Xl) :=
∑

J∈Jl (k)

∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1

.

By definition, Jl(k) is the set of all the partitions of {1, . . . , l} into k pieces. Note that
the equality gl,k(X1, . . . , Xl) = 0 trivially holds for k ≤ 0 or k ≥ l + 1.

LEMMA 4.9. For I′ ∈ I(λ) with #I′ = l and for every k ∈ Z, putting I′ =: {I1, . . . , Il}
and #Iu =: iu for 1 ≤ u ≤ l, we have

fl,k = gl,k(i1, . . . , il). (4.9)

Proof. If k ≤ 0 or k ≥ l + 1, then equation (4.9) trivially holds since both sides of
equation (4.9) are equal to zero. In the following, we assume 1 ≤ k ≤ l.

By definition, we have

fl,k =
∑

I≺I′, #I=k

∏
I∈I

{−(#I − 1)}χI (I′)−1 =
∑

I≺I′, #I=k

∏
I∈I

{
−

( ∑
1≤u≤l, Iu⊂I

iu − 1
)}χI (I′)−1

.

Hence, putting

g̃l,k(X1, . . . , Xl) :=
∑

I≺I′, #I=k

∏
I∈I

{
−

( ∑
1≤u≤l, Iu⊂I

Xu − 1
)}χI (I′)−1

,

we obviously have g̃l,k(i1, . . . , il) = fl,k .
Here, we can make a bijection Jl(k) → {I | I ≺ I′, #I = k} by

J 
→ {�u∈J Iu | J ∈ J},
which implies that

g̃l,k(X1, . . . , Xl) =
∑

J∈Jl (k)

∏
I∈{�u∈J Iu| J∈J}

{
−

( ∑
1≤u≤l, Iu⊂I

Xu − 1
)}χI (I′)−1

=
∑

J∈Jl (k)

∏
J∈J

{
−

( ∑
1≤u≤l, Iu⊂�u′∈J Iu′

Xu − 1
)}χ(�

u′∈J
I
u′ )(I′)−1

=
∑

J∈Jl (k)

∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1

= gl,k(X1, . . . , Xl).

Hence, we have equation (4.9).

LEMMA 4.10. The polynomial gl,k(X1, . . . , Xl) defined in Definition 4.8 is determined
only by l and k, belongs to the polynomial ring Z[X1, . . . , Xl], and is symmetric in l
variables X1, . . . , Xl . Moreover, the equality deg gl,k = l − k holds for l ≥ 2 and 1 ≤
k ≤ l.

Proof. The former two assertions are obvious by definition.
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The action of Sl on {1, . . . , l} naturally induces the action of Sl on Jl(k) for each k,
which implies that for every τ ∈ Sl , we have gl,k(Xτ(1), . . . , Xτ(l)) = gl,k(X1, . . . , Xl).
Hence, gl,k(X1, . . . , Xl) is a symmetric polynomial in l variables X1, . . . , Xl .

Since
∑

J∈J(#J − 1) = l − #J = l − k for every J ∈ Jl(k), we have deg gl,k ≤
l − k. Moreover, for J ∈ Jl(k) with 1 ≤ k ≤ l, the coefficient of each term of∏

J∈J{−(
∑

u∈J Xu − 1)}#J−1 with degree l − k is positive or negative according to
whether l − k is even or odd. Hence, the terms with degree l − k in gl,k(X1, . . . , Xl) are
not canceled, which implies that the degree of gl,k(X1, . . . , Xl) is exactly equal to l − k

if 1 ≤ k ≤ l.

PROPOSITION 4.11. For l, k ∈ Z with l ≥ 2, we have

gl+1,k(X1, . . . , Xl , 0) = gl,k−1(X1, . . . , Xl) − (X1 + · · · + Xl − k)gl,k(X1, . . . , Xl).

Proof. First, we put

J1
l+1(k) := {J ∈ Jl+1(k) | {l + 1} ∈ J} and J2

l+1(k) := {J ∈ Jl+1(k) | {l + 1} /∈ J}

for l ≥ 2. Then we have J1
l+1(k) � J2

l+1(k) = Jl+1(k) for every k. Moreover, we have
J1

l+1(k) = ∅ for k ≤ 1 or k ≥ l + 2, and J2
l+1(k) = ∅ for k ≤ 0 or k ≥ l + 1.

