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Foreword 

About twelve years ago the first attempts to explain the Sun's differential rotation 
appeared in the literature. In these twelve years our understanding of the processes 
that could give rise to the large-scale circulation of the solar convection zone has 
greatly increased. 

It therefore seems appropriate at this time to critically review the degree of 
development of theories of solar rotation. This could perhaps be achieved by 
referring the reader to the relevant papers. In this type of review the reader must, 
however, spend a considerable effort to gain a proper understanding of the subject. 
Consequently, in this paper a different approach has been followed, the aim of which 
has been to present a unified and critical exposition of theories of solar rotation. 
There is no doubt that this paper would be very different had it been written by 
another contributor to this field: a subject can be understood in several distinct ways; 
furthermore, different authors would weight very differently the diverse theories that 
are put forward to explain the Sun's differential rotation since there does not exist at 
present a commonly accepted explanation of this phenomenon. 

This review will have achieved its goal if it allows the reader to gain an easy 
understanding of this subject and if it clearly shows where the main difficulties lie. 

Abstract The main theories of solar rotation are critically reviewed. 
The interaction of large-scale convection with rotation gives rise to a transport of angular momentum 

towards the equator and therefore to differential rotation with equatorial acceleration. (Large-scale 
convection is defined as follows: in a highly turbulent fluid, the small-scale turbulence acts as a viscosity 
and organizes fluid motions on a much larger scale.) This transport of angular momentum towards the 
equator arises because of the highly non-axisymmetric character of the large-scale convective motions in 
the presence of rotation. These motions tend to be concentrated near the equator. It is not surprising, 
therefore, that for magnitudes of large-scale convection which are needed to generate the observed solar 
differential rotation, large and unobserved pole-equator differences in flux appear in the Boussinesq 
approximation. 

It is important, therefore, to take the variations in density into account. Studies of large-scale 
convection in a compressible rotating medium are still in a very early stage; these studies suggest, however, 
that the surface layers must indeed rotate differentially. 

The interaction of rotation with convection appears to be especially efficient in generating a pole-
equator difference in flux, A&. Such a A& drives meridional motions, and the action of Coriolis forces on 
these motions gives rise to differential rotation. In the 'large-viscosity' approximation the problem 
separates; the meridional motions can be determined first (from the radial and latitudinal equations of 
morions, and the energy equation) and the angular velocity can be determined next from the azimuthal 
equation of motion. Since very little is known about compressible large-scale convection, it has been 
assumed in the development of this theory that the stabilizing effect of rotation on turbulent convection 
depends on the polar angle $ and on depth. The solution for the angular velocity in the large viscosity 
approximation gives a differential rotation that varies slowly with depth. As a consequence, the large 
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viscosity approximation is not valid over most of the convection zone, the Coriolis term being larger than 
the viscous term; a thin layer at the top excepted. (It appears, however, that if the angular velocity, 12, is a 
slowly varying function of depth and the azimuthal stresses vanish at both ends of the convection zone, 
then the general behavior of CI will be very much like that predicted by the large viscosity approximation.) 

The stabilizing effect of rotation on turbulent convection is neglected; if differential rotation is 
significant over the entire convection zone, and if the meridional and large-scale convective velocities are 
not too large, then in the radial and latitudinal equations of motion, the main balance of forces is between 
pressure gradients, buoyancy and Coriolis forces. If rotation is not constant along cylinders, then the 
differential rotation gives rise to latitudinal variations in the convective flux which are proportional to 
&oT/g (where T is the temperature and g is gravity). In the lower part of the convection zone, Ci2

0T/g is of 
the order of the superadiabatic gradient itself. Therefore large pole-equator differences in flux, A&, will be 
present unless the angular velocity is constant along cylinders. The meridional velocities associated with 
this rotation law are not small, however, and could generate a significant A&. It could well be that large 
AfPs can be avoided only if rotation is uniform in the lower part of the convection zone. (To be certain of 
these results, however, it is important to estimate the magnitude of the stabilizing effect of rotation on 
turbulent convection.) 

Turbulent convection is driven by the buoyancy force which thus introduces a preferred direction: 
gravity. In consequence, the turbulence in the sun should be anisotropic and if this is the case the 
convection zone cannot rotate uniformly. The degree of anisotropy is not known and must be determined 
from the observed solar differential rotation. The anisotropy is such that the horizontal exchange of 
momentum is larger than the vertical. 

The normal mode of vibrations and the inner rotation of the Sun are briefly discussed. 

1. Observations 

The observations that have a bearing on theories of solar rotation are the following. 

1.1. ROTATION RATES 

Different features of the solar surface rotate at various rates. In Figure 1 (from 
Stenflo, 1974) the angular velocity is plotted as a function of latitude for (i) the 
sunspots (Newton and Nunn, 1951), (ii) the photosphere measured from Doppler 
shifts (Howard and Harvey, 1970), (iii) the photospheric magnetic field measured by 
an auto correlation technique (Wilcox and Howard, 1970; Wilcox et a/., 1970a; 
Stenflo, 1974). For the curve labeled longitudinal magnetic field' Stenflo calculated 
the autocorrelation curves for the strength (with sign) of the radial component of the 
field. Only the sign was used in the curve labeled 'sign of the longitudinal magnetic 
field.' To some extent the dashed, solid and dotted curves of Figure 1 correspond to 
increasing values of the flux density. 

The chromosphere and transition region appear to rotate like the photosphere 
(Dupree and Henze, 1972; Henze and Dupree, 1973). The results of OSO 6 (Henze 
and Dupree) indicate a smaller differential rotation than the data of OSO 4 (Dupree 
and Henze). If only the brightest points in the EUV spectroheliograms are included, 
then their rotation rate is similar to that of the sunspots (Simon and Noyes, 1972). 

Measurements of the chromospheric rotation rate in the Ha line give larger 
angular velocities than when metallic lines are used (Livingston, 1969). The K-
corona rotates as the sunspots (Hansen et al, 1969). 

The above data have been interpreted by Stenflo (1974) as indicating that 
observations which utilize the Doppler and Zeeman effects refer to different regions 
of the Sun: the Doppler shift measurements refer to non-magnetic regions which do 
not contribute to the Zeeman-effect observations. Furthermore, Stenflo suggests 
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Fig. 1. Angular velocity of rotation as a function of heliographic latitude. The solid and dashed lines are 
from Stenflo (1974), the curve for recurrent sunspots is from Newton and Nunn (1951), and the Doppler 

shift curve is from Howard and Harvey (1970) (from Stenflo: 1974, Solar Phys. 36,495). 

that the smaller the differential rotation of the magnetized plasma, the deeper the 
magnetic field pattern is rooted. It will be seen later that this picture is not without 
difficulties. 

1.2. TIME VARIATIONS AND CORRELATIONS 

Howard and Harvey expressed the Sun's angular velocity in the form 
n = a+& cos2 e+c cos4 e (i.i) 

where 6 is the polar angle. The average values of a, b, and c were found to be: 
a = 2.78xl0~ 6 rads _ 1 , 6 = -3 .51x l0" 7 r ads _ 1 , and c = -4 .43x l0" 7 r ads _ 1 . 
Time variations of a, b, and c are large and correlations exist between these time 
variations (cf. Howard and Harvey, 1970). In Figure 2 we have plotted the correla­
tion between b, and c as given by Yoshimura (1972a). A weaker correlation exists 
between a and c (Wolff, 1975). 

1.3. RIGID ROTATION, THE SECTOR STRUCTURE AND PREFERRED LONGITUDES 

The interplanetary sector structure (Wilcox and Ness, 1965) has been shown to be an 
extension of the solar sector structure (Ness and Wilcox, 1966; Wilcox and Ness, 
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Fig. 2. A plot of the values of b versus c for the whole disk. The values of b and c are from Howard and 
Harvey (1970) (from Yoshimura: 1972, Solar Phys. 22,20). 

1967). Boundaries of the solar sector structure do not evolve as expected from the 
solar differential rotation, but appear to have a rigid-rotation component (Wilcox 
and Howard, 1968). Large-scale photospheric magnetic fields can also display, at 
some latitudes, both rigid and differential rotation properties (Wilcox etal, 1970b). 
Svestka (1968a, b) has found that the sources of proton flare rotate rigidly around the 
Sun in the opposite direction of rotation. Also, the long-lived coronal activity shows 
rigid rotation in the latitude interval ±57.5° (Antonucci and Svalgaard, 1974). 

Flare activity, especially the proton flare activity, occurs preferentially near the 
sector boundaries (Bumba and Obridko, 1969); a marked enhancement is found 
within one day of the (— +) solar sector boundaries (Dittmer, 1975). 

1.4. GIANT MAGNETIC FIELD STRUCTURES, MERIDIONAL MOTIONS 
AND ANGULAR MOMENTUM TRANSPORT 

Giant magnetic field structures have been observed by Bumba et al (1964), Bumba 
(1967), Mcintosh (1975) and others. Their possible origin has been discussed by 
Bumba (1970). 

From spectroscopic measurements, Howard (1971) finds no evidence of merid­
ional motions in the photosphere with an upper limit to the line-of-sight velocity of 
30 m s - 1 . Sunspots, on the other hand, show a poleward drift of about 0.01 deg day - 1 
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for latitudes higher than ~20° and a drift towards the.equator for smaller latitudes 
(Tuominen, 1955; Richardson and Schwarzschild, 1953). 

From a statistical analysis, Ward (1965) found that the longitudinal and latitudinal 
components of the proper velocities of the sunspots are correlated: (U+Ue) > 0, that 
is, on the average the sunspots with U<h-(U<b)>0 move towards the equator (and 
those with U<t>—(U4>)<0 towards the pole), giving rise to a transport of angular 
momentum towards the equator (cf. Starr and Gilman, 1965). Ward's results have 
been criticized by Leighton (1966) and until further evidence becomes available, the 
correlation {U<hUe)>0 cannot be considered as established. 

1.5. POLE-EQUATOR DIFFERENCES IN FLUX AND TEMPERATURE 

The pole-equator differences in flux (A9) are very small (Dicke and Goldenberg, 
1967; Hill et al, 1974); the upper limit of 69/9 is probably not larger than a few 
parts in 10~4. Pole-equator differences in temperature (AT), if present, are also small 
(Appenzeller and Schroter, 1967; Caccin etal., 1970; Altrock and Canfield, 1972a, 
1972b; Noyes etal, 1973; Rutten, 1973; Falciani etal, 1974). Noyes etal (1973) 
find that AT • r < 0.3 K if r < 10"2 (r is the optical depth). 

1.6. NORMAL MODE OF VIBRATIONS 

Evidence has been accumulating (Deubner, 1972; Kaufman, 1972; Kobrin and 
Korshunov, 1972; Fossat and Ricort, 1973) that normal modes of vibration of the 
entire Sun are present. (Fossat (1975) has, however cautioned that the long-period 
oscillation of the data in Fossat and Ricort's paper could be contaminated by 
atmospheric noise.) Recent observations by the SCLERA group (cf. Hill et al, 
1976) dispel any doubt about the existence of these normal modes of vibration. 

It is unlikely that observations of solar-type stars, following their arrival at the 
main sequence, could be relevant for theories of the solar differential rotation. These 
observations are essential, however, for theories of the solar inner rotation (the 
radiative core). 

1.7. Average Rotational Velocities of Main Sequence Stars 
The average rotational velocity for stars in the main sequence increases from 
~180kms - 1 for a BO star to ~225 k m s - 1 for a B5 star and decreases thereafter 
(~ 100 km s"1 for an F0 star), the decrease becoming very sharp at about F6 (Abt and 
Hunter, 1962). Figure 3 (from Kraft, 1969) shows the log of the average angular 
momentum density versus the log of the mass for stars in the main sequence ((J) is the 
average angular momentum, assuming solid body rotation, of main-sequence stars 
with a given mass, divided by the star's mass M). The extrapolated line, (J)~M 2 / 3 , 
was added by Dicke (1970a, b). 

1.8. Angular Velocity as a Function of Age and Ca n Emission 
Stars later than F6 rotate faster in young than in old clusters (Kraft, 1967). Figure 3 
shows that rotation rate becomes very small in the main sequence for stars later than 
—F6. It is just at this place that Ca II emission begins (Wilson, 1966a, 1966b). 

https://doi.org/10.1017/S0074180900008238 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900008238


248 B. R. D U R N E Y 

18 

17 

15 h 

-Main Sequence 

J — S u n (1.8 Day Core) 

• Age > IO*y (No Ca n Emission) 
A Hyades 4 x l 0 8 < T < 8 X I 0 8 

4- Pleiades T 3 x | Q 7 y 

Uniformly Rotating Sun 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

log 

Fig. 3. The log of the angular momentum, per unit mass, of stars of various masses (assumed to be 
rotating uniformly) versus the log of the mass (from Kraft, 1969, in Stellar Astronomy, vol. 2 (ed. by Chiu, 

Warasila and Remo), Gordon and Breach, New York. 

Furthermore, Wilson (1966b) has shown that stars with Ca II emission are nearer the 
zero-age main sequence than stars without it. Figure 4 (from Kraft, 1967) shows that, 
for stars less massive than M/MQ— 1.25, the largest rotational velocities are 
associated with stars having active chromospheres (Ca n emission). For more details 
about the above observations the reader is referred to the excellent review articles by 
Kraft (1969, 1970). 

1.9. Lithium and Beryllium Abundances 
There is a correlation between the Li abundance and the age of the star: the older the 
star, the lower the Li abundance; that is, there is a progressive loss of Li with time (cf. 
Wallerstein and Conti, 1969). 

Stars with masses less than 1.1 Mo have much lower abundance of Li than stars 
with M > 1.1 Mo (Wallerstein etal, 1965). Stars with appreciable rotation have the 
largest Li content (Conti, 1968). 

The abundances of beryllium show a much lower dispersion than the abundances 
of Li (cf. Wallerstein and Conti, 1969; Grevesse, 1968; Hauge and Engvold, 1968; 
Ross and Aller, 1974). Ross and Aller find that, in the photospheric layers of the Sun, 
beryllium is depleted below the solar system abundance by a factor of about two. It is 
not possible, therefore, to rule out a small depletion of Be in the Sun. In contrast, 
solar-type stars show a very strong depletion of lithium. 