For J ∈ J1
l+1(k), we can express J = {J1, . . . , Jk−1, {l + 1}}, where J1 � · · · �

Jk−1 = {1, . . . , l}. Hence, we can make a bijection π1 : J1
l+1(k) → Jl(k − 1) by

J 
→ J \ {{l + 1}}. Moreover, for J = {l + 1} ∈ J ∈ J1
l+1(k), we have

{
−

( ∑
u∈J

Xu − 1
)}#J−1

=
{

−
(

Xl+1 − 1
)}1−1

= 1.

Hence, we have

∑
J∈J1

l+1(k)

∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1

=
∑

J∈J1
l+1(k)

∏
J∈π1(J)

{
−

( ∑
u∈J

Xu − 1
)}#J−1

=
∑

J∈Jl (k−1)

∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1

= gl,k−1(X1, . . . , Xl).
(4.10)

For J′ ∈ J2
l+1(k), we can express J′ = {J1, . . . , Jk} with {l + 1} � Jk , and in this

expression, we have {J1, . . . , Jk−1, (Jk \ {l + 1})} ∈ Jl(k). Hence, we can make a surjec-
tion π2 : J2

l+1(k) → Jl(k) by J′ 
→ {J \ {l + 1} | J ∈ J′}. For each J = {J1, . . . , Jk} ∈
Jl(k), its fiber π−1

2 (J) consists of k elements, which are {Jv | 1 ≤ v ≤ k, v �= v′} ∪ {Jv′ �
{l + 1}} for 1 ≤ v′ ≤ k. Hence, for each J = {J1, . . . , Jk} ∈ Jl(k), we have
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∑
J′∈π−1

2 (J)

∏
J∈J′

{
−

( ∑
u∈J

Xu − 1
)}#J−1∣∣∣∣

Xl+1=0

=
k∑

v′=1

[{
−

( ∑
u∈Jv′�{l+1}

Xu − 1
)}#(Jv′�{l+1})−1

×
∏

1≤v≤k, v �=v′

{
−

( ∑
u∈Jv

Xu − 1
)}#Jv−1]∣∣∣∣

Xl+1=0

=
k∑

v′=1

[{
−

( ∑
u∈Jv′

Xu − 1
)}#Jv′

·
∏

1≤v≤k, v �=v′

{
−

( ∑
u∈Jv

Xu − 1
)}#Jv−1]

=
k∑

v′=1

[{
−

( ∑
u∈Jv′

Xu − 1
)}

·
k∏

v=1

{
−

( ∑
u∈Jv

Xu − 1
)}#Jv−1]

=
[ k∑

v′=1

{
−

( ∑
u∈Jv′

Xu − 1
)}]

·
k∏

v=1

{
−

( ∑
u∈Jv

Xu − 1
)}#Jv−1

= −
( l∑

u=1

Xu − k

)
·
∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1

.

We therefore have

∑
J′∈J2

l+1(k)

∏
J∈J′

{
−

( ∑
u∈J

Xu − 1
)}#J−1∣∣∣∣

Xl+1=0

=
∑

J∈Jl (k)

∑
J′∈π−1

2 (J)

∏
J∈J′

{
−

( ∑
u∈J

Xu − 1
)}#J−1∣∣∣∣

Xl+1=0

=
∑

J∈Jl (k)

[
−

( l∑
u=1

Xu − k

)
·
∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1]

= −
( l∑

u=1

Xu − k

) ∑
J∈Jl (k)

∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1

= −(X1 + · · · + Xl − k)gl,k(X1, . . . , Xl).

(4.11)

By equations (4.10) and (4.11), we have

gl+1,k(X1, . . . , Xl , 0) =
∑

J∈Jl+1(k)

∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1∣∣∣∣

Xl+1=0

=
∑

J∈J1
l+1(k)

∏
J∈J

{
−

( ∑
u∈J

Xu − 1
)}#J−1
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+
∑

J′∈J2
l+1(k)

∏
J∈J′

{
−

( ∑
u∈J

Xu − 1
)}#J−1∣∣∣∣

Xl+1=0

= gl,k−1(X1, . . . , Xl) − (X1 + · · · + Xl − k)gl,k(X1, . . . , Xl),

which completes the proof of Proposition 4.11.

LEMMA 4.12. For every l, k ∈ Z with l ≥ 2, there exists a polynomial hl,k(Y ) ∈ Z[Y ]
such that the equality

gl,k(X1, . . . , Xl) = hl,k(X1 + · · · + Xl) (4.12)

holds. Moreover, for every l, k ∈ Z with l ≥ 2, the equality

hl+1,k(Y ) = hl,k−1(Y ) − (Y − k)hl,k(Y ) (4.13)

holds.