Lithium and beryllium are destroyed at distances from the center of the Sun equal 
to -0.63 R0 and -0.47 R0, respectively (cf. Dicke, 1970b, Table 2). In relation to 
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Fig. 4. Stromgren diagram representation of the HR diagram for both field emission stars (dark circles) 
and field-free emission stars (open circles). The circle size gives an indication of the rotation rate (from 

Kraft: 1967, Astrophys. J. 150,551). 

theories of the solar rotation, the importance of these observations lies in the fact that 
they indicate that there is very little mixing of matter from the surface down to 
0.47 R0. To account for the Li depletion, however, a mixed region must exist, 
extending down to 0.63 RG. This mixing has been attributed to turbulence induced 
by gradients in the angular velocity (Goldreich and Schubert, 1967; Spiegel, 1968; 
Howard etal, 1967). 
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2. Differential Rotation as a Consequence of the Interaction of Rotation 
with Convection 

2.1. BOUSSINESQ THEORIES 

Typical values of the Rayleigh {01) and Prandtl (a) numbers in the solar convection 
zone are 0t ~ 10 1 2 to 10 2 0 (depending mainly on whether one takes the length 
appearing in 3? as a scale height or as the depth of the convection zone; cf. Spiegel, 
1971) and cr ~10~ 9 because the thermal diffusion is radiative (Ledoux et ai91961). 
Convection in the Sun should therefore be highly turbulent. 

An idea that goes back to the beinning of turbulence studies (Boussinesq, 1877, 
1897) is that of a turbulent viscosity: the momentum exchange due to the turbulent 
motions is assumed to act as a viscosity and to organize relatively steady large-scale 
motions. The effect of rotation on this large-scale convection will be especially 
important and this leads to an appealing and natural theory of differential rotation: 
the radial and latitudinal variations of the angular velocity are assumed to be 
generated by the interaction of this global convection with rotation (Durney, 1968a, 
1970; Busse, 1970, 1973; Yoshimura and Kato, 1971). As a starting point, let us 
ignore the compressible character of the solar convection zone and consider a 
spherical layer of a rotating convective fluid in the Boussinesq approximation. The 
usual boundary conditions imposed on this problem are specified temperatures at the 
top (JR0) and bottom (Rc) of the convection zone, as well as zero stresses and radial 
velocities at r = R0 and r = Rc. These boundary conditions are very far from being 
ideal. Assuming that the flow problems in the inner radiative region and in the 
convective zone can be separated (and it could well be that this is not possible), it 
seems more appropriate to specify the energy flux and the temperature at the inner 
boundary of the convection zone, letting the outer surface choose its own tempera­
ture and flux. In particular, a boundary condition of uniform heat flux at r = JRC could 
significantly alter the nature of the solutions. Furthermore, the boundary conditions 
of zero stresses at r = Rc could be questioned (Gierasch, 1974; Durney, 1976). 

We define dimensionless quantities as follows: 

V=KU'/R0; r = R<t'; t = R2

0t'/K; 

T=ATT; G(r) = -g(r)r = -g(R0)g'(r')f' ( 2 ' L 1 ) 

f and r' are unit vectors and the primed quantities are the dimensionless variables for 
the velocity, radial distance, time, temperature, and gravity (G(r)), respectively. (If 
M 0 is the mass of the Sun and if we neglect the mass of the convection zone then 
g(Ro) = GcM0/Ro and g'(r') = 1/r'2; Gc is the gravitational constant). In Equations 
(2.1.1), K is the thermometric diffusivity and AT= Tc— T 0, that is, the difference in 
temperature between the inner and outer surfaces of the convection zone. In the rest 
of this section all quantities will be assumed to be dimensionless and the primes will 
be dropped. 

Differential rotation is an axisymmetric mode of the velocity field U. To under­
stand its origin it is convenient to expand the velocity field in poloidal and toroidal 
vectors (Chandrasekhar, 1961, Appendix III) and the temperature field in spherical 
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harmonics. We retain only the lowest axisymmetric modes of U and T, that are 
furthermore symmetric about the equator. 

For the angular velocity we obtain (Chandrasekhar, Appendix III, Equation (15)) 

h{r)dYj t3(r)dY°3 

+ r 80 r dO 
r s in0 /3 \* 6) [Ti(r)+^~T3(r)(5 cos2 d~i)] { 2 A 2 ) 

Above, Ti(r)( = h(r)/r2) and T3(r)( = t3(r)/r2) are some functions of r; 0 is the polar 
angle; and the spherical harmonics have been normalized according to Condon and 
Shortley(1951) 

(Y T (cs ) - F r otSfI
 y r « * - * - » » » ) • 

The meridional motions (i.e., the poloidal components of the axisymmetric 
velocity field) are also determined by two scalars, p2(r) and p4(r) (stream functions), 
which define motions with one and two cells, respectively, in each hemisphere 
(O<0<7r /2 and 7 r / 2 < 0 < 7 r for the northern and southern hemisphere, respec­
tively) of the convection zone. 

(Explicitly, 

L=2,4 r L=2. 4 r dr ov 

cf. Equation (A3a) of Appendix 1.) 
For the temperature we write 

T= TJAT+ (r\/r-1)/(1 - 1 7 ) + I/R(r, r) + #3(r, 0, 0 (2.1.3) 

In Equation (2.1.3), T\=RJR0\ the first two terms are the purely conductive 
temperature profile, the third term is the distortion of the average temperature due 
to convection and the fourth term is the fluctuating component of the temperature, 
which averages to zero on any surface of radius r. Note that @(r, 0, <f>, t) is not only the 
axisymmetric part of the fluctuating temperature. (It will be clear later that non-
axisymmetric components of the velocity and temperature field play an essential role 
in the generation of differential rotation and of pole-equator differences in tempera­
ture). The lowest axisymmetric mode of 0 that has symmetry about the equator is 

@2(r)l1 = i ( ^ ) l 0 2 ( r ) ( 3 c o s 2 0 ~ l ) (2.1.4) 

@2(r) defines, therefore, a pole-equator temperature difference. 
The main justification for retaining only the lowest terms in the expansions of the 

axisymmetric modes of U and T is, of course, mathematical simplicity. (Note, 
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(3*0 -^J™ 2 ^<<W»<W. (2.1.5) 
0 

Id2 4 d 10\ J , [ 2 (dP2 2P2\ 

(63)Hdr r Al 
o 

10 1 

+—cos 6 sin OiUeU^) I d0. 
(b) Equations for the meridional circulation 

d4 4 d3 12 d2 24 / £ _ 24\ 
ldr 4 + r d r 3 r 3 dr 2 Vr 2 

- ( 5 i r ) 5 | sin fl[cos 0 sin 0-̂  (r(U • VU>„) 4 or . o 

+<U-VU>r(3cos20-l)]d0. (2.1.7) 

(c) Equations for the pole-equator temperature difference 

Id2 2d 6 \ 6 / T? d*\ 

ld?+7d7-?J02+7P2l(T ĵ?-̂ J 
| sin 0̂  f s in0[(3cos 2 0-l) i-(r 2 <L/ r <9» (2.1.8) 4r J L r dr 

+ 6<L/0@)cos0sin0jd0. 

however, that the next term in the expansion for the angular velocity is 

^TT-(—Yr sin 0(315 cos4 0-210 cos2 0 + 15) 
16 \ 7 T / 

which does not have a maximum at the equator.) 
In a system of coordinates rotating with an angular velocity /2 0, the equations for 

Ti(r), T3(r), P2(r) (= p2(r)/r) and 02(r) are found to be (Durney, 1971): 
(a) Equations for the angular velocity 
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where gl(r) = g(r)/r; ST^liloRl/v (= STl/2/(\ - r / ) 2 ) ; = aATg(R0)R3

0/KV 
(= 91/(1 - T / ) 3 ) ; P4(r) = p4(r)/r; a (= V/K) is the turbulent Prandtl number and (AB) 
is defined by (AB) = (l/7r) J^AB d<t>. We chose JR0 and not the thickness of the 
convective shell as the unit of distance. This is the reason why STi is not the square 
root of the Taylor number (5); also the usual Rayleigh number is @L and not 0tx. 

Turbulent convection is assumed to determine v and K in Equations (2.1.5)-
(2.1.8); U and 0 are the large-scale velocity and temperature. Following Unno 
(1961), it will be assumed that <x ~ 1. The value of the turbulent viscosity, v, does not 
change much in the convection zone and at a depth of 1.8 x lO 1 0 cm, v~ 
8 x 10 1 2 cm2 s"1 (see Table I in Section 2.2). The value of ?TX is known; the value of 
521 which determines the strength of the large-scale convection, is not known. In 
these theories a natural way of determining i is by requiring that the value of 
T3(R0) (which determines the latitudinal differential rotation at the surface by 
Equation (2.1.2) should agree with the observed value. The thickness of the 
convective layer is not well-known either: one can assume that it is a scale height or 
the actual depth of the solar convection zone. 

The boundary conditions corresponding to specified temperatures and zero radial 
velocities and stresses at r = Rc, R0 are 02l=P2l = Pil — T2l+i = 0 at r = T j , 1 
(L = 1, 2); T[ = 0 at r = TJ ; and ft r4Ti(r) dr = 0. (If T[ = 0 at r = TJ, then in the steady 
state also T[ = 0 at r= 1; ft r Ti(r)dr = 0 implies that, in the rotating system of 
coordinates, the total angular momentum of the spherical shell is zero.) 

The only approximation used in deriving Equations (2.1.5)-(2.1.8) is the Boussin­
esq approximation. In other words, suppose that we have a convective, rotating 
spherical layer of fluid and that P4(r) is negligible (or known), then if we could 
measure i\j{r) and the azimuthal averages of the fluctuating quantities appearing in 
the right-hand side of Equations (2.1.5)-(2.1.8), these equations would allow us to 
determine Ti(r), T3(r), P2(r), and 02(r). In the right-hand side of Equations 
(2.1.5M2.1.8), 0 has been defined by Equation (2.1.3) and U is the total velocity 
field; U and 0 contain, therefore, non-axisymmetric as well as axisymmetric 
components, and it is apparent that the solution of Equations (2.1.5)-(2.1.8) poses a 
formidable problem. An approximate method of solution that clearly shows how Tu 

T3, P2 and 02 are generated is the following: 
(i) The problem of a rotating, convective spherical layer of fluid is first solved in 

the quasi-linear approximation (Herring, 1963,1964,1969; Durney, 1968a). In this 
approximation, which has been shown to be qualitatively successful, the fluctuating 
self-interactions (i.e., the terms U • VU, U • V@) are neglected; the only non-linear 
term that is retained is the product of the distortion of the mean temperature and the 
velocity [Ur(dil//dr)] (the equations for the different modes of the temperature and 
velocity field in this approximation are given in Appendix 1). The solution of this 
problem shows that convection in the presence of rotation is highly non-
axisymmetric. 

(ii) With the values of U and 0 evaluated in (i) we can calculate the right-hand side 
of Equations (2.1.5)-(2.1.8) (RHS (2.1.5-2.1.8)), and solve for TX, T3, P2 and 02 (for 
if/, we use the value found in (i)). It is now clear how the large-scale convection in the 
presence of rotation generates, through the products of the fluctuating quantities 
appearing in the RHS (2.1.5-2.1.8), the axisymmetric modes of the temperature and 
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velocity field. In Appendix II we give an order-of-magnitude estimate, based on 
dimensional considerations, of the RHS (2.1.5-2.1.8) and of T3. In the method of 
solution described above, we have neglected the effect of the axisymmetric modes on 
the large-scale non-axisymmetric convection and on ^. Gilman (1972) has taken 
these effects into account in the framework of the mean field approximation. 

If Ur = P2 = T[ = 0 at r = 17, the integration of Equation (2.1.5) gives 

which expresses that the angular momentum transport across a spherical surface due 
to (a) viscosity and (b) the action of Coriolis forces on the meridional circulation, is 
equal (in the steady state) to the angular momentum transport due to the Reynold's 
stresses. Equations (2.1.5) and (2.1.9) are equations for the radial differential 
rotation. 

Equation (2.1.6) shows how the vertical [(d/dr)(r3(U4,Ur))] and latitudinal 
((UeU^)) transports of angular momentum generate the latitudinal differential 
rotation. The action of Coriolis forces on a meridional circulation can, just by itself, 
give rise to differential rotation, as is shown by the term in 3~i in Equation (2.1.6). 

A pole-equator temperature difference can be generated (a) by a vertical variation 
in the radial heat flux, the term [(d/dr)(r2(Ur0))] in Equation (2.1.8), (b) by a 
latitudinal heat flux ((U00)), or (c) by a meridional circulation, if the average 
temperature varies with r (the term in P2 in the left-hand side of Equation (2.1.8)). 

A serious problem plaguing this theory of differential rotation from the beginning 
has been the large (and unobserved) pole-equator difference in flux (A9) needed to 
generate the observed solar differential rotation (cf. Figure 4 and the discussion in 
Durney, 1970 and Gilman, 1972). The basic reason for this difficulty is the following: 
to generate the observed differential rotation, a sizeable fraction of the energy flux 
must be transported by the large-scale convection (Equation (B5) of Appendix II). 
Transport of angular momentum towards the equator arises when the convective 
motions are mainly longitudinal (i.e. when the longitudinal velocities are large) since 
in this case the Coriolis forces transport the fast-rotating fluid particles towards the 
equator and the slow-rotating ones towards the poles (see Yoshimura, 1972a and 
Appendix II). If the convective motions have large longitudinal components, then 
something is known about the shape of the convectivr'cells: m has to be large (see 
Equation (A3) of Appendix I). If m is large, the large-scale convective motions are 
peaked at the equator and significant pole-equator differences in flux appear 
unavoidable (if m = L, the 0 dependence of Ur is of the form sinL 0; if m 5* L, the rate 
of angular momentum transport is not maximum at the equator, Yoshimura, 1972a, 
Figure 4). It is unlikely that a mixture of modes can solve the heat flux problem. In 
Figure 5 we give the convective heat flux at the middle of the convective shell as a 
function of 0, in the case of axisymmetric convection, for a Rayleigh number of 1500, 
a Taylor number of 500 and 17 = 0.8 (see Figures 1 and 6 of Durney, 1968b). The 
rotation is fast enough to strongly inhibit convection and the quasi-linear approxima­
tion can be trusted qualitatively. The axisymmetric mode, plotted in Figure 5, is 
essentially identical to the polar modes (with m = 0) plotted in Figiare 6 of Gilman 

(2.1.9) 
0 
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Fig. 5. Convective heat flux versus polar angle for a Rayleigh number of 1500 at the middle layer of a 
convective shell. Convection is axisymmetric and the rotation rate is fast enough to inhibit convection 

almost completely. 

(1975). Gilman's calculations (for the case of marginal instability and for a variety of 
Taylor numbers and values of m) show furthermore that for large Taylor numbers 
most modes peak at the equator, and that a few modes (with small m's) peak at the 
poles, with virtually no modes in between. 