Proof. In the case where l = 2, we have g2,1(X1, X2) = −(X1 + X2 − 1) and
g2,2(X1, X2) = 1 by a direct calculation. Hence, putting h2,1(Y )= − (Y − 1), h2,2(Y )=1,
and h2,k(Y ) = 0 for k �= 1, 2, we have g2,k(X1, X2) = h2,k(X1 + X2) for every k ∈ Z.

For l ≥ 3 and for every k ∈ Z, we define the polynomials hl,k(Y ) inductively by
equation (4.13). Then we obviously have hl,k(Y ) = 0 for k ≤ 0 or k ≥ l + 1. Hence,
equation (4.12) holds for k ≤ 0 or k ≥ l + 1. In the following, we show equation (4.12)
for l ≥ 3 and 1 ≤ k ≤ l by induction on l. Hence, we suppose equation (4.12) for
every k ∈ Z, and show the equality gl+1,k(X1, . . . , Xl+1) = hl+1,k(X1 + · · · + Xl+1) for
1 ≤ k ≤ l + 1.

By the assumption and Proposition 4.11, we have

gl+1,k(X1, . . . , Xl , 0) = gl,k−1(X1, . . . , Xl) − (X1 + · · · + Xl − k)gl,k(X1, . . . , Xl)

= hl,k−1(X1 + · · · + Xl) − (X1 + · · · + Xl − k)hl,k(X1 + · · · + Xl)

= hl+1,k(X1 + · · · + Xl).

Hence, putting Pl+1,k(X1, . . . , Xl+1) := gl+1,k(X1, . . . , Xl+1) − hl+1,k(X1 + · · · +
Xl+1), we have Pl+1,k(X1, . . . , Xl , 0) = 0. Moreover, by Lemma 4.10, the polynomial
Pl+1,k(X1, . . . , Xl+1) is symmetric in l + 1 variables X1, . . . , Xl+1.

We denote by σl+1,m = σl+1,m(X1, . . . , Xl+1) the elementary symmetric polynomial
of degree m in l + 1 variables X1, . . . , Xl+1. Since Pl+1,k(X1, . . . , Xl+1) is a
symmetric polynomial with coefficients in Z, we have Pl+1,k(X1, . . . , Xl+1) ∈
Z[σl+1,1, . . . , σl+1,l+1]. Moreover, since deg gl+1,k = deg hl+1,k = l + 1 − k ≤ l, we
have deg Pl+1,k ≤ l, which implies that Pl+1,k(X1, . . . , Xl+1) ∈ Z[σl+1,1, . . . , σl+1,l].

Since σl+1,m(X1, . . . , Xl , 0) = σl,m(X1, . . . , Xl) for 1 ≤ m ≤ l, we have a ring
isomorphism ϕ : Z[σl+1,1, . . . , σl+1,l] → Z[σl,1, . . . , σl,l] by substituting Xl+1 = 0, and
under the map ϕ, we have ϕ(Pl+1,k) = Pl+1,k(X1, . . . , Xl , 0) = 0. Hence, injectivity
of ϕ implies Pl+1,k(X1, . . . , Xl+1) = 0. We therefore have gl+1,k(X1, . . . , Xl+1) =
hl+1,k(X1 + · · · + Xl+1), which completes the proof of Lemma 4.12 by induction
on l.
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Proof of Proposition 4.6. By Definition 4.1, fl,k is originally a function of d ≥ 4, I′ ∈
I(λ), and k ∈ Z. However, putting #I′ = l, I′ =: {I1, . . . , Il}, and #Iu =: iu for 1 ≤ u ≤ l,
we have by Lemmas 4.9 and 4.12 the equality

fl,k = gl,k(i1, . . . , il) = hl,k(i1 + · · · + il) = hl,k(d). (4.14)

Hence, fl,k is in practice a function of l, k, and d since the polynomial hl,k(Y ) depends
only on l and k.

Moreover, by equation (4.14) and Lemma 4.12, we have

fl+1,k = hl+1,k(d) = hl,k−1(d) − (d − k)hl,k(d) = fl,k−1 − (d − k)fl,k

for every l, k ∈ Z with l ≥ 2, which completes the proof of Proposition 4.6.

To summarize the above mentioned, we have completed the proof of Theorem I.

5. Proof of Theorem II
In this section, we prove Theorem II. Throughout this section, we always assume
λ = (λ1, . . . , λd) ∈ Vd , and moreover assume that sd(λ) is the non-negative integer
defined in Theorem 2.3.