The right mixture of modes could give a small enough A2F\ it would, however, in all 
probability give a wrong profile for the latitudinal differential rotation since the modes 
that transport angular momentum towards the equator are also those that give rise to a 
large A9. 

It is tempting to assume, therefore, that the main effect of the interaction of 
rotation with convection is the generation, through the RHS (2.1.8), of a small 
pole-equator difference in flux; this ASF will drive a meridional circulation (P2) 
which, by Equations (2.1.5) and (2.1.6), will generate a radial and latitudinal 
differential rotation. It is of interest to calculate the magnitude of P 2 that could 
explain the observed solar differential rotation. From Equation (2.1.6) we obtain, 
very crudely, T 3 ~^iP 2 /(35)*. Comparing this value of T 3 with Equation (B3) of 
Appendix II, we obtain P2 = 2/15(^/5)^; if a = 1 and K = 2 x 10 1 2 cm2 s~\ we find 
Ur~ 6 cms" 1. 

To generate a latitudinal differential rotation with equatorial acceleration, the 
meridional ciculation must, however, rise at the poles and sink at the equator. This 
point, which is treated in detail in Section 2.3, can also be understood as follows: near 
the outer surface we approximate Equation (2.1.6) to 10 T 3 / r 2 = 2^P 2/(35)*r. For 
the equator to rotate faster, T 3 and therefore P 2 = dP2/dr must be negative. Since 
P2(r = R0) = 0, P2 must be positive below the surface and this implies that the 
motions must sink at the equator. There is no reason to expect this to happen in a 
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Boussinesq fluid. In fact, since rotation inhibits convection preferentially at the 
poles, a circulation rising at the equator (which would increase the equatorial flux) 
appears more plausible. If differential rotation is generated by a meridional cir­
culation the strong variation of p with r must, therefore, be included (Durney, 
1972a). 

It has been argued here that the angular momentum transport by the Reynold's 
stresses, in a Boussinesq fluid, cannot explain by itself the observed solar differential 
rotation. The strong variation of density with depth in the solar convection zone appears 
to be essential for the understanding, even in a qualitative way, of the solar differential 
rotation. 

This result suggests that differential rotation cannot be generated in the lower part 
of the convection zone by the interaction of rotation with the global convection. It 
would be premature to conclude, however, that this is certainly the case, since the 
action of rotation on the turbulent diffusivity and viscosity has not been taken into 
account; it is not known what effect this action could have on theories of the 
thermodynamics and dynamics of the lower part of the convection zone. 

There can be little doubt that global convection exists in the Sun: the observations 
(in particular 1.3 and the existence of giant magnetic field structures seem to 
corroborate it (cf. also Howard and Yoshimura's (1976) paper in these proceedings) 
Global convection could, however, be very nearly critical and therefore transport little 
energy flux. In this context the existence of periods in the past when the solar cycle 
appeared to have died off could be of importance; it has been suggested by 
Yoshimura (1976a) that during these periods global convection was very weak and 
could even have ceased to exist. It is easy to imagine this happening if global 
convection were very nearly critical. (In Yoshimura's model of the solar cycle, global 
convection regenerates the poloidal magnetic field from the toroidal field.) 

Rigid rotation appears in this theory of differential rotation in a natural way 
because of the existence of waves. Waves of the velocity field have been discussed in 
Appendix I. Yoshimura (1971, 1972a, b) has shown that Svestka's observations 
pertaining to the rigid rotation of complexes of activity (cf. Section 1.3) can be 
explained, in terms of the time dependence of the magnetic field, as resulting from its 
interaction with rotation and the global convection. 

2.2. NON-BOUSSINESQ THEORIES 

The study of convection in a compressible medium (cf. Skumanich, 1955; Bohm, 
1963; Spiegel, 1964, 1965; Vickers, 1971; Heard, 1973; Vandakurov, 1975a, b) 
is a difficult subject even in the absence of rotation; it is not surprising, therefore, that 
non-Boussinesq theories of differential rotation (Vandakurov, 1975b) are in a more 
primitive state of development than Boussinesq theories. This subject could, however, 
be basic for an understanding of the solar differential rotation and a brief discussion is 
called for here. 

The convection zone is strongly stratified with depth. In Table I (cf. Table 1 of 
Cocke, 1967, and Baker and Temesvary, 1966) the values of the following quantities 
are tabulated as a function of depth: the density (p); the temperature (T); the mixing 
length (/), chosen equal to 1.5 x pressure scale height; the turbulent convective 

https://doi.org/10.1017/S0074180900008238 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900008238


ON THEORIES OF SOLAR ROTATION 257 

velocity (uc); the dynamic turbulent viscosity (TJ = pwc//3); the kinematic turbulent 
viscosity {v = ucl/3); \dr)/dr\/p\ the ratio of the convective flux to the total energy 
flux (FC/FT); the superadiabatic gradient (V AT); the square root of the local 
turbulent Taylor number {ZP = 2Q0l2/v = 6O0l/uc; more appropriately, therefore, 

is proportional to the inverse of the Rossby number), and the turbulent Rayleigh 
number (<% =agVATd4/K). An approximate expression for the superadiabatic 
gradient was evaluated from the mixing length expression for the convective flux: 

& = tCpPucV AT; V 4T= r [ ( l - 1 )^-^] ( 2 . 2 .1 ) 

with 9=(R0/r)29o(Fc/FT), 90 being the energy flux at the surface; c p = 
yRg/p(y -1) with y = 5/3, Rg the gas constant, and p, the molecular weight (= 0.6). 
In the Rayleigh number a = l/T, d ( = 1 . 9 x l 0 1 0 cm) is the depth of the convection 
zone and K = v (the turbulent Prandtl number is equal to one). 

The problem of global convection in a compressible medium (cf. Vickers, 1971; 
Heard, 1973; Vandakurov, 1975a, b) can be clarified with the help of the following 
simple and crude model: since the kinematic turbulent viscosity, v, does not change 
much in the convection zone, Equation (2.2.1) gives 

V AT= a/p; a= 2&/3cpi> (2.2.2) 
wherein the first approximation a can be taken as a constant. The equation of 
hydrostatic equilibrium, the gas equation and Equation (2.2.2) determine the 
unperturbed state. If motions are present, the relevant equations could be taken as 
the Navier-Stokes equations with a kinematic viscosity v, the usual continuity and gas 
equations and the following energy equation 

div ̂ = C p p U • V AT (2.2.3) 
where U is the large-scale velocity and 9 is given by Equation (2.2.1). 

The problem of marginal stability (Vickers, 1971; Heard, 1973) consists, then, in 
determining the value of a(ac) such that the system is stable for a < ac and unstable 
for a > ac. Vickers' (1971) calculations (performed, however, with a different energy 
equation, which in the unperturbed state is K dT/dz = constant) lend support to the 
idea that the value of a, as calculated from Baker and Temesvary's tables, for 
example, is larger than ac. In other words, the solar convection zone is unstable against 
global convection. Vickers and Heard (who also included rotation) furthermore find 
that the large-scale convection is concentrated in the lower part of the convection zone 
(i.e., the preferred modes are damped in the upper portions of the layer). This result 
is somewhat surprising since the Rayleigh number is large in the upper part of the 
convection zone (cf. Table I); could this result be due to the boundary condition 
Ur = 0 at r = R01 In the Sun the radial velocities do not vanish at the surface but can 
overshoot into the stable photospheric layers. Whatever the case, it is important to 
establish firmly (with respect to both the interpretation of the observations and to the 
generation of the solar differential rotation) whether the global convection is indeed 
concentrated in the lower part of the convection zone. If this were the case the 
Boussinesq theories should be qualitatively correct (see, however, the last para­
graphs of this section) and, therefore, we would again expect that (i) a relation should 
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exist between the angular momentum transport by the Reynolds stresses and the 
energy carried by the large-scale convection, and (ii) other processes than this 
angular momentum transport should be of importance in the generation of the solar 
differential rotation. 

If, on the other hand, the velocities of the global convection are large only in the 
surface layers, then point (i) above ceases to be valid: the large-scale convection could 
carry small amounts of energy and at the same time the large surface azimuthal 
velocities could give rise to a significant transport of angular momentum towards the 
equator. If the Sun's differential rotation is generated in the upper part of the 
convection zone by angular momentum transport, then differential rotation should 
be 'large,' i.e., we would expect the Reynolds number of the azimuthal flow to be of 
the order of the critical Reynolds number. Let Ail be the difference in angular 
velocity between the equator and the poles. On a sphere of radius J R 0 , differential 
rotation gives rise to a shear flow with a Reynolds number given by 

Me = AilR2

0/v (2.2.4) 

where v is the turbulent viscosity. The turbulent viscosity associated with the 
granules is easy to evaluate; we take u ~ 0.4 km s"1 (cf. Beckers and Morrison, 1970; 
Mehltretter, 1971; Mattig and Nesis, 1974) and / - 1 0 3 km. Therefore, v~ul~4x 
10 1 2 cm2 s"1, and 9le - 9 x 102. The Reynolds number evaluated with the turbulent 
viscosity due to the supergranules appears to be somewhat smaller. The supergranu­
lar velocities decrease sharply with depth (Appenzeller and Schroter, 1968). We take 
u —0.14 km s"1 and / - 1 . 5 x 104 km, and find 9le ~1.7 x 102. These values of the 
Reynolds number should be compared with the critical Reynolds number, which is 
about 103. An important question that can be raised at this point is whether 
differential rotation penetrates deeply into the convection zone in the case when it is 
generated in the surface layers. 

If the convection zone is highly unstable against large-scale convection (a »ac) 
then a more reliable method of calculating the dominant modes is to calculate growth 
rates (Vandakurpv, 1975a); a model of the convection zone is assumed to be given (in 
our example, the value of a) and the growth rates of different large-scale perturba­
tions are calculated. Vandakurov (1975a) takes VAT proportional to T and assumes 
that il0T^/(VAT)kgh «1 where g is gravity; this inequality is valid in the upper 
portions of the convection zone (see Table I). The dominant mode is assumed to be 
the one with thfe largest growth rate. Vandakurov (1975b) has generalized his 
method to include (in a crude way) nonlinear terms and finds that in general the 
upper parts of stellar convection zones should rotate differentially, with no appreci­
able variations in the heat flux with latitude. However, large variations of & with 6 
are expected only in the lower part of the convection zone (see 2.4) and this problem 
cannot be considered solved at present. There can be no doubt that in order to fully 
explain the solar differential rotation, we need a much deeper understanding of the 
large-scale convection in a compressible model of the solar convection zone. 

We have used Equations (2.2.3) and (2.2.1) as the energy equation for a compres­
sible fluid and Equation (Alb) of Appendix 1 as the Boussinesq energy equation. It is 
important to understand under which approximations Equations (2.2.3) and (2.2.1) 
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reduce to Equation (Alb). Equation (2.2.3) can also be written in the following form 
div & = U • [Vp - CppVT]. (2.2.5) 

With the help of the hydrostatic relation the right hand side of Equation (2.2.5) 
becomes -pcpiJ[VT+g/cp]. The expression for the convective flux can be written 
& = -(l/2)puccp\yT+g/cp\ Therefore, if the variations of pcp can be neglected we 
obtain 

div^+U(VT+g/c p ) ; ~ y (VT+g/c,). (2.2.6) 

Apart from the factor g/cp (the adiabatic gradient) Equation (2.2.6) is the usual 
energy equation for an incompressible fluid (Equation (Alb) of Appendix 1). The 
thermometric diffusivity is equal to lujl (which is approximately constant in the 
Sun) and the Prandtl number is close to one, (a = V/K = 2/3). 

2.3. MERIDIONAL CIRCULATION 

The idea that the Sun's differential rotation could be generated by a meridional 
circulation driven by a pole-equator temperature difference (due to the interaction of 
rotation with convection) was first put forward by Weiss (1965) and Veronis (1966) 
(see also Osaki, 1970; Roxburgh, 1970; Durney and Roxburgh, 1971; Durney, 
1974; and Gierasch, 1974). 

We will neglect the Reynolds stresses due to the large-scale convection and 
approximate the action of the turbulent convection by a turbulent viscosity (assumed 
furthermore to act as a molecular viscosity). We can limit ourselves to axially 
symmetric flows since it is clear that any pole-equator difference in temperature 
generated by the interaction of rotation with convection will be axially symmetric. 

The time-dependent Navier-Stokes equations can then be written 

„[m+Lm+MML^],Rt (2.3.3) 

where D/Dt - Urd/dr + (U0/r)d/dd and Rn R0, R+ are the components of the 
viscous force written down explicitly in Appendix III. 

It is readily seen that if y (the ratio of the specific heats) and cv are constants, then 
the time-independent energy equation 

pU • V c , T - - U • Vp + div = 0 (2.3.4) 
P 

can also be written as in Equation (2.2.3); 3F and V AT are defined in Equation 
(2.2.1). Equation (2.2.1) is the expression for the turbulent convective flux only; no 
allowance is made for a possible contribution from the large-scale convection. The 
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reason is simple: not enough is known about the large-scale compressible convec­
tion. In the development of these theories, it is therefore necessary to assume that 
rotation acts as a perturbation on the turbulent convective flux. 

An illustrative example that clarifies the basic ideas behind these theories of 
differential rotation is the following (cf. Belvedere and Paterno, 1976): consider a 
rotating spherical layer of fluid with a thermal conductivity of the form K = 
K0[H-^(r)P2(cos 0)]. The factor in the bracket mimics the effect of rotation on 
convection, which depends on latitude and depth. Even if the fluid is not convective, 
meridional motions will be set up and the action of Coriolis forces on these motions 
will generate differential rotation. The replacement of 'thermal conduction' by 
'turbulent convection' gives us a clear picture of the theories of differential rotation 
discussed in this section. The fluid, however, could also be convective, which would 
correspond to the large-scale convection. The action of rotation on these large-scale 
convective motions is not taken into account. This effect could be important; in 
particular, the dependence on depth of the interaction of rotation with (i) the 
large-scale convection and (ii) the turbulent convection could be different. 

The action of rotation on turbulent convection can be introduced by replacing 
Equation (2.2.1) with Equation (2.3.5), for example: 

9 = [ 1 + e P2(cos 0)]^uc C ppVAT (2.3.5) 

(a version of this equation was used in Durney and Roxburgh, 1971). The interaction 
of rotation with convection depends on latitude (since the angle between the angular 
velocity and gravity depends on 0) and on depth (since the scale of the convective 
motions is a strong function of r). This interaction is contained in the factor e2{20l2/v 
of Equation (2.3.5) and has, therefore, been assumed to be proportional to the 
square root of the Taylor number or the inverse of the Rossby number (see Table I). 
This appears to be a reasonable choice since in the Boussinesq theories the effect of 
rotation manifests itself through 3^. The proportionality factor e can be fixed by 
requiring that the calculated and observed values of the latitudinal differential 
rotation at the Sun's surface are in agreement. 

An understanding of these calculations, and of the relation between the merid­
ional circulation and differential rotation, is particularly simple in the limit of large 
viscosity and slow rotation. In this case, Equations (2.3.1) and (2.3.2) simplify to 

-df-pg+Rr=0; --^+Re = 0. (2.3.6) or r ou 
The viscous terms JRr and Re depend only on Ur and Ue (see Appendix III); Ur and 
Ue are defined in terms of the stream function, fa(r), by 

Ur = d~^/pr2 sin 0 ; Ue = -^/pr sin 0 (2.3.7) 

Equations (2.3.6) allow us to express p and p (and therefore also T, by the gas 
equation) in terms of fa. The energy equation (Equation 2.2.3) is then an equation 
for fa. Once fa is known, the azimuthal equation of motion determines the angular 
velocity. An appropriate value of e would then reproduce the observed differential 
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rotation at the Sun's surface. A method of solution could be the following: we first 
expand all quantities in terms of Legendre polynomials: 

P = P«(l +p2(r)P2(cos 0)); p = pM(l + p2(r)P2(cos 0)) 

T= Tu(l + T2(r)P2(cos 6)) (2.3.8) 

= p ( c Q S 0j y* = - — sin 0 cos 0/pr. (2.3.9) 
pr dr 

The subscript w denotes the unperturbed non-rotating state and we have chosen a 
particular form for the stream function ^!( = sin2 0 cos Oif/(r)). Equations (2.3.9) 
describe motions with one latitudinal cell in each hemisphere. Appendix IV contains 
the expressions for p2 and p 2 in terms of ty. 

With p, p, and T given by Equation (2.3.8), the expression for the superadiabatic 
gradient becomes 

VAT= (VAT)Jr +{T2(VAT)U + TM[(1 - l/y)p'2- T2]}P2(cos 0)ir 

_ 3 s m ± ^ m i _ l / y ) p 2 _ T 2 ] l e ( 2 3 m l 0 ) 

where ir and ie are unit vectors in the r and 6 directions, respectively. We write 
Equation (2.3.10) in the condensed form 

VAT=(VAT)Jr + 8(VAT), 

where the definition of S(VAT) follows immediately from Equation (2.3.10). To the 
first order in the perturbed quantities the energy equation (Equation 2.2.3) can be 
written (we use Equations (2.2.1), (2.3.9), and (2.3.10) for U, and VAT, 
respectively) 

div ( | UcCppMVAT)} - 2^(r)cpP2(cos 6)(VAT)J r2 

2 
= _ 2 £ A > p 2 ( c o s 9)9^l*L (2.3.H) 

vr dr 

where & 0 is the solar energy flux (erg cm - 2) at the surface. We have taken, therefore, 
a simplified version of the mixing length expression for the convective flux, namely, 
9 = l/2ucCppuVAT, with luJ2 = \ v a constant. It is reasonable to expect that the 
scale of variation of Tu, p 2 , and T2 is smaller than r, that is, \dA/dr\>A/r where A 
stands for Tu, p 2 , and T2. We shall therefore neglect the term containing the 
0-derivative in div[(//2)ucCppu8(VAT)]. Furthermore, since (V4T)M is small we 
neglect T2(VAT)U with respect to TM[(1 - l / y ) p 2 - T2] in 5 VAT. Equation (2.3.11) 
then reduces to 

(2.3.12) 
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The ratio (Q) of the second term to the first term in the left-hand side of Equation 
(2.3.12) is of the order Q ~ &o/p(ljvf{l/rf where = In the estimate of Q, 
Equation (2.2.2) was used for (VAT)'U, and (pup2)' was evaluated with the help of 
Equation (D2) {(Pv&'i)' ~ v^'ip' / p){p' / p)). It is clear that if v is sufficiently large 
(> - 2 x 10 1 3 cm2 s - 1 ) , the term 2</rcp(V4T)M in Equation (2.3.12) can be neglected. 
Furthermore, if we set r = R0 in the first term of Equation (2.3.12) we obtain 

(7 - l )P2~yT 2 = -4no(y-Vepol2/pu ( 2 3 1 3 ) 

3v 
The integration constant was chosen equal to zero for the following reasons: by 
virtue of Equations (2.3.5) and (2.3.10), the pole-equator difference in flux is given 
by ^0[yr2 + rj(y-l)p 2-yr 2]/(V^ which reduces 
to &0T2P2(cos 0) (a small quantity) if Equation (2.3.13) is satisfied. (Since v = luc/3 
and &o is given by Equation (2.2.1) the right-hand side of Equation (2.3.13) can also 
be written -2n0el2(VAT)uy/i>Tu). Equation (2.3.13) will be solved with the bound­
ary condition (y-l)p2~yT2 = 0 at r = R0. Perhaps a better boundary condition 
would have been T 2 = 0 at r = R0. It is unlikely, however, that these solutions would 
differ mucH. (It would be much better, of course, to impose that the latitudinal 
variations of the energy flux and temperature vanish at r = Rc, the lower boundary of 
the convection zone; the calculations determine then A& and T2 at r = R0). With the 
help of Equations (Dl) and (D2) of Appendix IV, we can substitute p2 and T2 in the 
integrated version of Equation (2.3.13) and obtain explicitly the equation for This 
is Equation (D3) of Appendix IV. Equation (D3) will be solved by assuming that the 
unperturbed state satisfies a polytropic relation: pu—Puc(pJpuc)y\ the pressure, 
density, and temperature are then given by 

Pu = foil ~ (r - Rc)/LYny-l\ P u = puc(l-(r- RJ/L)1^ 

Tu = Tuc(l-(r-Rc)/L) (2.3.14) 

with 

L = yRgTc/(y-l)>jLg (2.3.15) 
The subscript c denotes quantities at the bottom of the convection zone, as given 

for example by Baker and Temesvary's tables. We take / = \ .5pjp'u\ the integral in 
the right-hand side of Equation (D3) can then be evaluated in closed form (see 
Equation (D4) of Appendix IV). Appropriate boundary conditions for Equation 
(D3) (with the right-hand side given by Equation (D4)) are zero radial velocities and 
stresses at r = Rc, R0: 

^ = 0 ; </,» = </r'(2/r + p'/p) = 0 ; r = Rc, R0. (2.3.16) 
In the large viscosity approximation it is therefore possible to determine $ (apart 
from a multiplicative factor, since e is not yet known) independently of the angular 
velocity. To obtain the equation for the angular velocity, we expand O in Legendre 
polynomials and neglect polynomials of a higher order than two: 

{} = {20(14- o>0(r) + <o2(r)P2(cos 0)). (2.3.17) 
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This is a good approximation for the observed angular velocity at the surface (cf. 
Durney, 1976). Howard and Harvey's (1970) observations give 

/2 0 = 2 .57xl0~ 6 rads _ 1 ; <o2(R0) = -0.189 (2.3.18) 
The equations for <o0(r) and <o2(r) are Equations (El) and (E2) of Appendix V. The 

solution of the problem at hand is particularly simple if we neglect the nonlinear 
terms in Equations (El) and (E2): the equations for fa <o0(r), and (o2(r) can be solved 
first with e = 1. Since <o2(r) is proportional to fa the value of (o2(r) at the surface will 
be -0.189 (which is the observed differential rotation) if e = — 0.189/<o2(R0, e = 1). 
The numerical calculations (with y = 5/3, *> = 2 x 10 1 2 cm 2 s~\ and 5 = 1) give e = 
—1.4 x 10~6. (It should be noted, cf. Equation (D3), that far) is proportional to v~3 

and therefore <o2(r) (cf. Equation E2) is proportional to v~4; had the equations been 
solved with v = 2 x 10 1 3 cm2 s"1 a much larger value of e would have been needed to 
reproduce the observed differential rotation. With v = 2 x 10 1 3 cm2 s - 1 we can justify 
neglecting the term 2fap (VAT)U in Equation (2.3.12).) If e is negative then 
2e/20/2P2(cos 0)/v is larger than zero at the equator, and it follows from Equation 
(2.3.5) that rotation stabilizes the poles more than the equator. Therefore, differen­
tial rotation with equatorial acceleration is generated, in this model, if rotation 
stabilizes turbulent convection preferentially at the poles. This result, of course, 
should not be taken too seriously and it could well depend on the approximations 
used in solving Equation (2.3.11) (see, for example, Durney and Roxburgh, 1971). It 
is important to note that unlike the case of the large-scale convection, we do not know 
whether the turbulent convection is preferentially stabilized by rotation at the equator or 
at the poles. Furthermore, as stressed by Iroshnikov (1969), the effect of rotation on 
the turbulent viscous stress tensor could also be important. Table I shows that at a 
depth of l . l x l 0 1 0 c m , a typical time associated with the turbulent convection is 
l/uc ~10 6 s , which is not small in relation to l/(20~ 10*72.57 s"1. Therefore, the effect 
of rotation on the turbulent convection, particularly in the lower half of the convection 
zone, cannot be ignored. 

Cowling (1951) has studied the local conditions for instability in polytropic 
rotating stars. He finds that in the case of uniform rotation, instability will occur if 
(a=(l-y/r)/yH) 

a[m2 + {l cos 0 - n sin 6)2]>4{lln2 . (2.3.19) 
Here T is the polytropic index (p/po = (p/po)r); H is the scale height, defined by 
H = p/pg = p/\Vp\; 6 is, as usual, the polar angle and m, /, and n are defined by 
3/dR = il, d/Rd</> = im,d/dz = in (Cowling takes cylindrical polar coordinates R, <f>, 
and z with the star's center as the pole and its axis of rotation as the polar axis). In a 
spherical system of coordinates, let us define N and L by d/dr = iN9 d/rdB = iL; 1/N 
and 1/L are therefore the radial and latitudinal dimensions of the turbulence. At the 
equator, Equation (2.3.19) can then be written a[m 2 +L 2 ]>4/2oL 2 ; whereas at the 
poles, a[m +L2]>4{llN2. Therefore, turbulent convection will be preferentially 
stabilized at the poles if N>L or \/N<\/L, that is, if the convective cells are 
flattened in the radial direction; if, on the other hand, the turbulent motions are 
elongated in the radial direction, then it is the convection at the equator that will be 
preferentially stabilized by rotation. The shape of the convective cells is presumably 
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determined by complex phenomena such as nonlinear interactions of the velocity 
and temperature fields, the variations of density with height, and the action of 
rotation on the convective motions; it is not known at present whether the convective 
cells are elongated or flattened in the radial direction. (It should be noted, however, 
that Simon and Weiss, 1968, and Parker, 1973a, 1973b have argued that the 
convective motions, in the absence of rotation, extend over several scale heights.) 
Very little is also known about the effect of nonuniform rotation on the turbulence 
(cf. Cowling, 1951). 

We return now to the results of the numerical calculations pertaining to the 
solutions of Equations (D3), (D4) and the linearized versions of Equations (El) and 
(E2) (as stated above s = 1, y = f , i> = 2 x 10 1 2 cm2 s - 1 ) . In Figures 6a and 6b, <o0(r) 
and (o2(r) are plotted against r; (o0(r) and <o2(r) are in excellent agreement with 
previous calculations (Durney, 1974a); it should be noted that <o0(r) increases with 
depth, whereas o)2(r) decreases inward. This appears to be a typical behavior 
of the solutions of Equations (El) and (E2) (with s = l and free stress boundary 
conditions at r — Rc, R0) when (o0(r) and a>2(r) are slowly varying functions of r (cf. 
Section 3). 

The pole-equator differences in flux are small: A&/&0~ 1P~3 in the bulk of the 
convection zone and ~ 10~6 in the surface layers. We have neglected here the energy 
carried by the meridional motions; if this energy is important we would expect two 
cells to develop in the radial direction (Durney, 1972a): assume that convection is 
preferentially stabilized at the poles by rotation. In the lower part of the convection 
zone where the effect of rotation on convection is large, meridional motions should 
be generated that will increase the equatorial flux; these motions should therefore 

( I O , 0 c m ) 

Fig. 6a. (o0(r) versus depth. The angular velocity is given by Q = i? 0( 1 + ^o( r) + <*>iir)0 cos 2 0 — 1 ) /2) . 
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r ( I O , 0 c m ) 
Fig. 6b. (o2(r) versus depth. 

rise at the equator and sink at the poles. In the upper part of the convection zone the 
effect of rotation on convection becomes negligible and a counter cell should develop 
(motions sinking at the equator and rising at the poles) as the convection zone relaxes 
to a state in which the effect of rotation is unimportant, i.e., to a nonrotating state. 
This counter cell redistributes the pole-equator differences in flux set up in the lower 
part of the convection zone, and the direction of these motions is such that they give 
rise to differential rotation with equatorial acceleration (Kippenhahn, 1963). It 
should be noted that if only one cell is present and the motions rise at the poles and 
sink at the equator, then the equatorial flux can be larger than the polar flux at the 
base of the convection zone (r-Rc) if the meridional motions penetrate (even 
slightly) into the radiative region. We take (9r is the latitudinally dependent 
component of the radial flux) 

&r = &(r)P2(cos 0); Ur = ^ r P 2 ( c o s 6) (2.3.20) 
pr 

and approximate the energy equation by 

dr 2 ^ r /dr = r2

CppUr( VAT)U. (2.3.21) 

Since in the stable radiative core (VAT)U < 0, the left-hand side of the above equation 
will be larger than zero if Ur < 0 (as we have assumed to be the case at the equator). 
Therefore in the radiative region downward motions transport energy upward and, 
in consequence, the equatorial flux will be larger than the polar flux at the base of the 
convection zone (r = Rc) if the energy flux is spherically symmetric inside the 
radiative core. It should also be noted that since |V4T| is 'large' in the radiative 
region, very small velocities can carry large amounts of energy flux. 
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The meridional motions in the convection zone which are needed to generate the 
observed solar differential rotation are of the order of L/ r ~10cms - 1 (Durney, 
1974a). The same value is obtained from the solution of Equations (D3) and (D4). It 
is of interest to calculate the energy flux carried by these motions. We assume again 
that the radial components of the energy flux and velocity field are given by Equation 
(2.3.20) and that the energy equation is given by Equation (2.3.21). Since v = luc/3, 
an integration of Equation (2.3.21) gives 

8&r = &r(r = R0)--$F,(r = Rc) = iFo | (IV*)dr. 
*° I 

If we take v = 2 x 10 1 2 cm2 s _ 1 and Ur(r) = 10 cm s _ 1 , we obtain 

8&r/&0~ I (L /»d r~P 2 ( cos0 ) / lO . (2.3.22) 
Rc 

If $Fr(r = JR0) = 0 (no pole-equator difference in flux at the surface) then Equation 
(2.3.22) shows that the pole-equator difference in flux at r = Rc is the order of 

The values of found from the solution of Equations (D3), (D4), 
(El), and (E2) are smaller than j^: the value used for the turbulent viscosity 
(2x 10 1 2 cm 2 s _ 1 ) is too small to justify neglecting the energy flux carried by the 
meridional motions. There can be little doubt that the terms of the energy equation 
that were neglected in Equation (2.3.21) would lower the values of A2F/SF. Equation 
(2.3.22) suggests, however, that in this theory of differential rotation, the value OFA2F/2F 
has to be significant at the base of the convection zone. 