First, we consider the case where d = 2. If d = 2, then the maps p : MC2 → MP2

and �2 : MP2 → �̃2 are bijective. Hence, we have #(�̂−1
2 (λ̄)) = 1 for every λ ∈ V2.

Regarding the right-hand side of equation (3.2), since s2(λ) = 1 and K(λ) = {{1}, {2}}
for every λ ∈ V2, we always have

(d − 1)sd(λ)∏
K∈K(λ)(#K)!

= (2 − 1)s2(λ)

1! ·1!
= 1.

Hence, equation (3.2) holds for every λ ∈ V2.
In the rest of this section, we consider the case d ≥ 3. We denote by Pd−1 the complex

projective space of dimension d − 1, and put

�d(λ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(ζ1 : · · · : ζd) ∈ Pd−1

∣∣∣∣∣∣∣∣∣∣∣

d∑
i=1

ζi = 0

d∑
i=1

(1/(1 − λi))ζ
k
i = 0 for 1 ≤ k ≤ d − 2

ζ1, . . . , ζd are mutually distinct

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

We already have the following proposition by Propositions 4.3 and 9.1 in [14].

PROPOSITION 5.1. The equality #(�d(λ)) = sd(λ) holds. Moreover, we can define the
surjection π(λ) : �d(λ) → �−1

d (λ̄) by

(ζ1 : · · · : ζd) 
→ f (z) = z + ρ(z − ζ1) · · · (z − ζd),

where −1/ρ = ∑d
i=1(1/(1 − λi))ζ

d−1
i .
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We put

�̃d(λ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(ζ1, . . . , ζd) ∈ Cd

∣∣∣∣∣∣∣∣∣∣∣

d∑
i=1

ζi = 0

d∑
i=1

(1/(1 − λi))ζ
k
i =

{
0 for 1 ≤ k ≤ d − 2

−1 for k = d − 1
ζ1, . . . , ζd are mutually distinct

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Then the natural projection �̃d(λ) → �d(λ) defined by (ζ1, . . . , ζd) 
→ (ζ1 : · · · :
ζd) is a (d − 1)-to-one map because for every (ζ1 : · · · : ζd) ∈ �d(λ), we have∑d

i=1(1/(1 − λi))ζ
d−1
i �= 0 by Proposition 5.1. Hence, we have

#(�̃d(λ)) = (d − 1)#(�d(λ)) = (d − 1)sd(λ). (5.1)

We consider next the relation between �̃d(λ) and �̂−1
d (λ̄). We can define the surjection

π̂(λ) : �̃d(λ) → �̂−1
d (λ̄) by

(ζ1, . . . , ζd) 
→ f (z) = z + (z − ζ1) · · · (z − ζd)

by lifting up the map π(λ) : �d(λ) → �−1
d (λ̄) in Proposition 5.1. Here, since d ≥ 3,

every polynomial f (z) = z + (z − ζ1) · · · (z − ζd) for (ζ1, . . . , ζd) ∈ �̃d(λ) is monic
and centered.

We put

S(K(λ)) := {σ ∈ Sd | i ∈ K ∈ K(λ) �⇒ σ(i) ∈ K}.
Here, note that we also have S(K(λ)) = {σ ∈ Sd | λσ(i) = λi for every 1 ≤ i ≤ d}.
Moreover, S(K(λ)) is a subgroup of Sd and is isomorphic to

∏
K∈K(λ) Aut(K) ∼=∏

K∈K(λ) S#K .
The group S(K(λ)) naturally acts on �̃d(λ) by the permutation of coordinates, and its

action is free. Moreover, for ζ , ζ ′ ∈ �̃d(λ), the equality π̂(λ)(ζ ) = π̂(λ)(ζ ′) holds if and
only if the equality ζ ′ = σ · ζ holds for some σ ∈ S(K(λ)), which can be verified by a
similar argument to the proof of Lemma 4.5(6) in [14]. We therefore have the bijection

π̂(λ) : �̃d(λ)/S(K(λ)) ∼= �̂−1
d (λ̄),

which implies the equality

#(�̂−1
d (λ̄)) = #(�̃d(λ))

#(S(K(λ)))
= #(�̃d(λ))∏

K∈K(λ)(#K)!
. (5.2)

Combining equations (5.1) and (5.2), we have

#(�̂−1
d (λ̄)) = (d − 1)sd(λ)∏

K∈K(λ)(#K)!
,

which completes the proof of Theorem II.
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