It is apparent from Figure 6b that \o>2(r)\ decreases slowly inward. As a conse­
quence, the large viscosity approximation is not valid in the lower part of the 
convection zone. We assume conservatively large values for U'r~p'Ur/p', U0~ 
rp'Ur/p; U0~(rp'/p)2Ur/r. It is readily seen from Equations (2.3.1) and (2.3.2)lhat 
the largest viscous terms of the r and 6 equations of motions are Vr = (rp'/p)2pUrp/r2 

and V0 = {rp'/pfvUrp/r2, respectively; the largest terms containing the meridional 
velocities are Mr = (rp'/p)2U2p/r and an identical expression for the ^-equation 
(M„ = M r). In Table II the ratios 2N2

0p\<»2\r/Vr and 2NLR\<o2/V0\ are tabulated as a 

TABLE II 
Ratio of the Coriolis force to the viscous terms as a function of depth in the radial 

and latitudinal equations of motion 

d (cm) 
r-Eq 
0-Eq 
\rp'/p\ 

3.4(6) 
2 . 6 ( - l ) 
8.4(-6) 
3.1(4) 

1.3(7) 
2 . 9 ( - l ) 
3.6(-5) 
8.1(3) 

3.7(7) 
2.5 
8.7(-4) 
2.8(3) 

1.5(8) 
4.4(1) 
6.3(-2) 
7.0(2) 

3.6(8) 
2.5(2) 
8 .7(- l ) 
2.9(2) 

d(cm) 
r-Eq 
0-Eq 
VP,IP\ 

1.0(9) 
1.3(3) 
1.2(1) 
1.0(2) 

3.3(9) 
7.2(3) 
2.4(2) 
3.0(1) 

1.1(10) 
4.2(4) 
5.3(3) 
8 

1.8(10) 
1.3(5) 
2.9(4) 
4.3 

1.9(10) 
2.1(5) 
5.1(4) 
4 

https://doi.org/10.1017/S0074180900008238 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900008238


268 B. R. DURNEY 

function of r for Ur = 10 cm s - 1 and |o>2| = 0.1; the value of v was taken from Table I 
and rp'/p was calculated by assuming that p is given by a polytropic state (cf. 
Equations (2.3.14)) with y = f. The values of p^, p^, (the pressure, density, and 
temperature at the bottom of the convection zone) are from Baker and Temesvary's 
tables, and the value of gravity in Equation (2.3.15) was chosen so that L = 
1.9 x 10 1 0 cm (g = 3.7 x 104 cm2 s"1). The ratios of the Coriolis force to Mr and Me 

behave very much in the same way as do the values listed in Table II for the 
r-equation since Ur and v/r are of the same order. It is clear from Table II that the 
large viscosity approximation is valid only in the surface layers of the convection 
zone. It is important, however, to realize that the results plotted in Figures (6a) and 
(6b) and the corresponding values of the meridional motions are more general than 
the large viscosity approximation: if the angular velocity is a slowly varying function 
of r and the azimuthal stresses vanish at r = Rc, R0, then a)0(r) and <o2(r) will behave 
very much as in Figure 6 for motions rising at the poles and sinking at the equator (see 
Section 3.1.). 

2.4. ROTATION IN CYLINDERS 

If differential rotation penetrates deeply into the convection zone, then the large 
viscosity approximation considered in the previous section is not valid. In fact, the 
inviscid radial and latitudinal equations of motion appear to be better approxima­
tions (Gierasch, 1974). It is not possible at present to rule out the possibility that 
differential rotation is a surface effect. The opposite appears more likely, however, (i) 
According to Parker (1975), the solar dynamo must be driven in the lower part of the 
convection zone; in the upper part magnetic buoyancy is so efficient that the 
magnetic field rapidly floats to the surface, (ii) according to Yoshimura (1975a), a 
latitudinal differential rotation must be present for the solar cycle models to 
reproduce the observed butterfly diagram. 

We will assume, therefore, that differential rotation is not a surface phenomenon 
and that <o2~ = -0.1 is a typical value of <o2(r) in the lower part of the convection 
zone. 

It was seen in the last section that for all reasonable values of an axisymmetric 
velocity field, the viscous terms and the terms in Ur and Ue in the r- and 0-equations 
of motion can be neglected in the lower part of the convection zone (Gierasch, 1974; 
the reader is referred to this paper for an order-of-magnitude estimate of all terms in 
these equations). 

Global convection is essentially non-axisymmetric. We estimate now the largest 
values of the large-scale convective velocities (Uc„ U% U^) such that the terms in Uc

r, 
Ucey U+oi the r- and 0-equations of motion are nevertheless smaller than the Coriolis 
force. As a guide to the relative magnitude of Uc

n and we use Equations (Bl) 
of Appendix II: and iFo somewhat smaller than Uc

r or U%. For the 
derivatives with respect to r, 0, and <f> we take d/dr ~ p'/p; d/rdO ~ L/r\ d/rd<f> ~ L/r; 
an appropriate value of L is —10 (Appendix I). In consequence, rp'/p ^ L since in 
the lower part of the convection zone rp'/p ~ 5 and rp'/p increases with r. Therefore, 
d/dr^(d/rd$, d/rd<j>). The Navier-Stokes equations for the case of nonaxial sym­
metry have been written down, for example, by Pai (1956). It is readily seen that for 

https://doi.org/10.1017/S0074180900008238 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900008238


O N T H E O R I E S O F S O L A R R O T A T I O N 269 

the r-equation: the largest viscous term is Vr — (rp'/p)2vUc

rp/r2 and that the largest 
inertial terms containing the global convective velocities are I\r — p'iUrf and 
I2 = 2pO0Uc

<f>. For the 0-equation the largest viscous term is Ve = (rp''/fp)2vUc

ep/r2 

and the largest intertial terms (apart from the Coriolis term, 2flopa)2r) are I\e = 
p'Uc

rUc

eandI2 = 2pn0Uc

<b. 
In Table II (r-equation), the ratio of the Coriolis force (20lp\a)2\r) to Vr and V0 

are tabulated for Uc

r = Uc

0 = 10 cm s - 1 . It is clear that even if Uc

r and Uc

e are as large as 
10 4 cms _ 1 (larger, therefore, than the turbulent convective velocities; cf. Table I), 
the viscous terms due to the global convection can be neglected in the r- and 
0-equations (in the lower part of the convection zone). 

Consider now the inertial terms. The values of Uc

r and U% (such that I\r~l\0 and 
I2 are of the order of the Coriolis force, 2pQla>2r) are Uc

r~2x 10 4 cms - 1 and 
U%~ 104 cm s - 1 (we have used rp'/p = 10; \a)2\ = 0.1, and r = 6 x 10 1 0 cm). Therefore 
if the global convective velocities are not larger than the turbulent velocities, then the 
viscous and inertial terms due to the large-scale convection can be neglected, in the r-
and d-equations, in the lower part of the convection zone. Combining this result with 
the previous one pertaining an axisymmetric circulation, we conclude that in the 
lower part of the convection zone the r- and 0-equations of motion can be written 

pUl/r-pg = dp/dr (2.4.1) 

p\j\ cotg 0/r = dp/r 30. (2.4.2) 
Equations (2.4.1) and (2.4.2) were used by Gierasch (1974) in his work on differen­
tial rotation. 

We evaluate now the perturbations in the convective flux due to differential 
rotation. The convective flux and the superadiabatic gradient are given by Equation 
(2.2.1). Since uc = l/2(g • VAT/T)l/2 we can write 

^ g ^ p A ^ / T 1 ' 2 ; 9e = l^2pCpA)/2Ae/T^ (2.4.3) 

with 
* - 0 - i / T ) I 4 - £ A,,U-i/y)If-lE (2.4.4) 

p dr dr pr d0 r d0 
The absence of rotation defines the unperturbed state designated by a sub-index, u. 
We neglect second-order terms in the perturbation (rotation). The superadiabatic 
gradient is 'small'. Therefore, we expect the perturbations in the superadiabatic 
gradient to be the ones that are the most important, i.e. 8VAT/(VAT)u»8p/pu, 
Sp/pu, 8T/TU. We take, therefore, 

^ ^ I g ^ W ^ / r y 2 ; ^ ^ I g ^ W ^ / T y 2 . (2.4.5) 

It is important to keep in mind that we neglected the effect of rotation on /. With the 
help of Equations (2.4.1) and (2.4.2) it is readily found that AT and Ae can be written 

A, = ( -g+ Ul/r)/cp-dT/dr (2.4.6) 

Ae = U% cotg B/rcp-(l/r)dT/de. (2.4.7) 
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To evaluate Ar and Ae we need to calculate dT/dr and dT/dO as given by 
Equations (2.4.1) and (2.4.2), and the ga&equation. Equations (2.4.1) and (2.4.2) will 
be solved with the help of expansions of the form 

U+ = O0r sin 0(1 + o>0(r) + (o2(r)P2(cos $)); 
P = Pu +Po+P2^2(cos 0)+p4P4(cos 0); p = pM + • • • ; (2.4.8) 
T = T U + 

Differential rotation will be assumed to, be small, that is <oo, o>l, and a>0a>2 will be 
neglected (as well, of course, as the products of ph p„ Tt (i = 0,2,4)). With the help of 
these approximations we can evaluate X in terms of the unperturbed state and of 
(o0(r) and (o2(r). The mathematical details are given in Appendix VI. 

The perturbed spherically symmetric part of Ar[-§(/20/7'cp)(l + 2<o0-2a)2/f5)-
dT0/dr] must be zero since rotation cannot alter the emerging flux. This is just an 
equation for dT0/dr. To evaluate the remaining terms of Ar and A& we approximate 
the unperturbed state by a polytrope (Equations (2.3.14) and (2.3.15)); in this case 
the following equality holds: 

li/Rg+p'uTJgPu = l / c p . (2.4.9) 
Substituting Equations (Fl), (F2), and (F4) of Appendix VI into Equations (2.4.6) 

and (2.4.7), we obtain, with the help of Equation (2.4.9): 

where 

Bx = 12a>2 + rft>2 + 7rwo, B2 = ra>2-2a>2 . (2.4.12) 

The radial and latitudinal components of the convective flux are given by Equation 
(2.4.5). In Table III we list the values of A& = (ll/4)g1/2pucpAX2l$(nlTJg)]/ 
Ti/2 = 2

i&$(filTJg)/(VAT)u] as a function of depth; A& gives an indication of the 
pole-equator differences in flux if the terms inside the bracket of Equation (2.4.10) 
do not vanish. Furthermore, &e ~ASF if the terms inside the bracket of Equation 
(2.4.11) do not vanish. It is impossible to believe that such large values of ASF and 9B 

TABLE III 

Values of 69 = l&\_2n2

0TJlg{ VAT)U] as a function of depth d 
d(cm) 
^ ( e r g c m - 2 s) 

3.4(6) 
2.4(1) 

1.3(7) 
5.3(2) 

3.7(7) 
1.2(3) 

1.5(8) 
1.4(4) 

3.6(8) 
1.8(5) 

d(cm) 
4^(ergcnT 2 s) 

1.0(9) 
8.8(6) 

3.3(9) 
6.0(8) 

1.1(10) 
2.8(10) 

1.8(10) 
7.8(10) 

1.9(10) 
6.3(10) 
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could exist inside the convection zone. We conclude, therefore that Bx and B2, given 
by Equation (2.4.12), must be small. If this is the case then 

Therefore the angular velocity is constant along cylinders. What has been shown is 
the following: / / in the absence of rotation the convection zone is adiabatic, and if 
Equations (2.4.1) and (2.4.2) are good approximations for the radial and latitudinal 
equations of motion, then in the lower half of the convection zone the perturbations in 
the convective flux (produced by differential rotation) are unacceptably large unless the 
angular velocity is constant along cylinders. (Of course, this result holds only if the 
value of the latitudinal differential rotation is not too small in the lower half of the 
convection zone; we have assumed also that / is not a function of 0.) 

Intuitively this result can be seen as follows: assuming that Ar = A0 = 0, by cross 
differentiation of Equations (2.4.6) and (2.4.7) we obtain (g and cp are constants) 

The general solution of this equation is = f(r sin 0). This, of course, is not 
surprising: if Ar = A0 = O then the structure of Equations (2.4.6) and (2.4.7) is the 
same as that of the radial and latitudinal equations of motion of an incompressible 
rotating fluid. It is well known that in this case il must be constant along cylinder 
(Taylor-Proudam theorem). If il is not constant along cylinders then we expect Ar 

and Ae to be large because in the unperturbed, nonrotating state, the superadiabatic 
gradient is 'small': Therefore any small perturbation can nevertheless give rise to large 
perturbations in the superadiabatic gradient. 

It should be stressed that it has not been shown that rotation in cylinders is a 
consequence of the energy and momentum equation. Whether this is indeed the case 
is an important question that remains to be settled. If the meridional motions are 
given by Equations (2.3.7), the problem is then to solve Equations (2.4.1) (2.4.2), the 
azimuthal equation (2.3.3), and the energy Equation (2.2.3). If il(r, 0) is given by 
Equation (2.4.14), then the azimuthal equation of motion (2.3.3) determines the 
meridional velocities. An estimate of these velocities can be obtained from Equation 
(F6) of Appendix VI. If <o2(Rc)= -0 .1 and f(rsin 0) = O, then L / r -40cms _ 1 at 
r = 6.2 x 10 1 0 cm. Let 8& be the perturbation in the energy flux (8& = %&A/(VAT)U 

with Ar and A0 given by Equations (2.4.10) and (2.4.11)). It is readily seen that 

o)2(r) = a)2(Rc)(r/Rc)2; <o0(r) + <o2(r) = constant 
and (we take the constant appearing in Equation (2.4.13) as zero) 

il = il0(l-lco2(Rc)(r/Rc)2 sin2 0). (2.4.14) 

(2.4.13) 

(2.4.15) 

. 4 5 v a l P u 

28 g (2.4.16) 

>0 (2.4.17) 

where Br and Be are the expressions in brackets in Equations (2.4.10) and (2.4.11). If 
Br and Be are not 'small' (Br~Be ~ 1) then, since the pressure is a strongly varying 
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function of r, 
div 8& = -2%vnlpuBr (2.4.18) 

and the energy equation (Equation 2.2.3) becomes 
-UvOlpuBr~wUr<yAT)u = 9UAv. (2.4.19) 

At r = 6x l0 1 0 cm, *>~10 1 3 cm 2 s - 1 and p M ~7.6xKT 2 gcnT 3 . For the left- and 
right-hand sides of Equation (2.4.19) we obtain 10 Br and 0.23 cgs units, respectively 
(we used Ur = 40 cm s _ 1 ) . Therefore, even for values of Ur as large as 40 cms" 1, the 
energy equation appears to favor small values of Br. If Br is small, then rBx and rB2 

must be slowly varying functions of r; we take 

rBx = pRc; rB2 = aRc (2.4.20) 
with a and j8, two constants. It is readily seen that the solutions of Equations (2.4.20) 
are given by 

"(Rc\.t,/1?.2 , v - ( l l a+3 /3 ) Rc /r\2 

« 2 ( r ) = - 3 ( 7 ) + « r / W ; <o0(r)= 
(2.4.21) 

where £ is constant. 
If o>0(r) and <o2(r) are given by Equations (2.4.21) then the energy equation 

reduces to 
8&e/r~&Ur/lv. (2.4.22) 

At r = 6 x 10 1 0 cm, the left- and right-hand side of Equation (2.4.22) are equal to 0.6 
Be and 0.23 cgs units, respectively (Ur = 40 cm s - 1 ) . These quantities are of the same 
order if B0 ~ 1. In the present very crude analysis we have assumed that U • VAT— 
Ur(VAT)u with l / r ~ 4 0 c m s - 1 . It is clear that a much more careful study of this 
problem is needed before we can resolve whether the momentum and energy 
equations indeed favor a constant angular velocity along cylinders. 

For the mixing length / we have taken its unperturbed value; we have neglected 
therefore the latitudinal and radial dependence of the stabilizing effect of rotation on 
convection (cf. Equation 2.3.19). An estimate of the magnitude of this effect is an 
important problem that remains to be solved and it is not known at present if therein 
lies the solution to the heat flux problem. It is appealing, of course, to think that 
differential rotation arises as a way for the convection zone to minimize the constraints 
imposed by rotation on convection and so to maintain a uniform heat flux. 

It is possible, perhaps to give a non-rigorous argument against the existence of 
large A9s inside the convection zone: in the surface layers (d < ~ 3 x 109 km) the 
effect of rotation on turbulent convection becomes negligible and the convective flux 
should be well described by Equation (2.2.1), with / the unperturbed mixing length. 
The values of A9 listed in Table III are small for d < ~ 109 km. The existence of 
larger values of A9 would imply that Equations (2.4.1) and (2.4.2) are not good 
approximations at these depths; therefore, large velocities would have to be present 
in the Sun's surface layers. 

It follows from Table III that in the upper part of the convection zone the 
perturbations in the convective flux are very small even if il is not constant along 
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cylinders. In consequence, if A2F is negligible at a certain depth (d ~ 2 x 104 km, for 
example), the energy equation will be approximately satisfied if ^ = 0. It is of 
interest, therefore, to consider the solution of the equations for o>0(r) and o>2(r) 
(Equations (El) and (E2) of Appendix V) in the case when </r = 0. In Table IV we list 
the values of <o0(r) apd (o2(r) as a function of r in the upper part of the convection zone 
for iff = o, zero stresses at r = R0 and (o2(R0) = -0.189. (For the density a polytropic 
relation with y = 5/3 was used.) 

Assume that differential rotation is generated in the surface layers of the Sun (by 
transport of angular momentum by the Reynolds stresses, for example) and that ASF 
and AT are very small at r = R0; it would be of interest to know the dependence of fl 
with depth if the momentum and energy equations are solved with boundary 
conditions expressing that A9 and AT are small at the surface and that <o2(r) -
—0.189 at r = JR0. If differential rotation is indeed a surface phenomenon, we expect 
that fl will behave as follows: from Table IV (s = 1), |o>2(r)| should first increase 
inward; with increasing depth, meridional motions will be driven by the pole-equator 
differences in flux that will appear (cf. Table III). These meridional motions should 
be such as to decrease <o2(r) and make it eventually vanish. 

In any theory of the Sun's differential rotation, the value of il at the surface should, 
of course, agree with the observed differential rotation of the Sun. Furthermore, it is 
well known that theories of the solar cycle (Parker, 1955; Steenbeck and Krause, 
1969; Leighton, 1969; Parker, 1971; Deinzer and Stix, 1971; Roberts and Stix, 
1972; Lerche and Parker, 1972; Yoshimura, 1972, 1975a, b; Kohler, 1973) are 
sensitive to the values of dO/dO and to dfl/dr in particular. The dependence of fl on 
depth and latitude must therefore satisfy another important constraint: this depen­
dence must be such that theories of the solar cycle reproduce the observed properties 
of the solar activity cycle. It could be thought that an angular velocity which 
decreased inward (as in the case if fl is constant along cylinders) is necessarily in 
contradiction to theories of the solar cycle. However this is not so. To ensure that the 
solar dynamo displays the correct butterfly diagram (i.e., the mean toroidal field 
migrates towards the equator) the product adfl/dr must be negative (Stix, 1974). 
According to Yoshimura (1975a), the a-term (due to the global convection) changes 
sign in the lower part of the convection zone and is negative. Therefore rotation in 
cylinders could be compatible with Yoshimura's model of the solar cycle (Yoshimura, 
19756) if the observed toroidal magnetic field is generated in the lower part of the 
convection zone, as has recently been argued by Parker (1975). As discussed more 
fully by Stix (1976a, 1976b), however, the observations show that there is a phase 
relation between the toroidal and poloidal magnetic fields which could not be 
satisfied if fl decreases inward. 

3. Anisotropic Viscosity and Normal Modes of Vibration 

3.1 ANISOTROPIC VISCOSITY 

Since gravity in the solar convection zone is a preferred direction, there is no reason 
to expect that the turbulent viscosity in the directions parallel and perpendicular to 
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gravity will be the same. If the viscosity is anisotropic, the convection zone cannot 
rotate uniformly (Bierman, 1951); this theory of differential rotation has been 
developed by Kippenhahn (1963), Cocke (1967), Kohler (1970), Sakurai (1966), 
Iroshnikov (1969), Rudiger (1974), (1976), Roxburgh (1974), and Durney (1974a). 
There can be little doubt about the soundness of the basic idea of this theory of 
differential rotation: the turbulent viscosity should indeed be anisotropic. The 
question that remains to be answered is how important this anisotropy is in 
generating the Sun's differential rotation. 

The ratio of the kinematic turbulent viscosity coefficients in the directions perpen­
dicular and parallel to gravity (yj v§ will be assumed to be a constant, independent 
of depth and latitude: therefore (Kippenhahn, 1963) veB = vH> = vL = sv\\ = svn = sv. 

We take the meridional motions and the angular velocity to be given by Equations 
(2.3.9) and (2.3.17), respectively; the equations for <o0(r) and o>2(r) are then 
Equations ( E l ) , (E2), and (E3) of Appendix V . In the large viscosity limit, 
Equation (E2) is satisfied if o>2 = 0, and Equation ( E l ) gives then (pr4o>0)' + 
2 ( l - s ) ( r 3 p ( a > 0 + l ) ) ' = 0, or pr\<o'0+2(1-s)(l + o>0)/r) = constant. If the azimuthal 
stress, Tr4,, vanishes at r = R0, for example, then it is readily seen from Equation 
(C2c) of Appendix III that <yo + 2 ( l - s ) ( l + a>o)A must also vanish. Therefore, 

a > 0 = a>o(i?o)(^o/r)2 ( 1" s ). (3.1.1) 
This rotation law replaces solid rotation when s ̂  1. 

To understand some general properties concerning the behavior of (o0(r) and 
o>2(r), we write Equations ( E l ) and (E3) of Appendix V in the following form: 

©i + 2(l-s)(l+a>o)/r = -?- f \<o2spr2+^- / ( r 2 ( l + a>0 + 2a>2/5))l dr r p J L 3v dr J 

2 ^ ( l + a > 0 - a > 2 / 5 ) , (3.1.2) 
3vrp 

0 I / r2p[<of

2 + 2(1 - s)<o2/r - 5(a>0 + 2(1 - + *>0)/r)] 2Hv = — —— (3.1.3) 
H - a > 0 ~ 5a>2/7 

where we have assumed that the azimuthal stress, and the radial velocities vanish 
at r = R0. If G>o + 2a>2/5 is a slowly varying function of r, that is, if 

- f r 2 (c»o+2W5) |<- (3.1.4) dr I r 

then the term in </r in the integral of Equation (3.1.2) reduces to 2n///3v. Neglecting 
o)0 and o>2/5 with respect to one, Equation (3.1.2) becomes 

r 

a>o + 2 ( l - s ) ( l + a>0)/r = — | p r 2 [ a > 2 s + 2n///3vpr2]dr- 2^/3vr2p 

(3.1.5) 

If the azimuthal stresses and radial velocities vanish at r = Rc, then the integral in 
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Equation (3.1.5) must be zero for r = Rc. Equation (3.1.3) shows that if (o0 and <o2 are 
slowly varying functions of r, the same is true of l^/vpr2. The bracketed quantity in 
the integral of Equation (3.1.5) is then also a slowly varying function of r, and must 
therefore approximately vanish if the integral vanishes. This gives an estimate of o>2. 

v * - - ^ - . (3.1.6) 3vspr 

For <o2 = —0.2 and s = 1, we obtain i///r2p —10 cm s"1, in excellent agreement with 
previous calculations (cf. Figure 2a of Durney, 1974a). Equation (3.1.6) clearly 
shows that if o>2 < 0, then ^ has to be larger than zero: the meridional motions must 
rise at the poles and sink at the equator. 

To proceed further we need an estimate of the integral (l/p)\Rop dr which 
appears in Equation (3.1.5). For a polytrope, and with the exception of a thin layer at 
the top, we have (1 /p)JR 0 p dr = (y - l)/y(r - jR 0 ) . Therefore, the term 
(2/r 4p)J/? 0 pr2(*)2s dr in Equation (3.1.5) is of the order of 4s|a>2|OR0-r)/5r2< 
4s\<o2\(R0-Rc)/5r2~4s\w2\/25r (where we have taken y = 5/3). Since the integral 
in Equation (3.1.5) must vanish for r = Rc, we expect its value to be smaller than 
4s|o>2|25r. The last term of Equation (3.1.5) on the other hand, is of the order of 
\(o2\s/r. This suggests neglecting the integral in Equation (3.1.5) which then becomes 

» o + 2( l -s ) ( l + a>0)/r = -2it//3vr2p. (3.1.7) 

The integrated version of Equation (E3) in Appendix V then gives 

<o2 + 2 ( l - s W r = -4iA/3w 2p. (3.1.8) 

for s = 1 and for a typical value of i/r given by Equation (3.1.6), (o0(r) and (o2(r) 
behave very much as in Figures 6a and 6b; in particular co2(r) must increase inward 
since i// > 0, that is, the latitudinal variations of the angular velocity decrease with 
depth. 

If differential rotation is generated by an anisotropy in the turbulence, it is well 
known that s > 1 (s < 1) results in a fast (slow) rotating equator (Kippenhahn, 1963). 
If s > 1 the basic solution, in the limit of large viscosity, decreases inward (cf. 
Equation (3.1.1)). If s = 1, Figure 6a or Equation (3.1.7) shows that <o'o< 1 (since ^ 
has to be larger than zero); therefore <o0 increases inward. The behavior of <o0(r) is 
important for theories of the solar dynamo. 

It was stated in Section (1.1) that Stenflo's interpretation of the angular velocities 
plotted in Figure 1 was not without difficulties. Following Stenflo, we accept that the 
three curves labeled 'sign of longitudinal magnetic field,' 'longitudinal magnetic field' 
and 'sunspots' in Figure 1 give an indication of the Sun's angular velocity at different 
depth in the convection zone. 

In relation to differential rotation, we have come upon the fact in previous sections 
(2.3 and 2.4) that in the solar convection zone there appears to be two regions where 
different approximations hold: the surface layers and the lower part of the convec­
tion zone. This provides a natural interpretation of the two sets of curves in Figure 1 : 
the curve labeled 'Doppler shifts' (set 1) and the other three curves (set 2) referring to 
the magnetized plasma could give an indication of the Sun's angular velocity in these 
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two regions. If this is the case, a striking feature of the Sun's angular velocity in the 
deep layers of the convection zone is the constant angular velocity at the equator. It is 
of interest to note that this behavior is predicted by the approximate Equations 
(3.1.7) and (3.1.8) if 5 = 1: the angular velocity at the equator is given by 12 = 
n0(l + <oo(r)-<D2(r)/2); therefore, dn/dr = n0(<Do(r)-(o2(r)/2) = 0 in virtue of 
Equations (3.1.7) and (3.1.8) (s = 1). Furthermore Table IV shows that if s = 1 and 
if/ = 0 the angular velocity at the equator is also very approximately constant. (In 
Table IV, the full equations for <o0(r) and <o2(r) were solved, i.e. Equations (El) and 
(E2) of Appendix V.) 

According to Parker (1975), the toroidal magnetic field associated with the solar 
activity cycle is generated in the lower part of the convection zone. It appears natural, 
therefore, to assume that in the three curves of 'set 2' in Figure 1, the larger is the 
magnetic field, the deeper in the convection zone is this field rooted. This would 
imply, however, that differential rotation (|G>2(r)|) increases with depth and such 
behavior of <o2(r) is very difficult to understand. It is certainly in disagreement with 13 
being constant along cylinders. Figure 1 shows also that the angular velocity of the 
magnetized plasma is larger than the photospheric angular velocity. If s = 0.8 and 
i/f = 0, the angular velocity at the equator and |o>2(r)| both increase inward (cf. Table 
IV). This solution is, however, unlikely to be valid outside the surface layers. 
Therefore, there could indeed be a region beneath the solar surface with larger 
equatorial angular velocity and differential rotation than at r = R0. That this region 
could extend down to the lower part of the convection zone appears Very difficult to 
understand. 

Kohler (1970) has solved the momentum equations with anisotropic viscosity and 
constant density. For v = 4x 1 0 1 2 c m 2 s - 1 the angular velocity is constant along 
cylinders as a consequence of the Taylor-Proudman theorem. The energy equation 
(and it is clear from previous sections that this equation is the source of all difficulties) 
has, however, not been included in theories of differential rotation based on an 
anisotropic turbulent viscosity. 

3.2. NORMAL MODES OF VIBRATION 

As stated in Section 1.6, evidence has been accumulating for the existence of normal 
mode of vibrations of the entire Sun. It is at present too early to judge the impact that 
their existence will have on theories of the large-scale circulation of the solar 
convection zone. This impact could be of great importance. 

Radiative and viscous damping of these modes occurs rather close to the surface; 
they provide, therefore, a mechanism for a rapid transmission of energy directly from 
the Sun's core to the surface. Recently Hill et al. (1975) have suggested that a 
non-negligible fraction of the solar energy flux could be carried by these normal 
modes. 

Theoretical studies of the Sun's normal mode of vibrations in view of explaining 
the rigid rotation of magnetic features and the Sun's differential rotation have been 
carried out by Wolff (1974a, b). According to Wolff the Sun's differential rotation 
could be generated as follows: under the influence of nonlinear coupling mechan­
isms, modes with the most similar rotation rates should lock together and rotate as a 
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single entity (designated by L hereafter). The power contained in the set of normal 
modes (L) is not distributed uniformly over the solar surface but concentrated mainly 
into regions running diagonally across the surface from pole to pole in a V-shaped 
pattern (cf. Figure 1 of Wolff, 1974b). The dissipation of this power in the surface 
layers of the sun drives large-scale flows which could then generate the observed 
solar differential rotation. 

Even if the explanation of the Sun's differential rotation is not the one suggested by 
Wolff, observational and theoretical work on the Sun's normal mode of vibrations 
could be of importance for the understanding of the solar differential rotation. It is 
obvious that a mechanism coupling the surface to inner regions of the Sun (which 
could rotate with different angular velocities) must not be overlooked. 

This paper is concerned mainly with theories of the Sun's differential rotation. The 
very important problem of the solar inner rotation will be discussed only briefly; in 
fact, it may not be possible to study both problems independently. 

The observational evidence which has been summarized in Sections (1.7)-(1.9), 
indicates that all stars arrive at the main sequence (t = 0) with large angular velocities 
(an angular velocity given by the line (3W)2/3 of Figure 3 would perhaps be the most 
reasonable assumption). Whereas stars more massive than ~F6 do not appear to lose 
much angular momentum during their stay in the main sequence, the evolution of 
stars less massive than ~F6 is quite different: at t = 0 they are rapid rotators and they 
must have rather large magnetic fields since they show strong Ca II emission (in the 
Sun Ca II emission is an indication of strong magnetic fields). Both the angular 
velocity and the magnetic field (Ca II emission) decrease with time. It is well known 
that stars less massive than ~F6 have appreciable surface convection zones; it 
appears reasonable, therefore, to assume that the magnetic field is generated by a 
dynamo action (as is the case for the Sun). All these observations can then be 
understood by invoking the angular momentum loss (due to the existence of stellar 
winds) experienced by stars with convection zones (Schatzman, 1962). This angular 
momentum loss slows down the star; as a consequence the dynamo action becomes 
less efficient and the magnetic field decreases. Skumanich (1972) has found that the 
time dependence of both fl and B are well described by B~t~1/2,{l^t~1/2 (for 
values of t that are not too small; t = 0 corresponds to the arrival of the star at the 
main sequence). Estimates of the angular momentum loss (Dicke, 1964; Modisette, 
1967; Weber and Davis, 1967; Alfonso-Faus, 1967) show that 

where AJ/At and AM/At are the angular momentum and mass loss, r A is Alfvenic 
distance, and Os is the surface angular velocity. From the definition of 
^/JiB\/Airp/Jj\ — 1) we obtain JB A / A / Ua4TTPA UArA — 1; since the mass loss is 
given by AM/At = - 47rpA UAr A , it is readily seen that Equation (4.1) can be written 

4. The Inner Rotation of the Sun 

AJ/At = insr2

AAM/At (4.1) 

AJ/At=-jns(B0R2

0)2/UA (4.2) 
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where B0 is the surface magnetic field and JR0 is the radius of the star (B0Ro = BArX). 
Equation (4.2) shows that in the first approximation the angular momentum loss is 
proportional to ilsBo\ even for stars with such small magnetic fields as the Sun, r A is 
much farther than the critical point and we can replace UA by [/«>. In other words, in 
Equation (4.2), UA is not a sensitive function of the magnetic field. (The stellar wind 
velocities could change with the age of the star, but again we expect Os and BQ in 
Equation (4.2) to be much stronger functions of t than UA.) The magnetic field is 
generated by a dynamo action and is therefore itself a function of fls (cf. Spiegel, 
1968). There is both observational (Skumanich, 1972) and theoretical (Roberts, 
1974) evidence to suggest that B0ocQs. Equation (4.2) can then be written 

dJ/dt=-aOs

3 (4.3) 
where a can be determined from observations. A convenient way of expressing the 
present-day torque is in terms of r 0 = - A>/(d A)/df), the e-folding time for slowing 
down the Sun rotating rigidly (Dicke, 1972; (20 is the present surface angular velocity 
of the Sun). Observations show that present-day torque is such that r 0 ~ 10 1 0 yr. If we 
assume that the sun rotates rigidly, Equation (4.3) becomes 

(If the Sun rotates rigidly, J is proportional to fls, Equation (4.3) niust therefore be of 
the type dOs/dt = -ftfll with /? a constant; for the present-day Sun, Equation (4.4) 
gives r 0 = -{20/(di20/dt) and this determines j8). The solution of Equation (4.4) is 

ns = ns(t=o)/(i+2t(ns(t=o)/n0)2/T0)1/2. (4.5) 

It is reasonable to assume that the Sun arrived at the main sequence rotating with 
an angular velocity given by the (3K)2/3 line of Figure 3, that is (Durney, 1972), 
&s(t = 0) = 65 /20. In a time larger than r 0/(2 x 652) ~ 106 yr, Os as given by Equation 
(4.5) reduces to 

a = n o r ^ r v 2 ( 4 6 ) 

which agrees well with the observational law found by Skumanich (1972). Further­
more, for the present-day Sun, t = 5 x 109 yr = T 0 /2 , Equation (4.6) gives fls = /20. 
For t = 3 x 10 yr and t = 4 x 108 yr (the age of the Pleiades and Hyades) Equation 
(4.6) gives fls = 13 O0 and Os = 3.5 /20, respectively. The predicted angular velocity 
for the Hyades is in good agreement with observations (Kraft, 1967), but the 
predicted angular velocity for the Pleiades is somewhat high. In all, the predictions of 
such a simple equation as Equation (4.4) are surprising. The angular velocity at t = 0 is 
not too important, since the angular momentum loss is initially very fast. In fact 
Equation (4.6) does not contain any information about the angular velocity at t = 0; 
according to this equation, the e-folding time for the slowing down of the Sun is given 
by 

rs = ns/(dns/dt) = 2t. (4.7) 
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Could the Sun have slowed down uniformly (due to the existence of a magnetic 
field, for example)? The observations of the SCLERA group (Hill et al, 1974; Hill 
and Stebbins, 1975a, b) indicate that the Sun has no appreciable quadrupole 
moment; they lend some support, therefore, for a uniform solar angular velocity. 
(The quadrupole moment is nevertheless a sensitive function of il (cf. Roxburgh, 
1964) and the Sun's core could be rotating quite fast (—1 week) with the Sun still 
showing a small quadrupole moment.) However, there is one observation, namely 
the Li depletion at the surface of solar type stars (cf. Section 1.9), that could be in 
contradiction with a uniform angular velocity; Li depletion allows for an appealing 
explanation if the Sun's interior is rotating fast: the angular velocity increases inward 
and becomes unstable (Goldreich and Schubert, 1967; Fricke, 1968). This instability 
gives rise to a mild turbulence that mixes the Sun's matter down to ~0.63 R0, where 
Li is destroyed (cf. Dicke, 1971; 1972). 

The simplest explanation of Li depletion would certainly be in terms of the 
overshooting of the convective motions into the radiative region. If this were the case 
the observations concerning the Li depletion would be in agreement with a uniform 
angular velocity. Overshooting, which is larger than earlier estimates, appears to be a 
complex phenomenon requiring more sophisticated theories of the turbulent energy 
transport than those generally used in calculating stellar convection zones (cf. Shaviv 
and Salpeter, 1973). It must be stressed that at present no theory exists which 
explains the Li depletion in terms of convective overshooting. 

However, even if the Sun is rotating uniformly, turbulence could be generated in 
the upper part of the radiative region by the latitudinal variations of the angular 
velocity. In the convection zone the variations with r and 0 of il are determined by 
processes that have no parallel in the radiative region. Assume, for example, that il is 
constant along cylinders in the convection zone. If Equations (2.4.1) and (2.4.2) are 
satisfied, the dp/80 term is balanced mainly by Coriolis forces. As stressed by 
Gierasch (1974), rotation cannot be uniform for r < Rc since then, as a consequence 
of dp/80, an unbalanced radial gradient in the pressure would appear. Differential 
rotation must therefore penetrate into the radiative region. Because of the low viscosity 
of this region, instabilities of the differential rotation are expected to play an 
important role in determining the angular velocity law. The study of these 
instabilities is a complex subject (cf. Strittmatter, 1969; Spiegel and Zahn, 1970; 
Fricke and Kippenhahn, 1970; Zahn, 1974) and here only one will be considered, 
namely a shear instability (cf. Zahn, 1975) which arises for large values of the 
Reynolds number. If Ail is the latitudinal differential rotation (Ail = ileq - il^ for 
a given r), then the Reynolds number corresponding to this differential rotation is 
defined by 0te = r2Ail/v. For Ail ~ 0.1 il0 and for typical values of v in the radiative 
region, 3le is very large, and even a weak differential rotation should be unstable. It is 
instructive to compare the growth rates of these instabilities (cf. Zahn, 1975) with the 
slowing down time of the Sun as given by Equation (4.7); r s = 2 t. Let L be the 
smallest scale which is unstable in a differential rotation Ail, then L2Ail/v = l t ~ 
103. The instability will grow with an e-folding time, L2/v, ~ 500 yr (much smaller 
than 2 t) if Ail = 10~7 rad s"1. 

The penetration of the differential rotation into the radiative region can be 
visualized as follows: shear instabilities tend to smooth out AH/A0, giving rise to 
unbalanced pressure forces which drive meridional motions; Ail will decrease 
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inward, and at a certain r (rx), Ail will become negligible. It is unknown at present if 
this rx is small enough to explain the Li burning. 

If, instead of a shear instability, the Golreich-Schubert and Fricke instability is 
important, then the radiative region would tend to rotate in cylinders but with the 
angular velocity increasing inwards. Again instabilities will occur ki the upper part of 
the radiative region because of the different rotation laws in this region and in the 
convection zone where rotation could be constant along cylinders but with the 
angular velocity decreasing inwards. 

If the solar angular velocity is not uniform (and in particular if no magnetic fields 
are present) the solar spin-down problem is of great complexity. The most sophisti­
cated treatment at present is that of Sakurai (1975). The reader is referred to this 
paper and to the review article by Benton and Clark (1974) for further references on 
this subject. 

5. Discussion 

It is clear that we are not yet certain of the real origin of the Sun's differential 
rotation; in fact we do not even know whether it can be completely explained within 
the framework of the equations commonly used in this subject: assume, for example, 
that differential rotation is generated as a way for the convection zone to minimize 
the constraints imposed by rotation on convection; this could be achieved by 
variations in depth and latitude of certain physical parameters (e.g., the turbulent 
thermal diffusivity and viscosity) that are taken as constants. In fact, it is difficult to 
avoid the feeling that some of the theories of differential rotation considered in this 
paper suffer from this limitation and that the action of rotation on the turbulence 
cannot be ignored. It would be very surprising, however, if the basic mechanism 
giving rise to differential rotation were to be found entirely outside the theories 
discussed in this paper. Considerable importance has been given here to theories of 
differential rotation based on the interaction of rotation with convection. These 
theories were discussed on the assumption that the solar convection consists mainly 
of a turbulent convection and a large-scale convection. The dynamics of the 
convection zone could, of course, be far more complex than this. 

On observation in particular, namely, the smallness of the pole-equator difference 
in flux, A3?, has placed very severe restrictions on theories of differential rotation. It is 
readily seen that this serious difficulty is not necessarily associated with the use of the 
Boussinesq approximation: even assuming that the perturbations of the pressure, 
density, and temperature introduced by differential rotation or a meridional circula­
tion are small in relation to the unperturbed values of p, p and T, the perturbation of 
the superadiabatic gradient, VAT, can be large since VAT is very small itself, in the 
lower part of the convection zone. It appears, therefore, that a deep penetration of 
the differential rotation inside the convection zone would imply a major perturbation 
in the thermodynamics of the convection zone. 

Three problems emerge as being of special importance for a further understanding 
of the Sun's differential rotation: 

(1) In the lower part of the convection zone turbulent convection interacts with 
rotation. An estimate of the magnitude of the latitudinal and radial dependence of 
this interaction would be of great interest. 
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(2) The strength and structure of the large-scale convection in a compressible 
medium are unknown. In other words, how much heat flux does the large-scale 
convection carry and how do the magnitudes of the velocities change with depth? 
Because of their large scale, the action of rotation on these convective motions will be 
especially important. 

(3) Dynamo theories of the solar cycle suggest that differential rotation is not a 
surface phenomenon. At present it is not understood how large pole-equator 
differences in the angular velocity {Ail) can coexist in the lower part of the 
convection zone with small pole-equator differences in flux {ASP). Of great interest 
would be an estimate of the typical value of ASF (at r ~ jR c) that can be 'wiped out' in 
the convection zone {ASF very small at r = R0). However, even if significant values of 
ASF inside the convection zone could disappear towards the surface, this would not 
necessarily mean that these A9s are present in the Sun. It is here that the lack of 
observations of what happens inside the convection zone is particularly felt: it is 
possible that theories of differential rotation could be developed which agree with 
the present observations at the solar surface, but which predict significant A9s 
inside the convection zone. It is also conceivable that the convection zone is able to 
minimize the constraints imposed by rotation on convection in a way that we do not 
understand at present and that the main effect of this constraint is the generation of a 
differential rotation with small A9s everywhere. 

Other points where understanding is lacking and particularly needed have already 
been discussed in the text; some of them will be summarized here also. 

(a) It appears that a deep penetration of differential rotation below the solar 
surface would entail a major perturbation of the convection zone. Can differential 
rotation be large only in the upper part and negligible in the lower part of the 
convection zone? This would have important consequences for theories of the solar 
dynamo. In this context it would be of interest to know the dependence of il and ASF 
with depth if the momentum and energy equations are solved with a very small A9 
and AT atr = R0 and the observed value of o>2(r) (= -0.189) at the surface. 

(b) If differential rotation penetrates deeply into the convection zone, then it must 
also penetrate into the radiative region; it is now known whether this could be of 
importance in theories of Lithium depletion in solar-type stars. The influence that a 
rapidly rotating radiative core (with a period of a week, for example) could have on 
the conditions at the base of the convection zone is not known either. 

Appendix I 

In a system of coordinates rotating with an angular velocity il0> the basic equations 
can be written 

- - V x U - V x V2U - V x g(r) Tr - ^{w • V)U = - - V x (U • V)U, 
or dt a 

(Ala) 

( ^ - V 2 ) r = - U - V T , (Alb) 

divU = 0 (Ale) 
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In spherical coordinates, the components of P(p™Yj?) and I(f£Y£) are given by 

( A 3 a ) 

( f ) ( L + i ) L w _ l aPr ayr 

and 

^ l dpTdYT 

rsinfl dr d<f> 

rsin0 d</>' r dO (A3b) 

The poloidal and toroidal vectors defined by Equation (A3) form a complete 
orthogonal set for solenoidal vector fields; p™(r, 0 a n c * 0 a r e the scalars which, 
together with the spherical harmonic Y™(0, <£), define a basic poloidal and toroidal 
vector (Chandrasekhar, 1961, Appendix III). 

The dimensionless temperature has been defined in Equation (2.1.3); (9(r, 0, <£, t) 
is expanded in spherical harmonics. 

S(r, 0, t)= I 0?(r, t)Y£(0, <f>). (A4) 
L,m 

The spherical harmonics Y™(0, <t>) appearing in Equations (A3) and (A4) are 
assumed to be normalized according to Condon and Shortley (1951). To obtain the 
equations for p™, f ™, @™, and ̂  we substitute expression (A2) for U, and expressions 
(2.1.3) and (A4) for Tinto Equations (Al), multiply these equations by unit poloidal 
and toroidal vectors and integrate over the angle coordinates. Neglecting the 
fluctuating self-interactions (i.e. the right-hand side of Equations (Al)), we obtain 
(Durney, 1970) 

( = - £ ~ £ ) . ~ £ T < t + » * « ^ - <A5a> 

cr dt (L + 1)L 

= -mlgl(r)0T+^[L-1A(L, m)(-L - 1)(L - 2 ) T ^ - i 

- ( L + 1) _ 1A(L + 1, m)(L + 2)(L+3)T?+1 

-L~'A(L, m)(L-l)rTT-i~(L + l)~lA(L +1, m) 

•(L + 2)rT?+x\, ( A 5 c ) 

where U, T, and g(r) are dimensionless variables defined by Equation (2.1.1), a> is a 
unit vector in the direction of the axis of rotation, and 38^ % u and a have been 
defined following Equations (2.1.5)-(2.1.8). 

Wfe expand the velocity field in basic poloidal and toroidal vectors: 
U= Z {PLPZU t)YX0, *)]+*KXr, t)Y?(0, <*>)]}. (A2) 

L , in 
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a dt (L + \)L ~ L L 

= - £ , [ L - V 2 A ( L , m){L-\fP^-{.L + \T\-2A{L + \, m) 
•(L+2)2P?+l 

~(rL)~1A(L, m)(L-\)PT-x~[r(L + 1)] _ 1A(L +1 , m) 
• ( L + 2 ) P & i ] , (A5d) 

where 
^ d 2 2 d (L + 1)L „ d 2 4 d 2 - (L + l)L 

dr r dr r dr r dr r 

P? = P?/r; T?=t?/r2; T'? = ^ ; P'™=&' ( A 6 ) 

A(L, m) = [(L + w)(L - m)/(2L + 1)(2L - 1 ) ] 1 / 2 . 

The asterisk (cf. Equation (A5a)) defines the complex conjugate of @™, r\ ( = J R C / # 0 ) 

is the ratio between the inner and outer radius of the spherical shell and gi(r) = 
g(r)/r. Free-surface boundary conditions at r = 1, for example, imply P^1 = Tl1 = 0 
(r = 1). The spherical harmonics, as defined by Condon and Shortley (1951), satisfy 
the following relation 

Yim(6,<l>) = (-l)mYf(d,<t>) (A7) 
From the expansions (A2) and (A4) it follows that the velocity and temperature fields 
will be real if 

PL

m=(- DmPf; rr=(- i ) m r f ; @im=(- i ) m e f (A8) 
It is readily seen that these relations are a consequence of Equations (A5). 

If Equations (A5) are integrated in time, the quantities P™> Tl, 0?, and ip which 
determine the velocity and temperature field do not grow indefinitely. This is due to 
the non-linear term, -[(L + \)L/r\P^(d^/dr), of Equation (A5b): the interaction of 
the velocity field with di/z/dr (the distortion in the mean temperature gradient 
produced by convection) stabilizes the fluctuating component of the temperature 
field, ®£\ In relation to its great simplicity, the mean-field approximation can be 
considered to be very successful (cf. Herring, 1963, 1964, 1969; Durney, 1968a). 

In Equations (A5) we have neglected the fluctuating self-interactions. The expres­
sions of U • VU and JJ V0 in terms of the defining scalars of the velocity and 
temperature fields are complex, but they have now been worked out by Young 
(1974). 

For m # 0, the solutions of Equations (A5) are time-dependent (cf. Busse, 1970, 
1973; Durney, 1970; Yoshimura and Kato, 1971). This is a general property of 
non-radial motions of rotating spheres or spherical shells (cf., for example, Durney 
and Skumarich, 1968, for the case of marginally unstable, non-radial oscillations of a 
polytrope). If we multiply Equation (A5c) by 2L9 use Equation (A5b) to express 
- 3 ? i g i ® i @ L in terms of x RHS(A5b) and - iaj^gi0?(d/dt = *o>), and finally 
replace -@lig\0L, in this last expression, by — S|P™ (note that Equation (A5c) 
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reduces to @txgi@™=3)2

LP™ in the case of no rotation), we obtain 

= ^ig(r) x RHS(A5b) + 0(£ 2 ) . 

The first term in this equation vanishes if a)d = 2m/20/(L + l)L(l + cr), which is 
Equation (3.8) of Busse (1970); <od in this last expression is the dimensional value of 
o>. (The reader is referred to Busse, 1973 and Heard and Veronis, 1973 for consistent 
solutions of the Boussinesq equations for convection, in the case of small rotation, 
and small convective amplitudes.) For m = L = 10, corresponding to the most 
unstable mode (see below) of a rotating shell of thickness d = 0.2 i? 0, the value of (od 

equals O0/ll (for or = 1). These convective waves, which propagate in the opposite 
sense of rotation (i.e., are retrograde) for small Taylor numbers, become prograde 
for large values of S£i (Gilman, 1975, Figures 4 and 5). 

For values of and 3^ that are not very large, the values of L and m 
corresponding to the most unstable modes are mainly determined, respectively, by 
the thickness of the spherical shell (L = 10 for 17 = 0 . 8 ; Durney, 1968a) and by 
rotation (m=L) (Busse, 1970; Durney, 1970; Yoshimura and Kato, 1971). The 
reader is referred to Figures 1 and 2 of Gilman (1975) for a plot (for different values 
of %x) of the critical Rayleigh number versus m. 

According to Equations (A5), rotation couples the different values of L in the form 
P l - T ^ + I — JPL+2"""T£+ 3- ••• =Af£. In the presence of rotation this coupling 
scheme defines the mode Af£ ( P £ has been written in bold face to indicate that P £ is 
the largest poloidal mode). The above statement that m = L is the most unstable 
mode means, therefore, that the mode M L + 2 = P L ~ ^ L + I ~ P l + 2 - T L + 3 • • •, for 
example, has a larger critical Rayleigh number than the mode Af£. The fluctuating 
self-interactions couple modes with different values of m, as well as L (cf. Busse, 
1973; Heard and Veronis, 1973; Gilman, 1975). 

We intend here to estimate, in an approximate way, the right-hand side of Equations 
(2.1.6) and (2.1.8) to gain a very crude understanding of the relative magnitude of the 
pole-equator difference in flux and latitudinal differential rotation. 

The dimensionless values of r will be assumed to be of the order unity, numerical 
factors will generally be ignored, and one will be neglected with respect to L. We 
define KT(0) by Y£ = (l/V2^) eim*K?(0), and perform the calculations for the 
mode M™. Equation (A3a) then gives, for the convective velocities: 

Appendix II 

(Bib) 

(Bla) 

T(r)mK?(6) sin m<£/£sin0 (Blc) 
where £ = 1 - 1 7 is the dimensionless thickness of the spherical shell, and dP^/dr has 
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been set equal to P£/£ The thinner the spherical shell is, the larger becomes the 
value of L of the most unstable mode, i.e., £L ~ 1. In what follows, we assume that 
the values of £ and L are related in this way. 

An estimate of T™+i can be obtained from Equation (A5d), which we simplify to 

DL+l7T+1 ~ ( d 2 / d r 2 - L 2 / r 2 ) T l + 1 ~ % X L A ( L +1 , m)P?. 

Therefore, 7T + i~£iP?A(L + l, m)/L. (The equation (d2/dr2-L2/r2)T?+1 = 
sin (777/£) can be solved by Green's functions and it is readily seen that T™+i ~ 1/L2). 
With the help of Equation (A3b) we obtain, for the toroidal velocities, 

U$~ T?+lm sin m<f>KZ+l(0)/sin 0 

~ mPT£xA(L +1 , m) sin m<f>K?+l(0)/L sin 0 

U^-PT%A(L +1 , m) cos m<f> (dK^i/dO)/L. 

The integrals appearing in the right-hand side of Equation (2.1.6) are 

h - j ; $ sm2er3(U?U?> dO ; 

J 2 = J c o s 0 s i n 6(Uc

eU$d0; 

I3 = J cos (9 sin 0(U%U$dO. 

(a) (IfrUl) = L%(P?)2A(L +1 , m)K?(0) 8K?+1/d0. With the help of Equation 
(19) of Condon and Shortley (1951) (CS), we can express dKZ+JdO in terms of 

and with the help of their formula (21) we can express sin OK™{0) in terms 
of KZ+liS). We obtain for the integral I u 

h~L2%i(P™A{L +1 , m))2/£ (B2a) 

(b) (UlU^^AiL^hmXP^dKT/dOXdK^i/deyiL. with the help of 
Equations (19) and (21) of CS, we express dK?/d0 and dK?+l/dO in terms of 
K™~1 and K^L respectively, and cos OK?"1 in terms of K^+l We obtain for I2 

I2~%i(L-m+2)(P?A(L +1 , m))2/£ (B2b) 

(c) (U^U^-m^iP^AiL^hm^^iid) K?(0)/£L sin2 0; we express 
cos 0Kl+i(0) in terms of K™(0) (cf. Equation (21) of CS) and obtain 

h ~ m^iPTAiL +1 , m))2/£L (B2c) 

We discuss now whether the angular momentum transport given by the integrals 
11,12, and J 3 accelerates or decelerates the equatorial regions. 

(a') If m = L, then L ^ ~ L 2 P L s i n L 0 c o s L 4 > and ire~L(dPJdr) sinL~l 0 
cos0cosL<£. Near the outer surface since t/^ = 0 for r = R0. This 
inequality fails to be satisfied only for values of 0 very close to 7r/2. Also if, for 
example, l />0, then U%< 0 (> 0) for 0 < T T / 2 ( >TT /2). It is readily seen that in both 
cases the action of Coriolis forces on the convective velocities (which, with the 
exception of a small region around the equator, are mainly latitudinal near the outer 
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surface) generates a U% which is positive. Therefore, with the exception of the above 
region, the term (U^Ufy transports angular momentum outwards (for r ~ R0), since 
an upgoing particle carries a U$> 0 «l/£C/£> > 0). At the equator and just below the 
surface, (Uc

rU$) is small in absolute value, and negative (since for 0 = TT/2, UC

0=0, 
and a radially upgoing particle acquires a negative Ufy. At a small latitude, (Uglify 
becomes positive, reaches a maximum at, say, 0 = 0 m and vanishes at the poles. 
Therefore, if the vertical transport of angular momentum is important, one would 
expect the surface angular velocity to be maximum at 0 ~ 0m and not at the equator 
(cf. Gilman, 1972, Figure 10). 

The contribution of (U^U^ to T3(r) can be understood as follows: we approxi­
mate Equation (2.1.6) by - 1 0 T 3(r)/r 2 = RHS(2.1.6) (dT3(r)/dr = 0 at r = R0). The 
equator rotates faster than the poles if T 3(r)<0 (cf. Equation (2.1.2)). Therefore, 
positive contributions to RHS (2.1.6) give rise to equatorial acceleration. Equation 
(2.1.6) shows that if 

J (5 cos2 0 - l)^(r3<U%Uc

r)) d0>0, 

then the vertical transport of angular momentum contributes negatively to T3(R0). 
(b') If lTr> 0, then in the outer layers Uc

0< 0 and, as seen above, f/£> 0 (0 ~ ir/2) 
excepted). Therefore, the term is negative, and this term is expected to give 
rise to equatorial deceleration T3(R0) > 0. From Equation (B2b) it follows that I2 is 
smallest (compared with h and J3) when m = L. 

(c') If U%> 0, then the Coriolis forces generate a U0 that is also positive. The term 
(U^Uf) transports angular momentum towards the equator (J3 contributes to a 
negative T3(R0)). From Equation (B2c) this transport of angular momentum is 
largest if m = L. (In the above discussion when we say, for example, that if U%>0 
then U0 is also larger than zero, we neglect viscosity and consider that the particle is 
acted upon only by the Coriolis force. Nevertheless, we expect the conclusions to give 
us a correct description.) 

It is readily seen (cf. Equations (2.1.1) and (2.1.2) that to obtain the observed 
differential rotation (Abator-^poie~A)/5) the value of T3(R0) must be given by 

If we assume that the main contribution to T3(R0) comes from the latitudinal angular 
momentum transport we obtain, with the help of Equations (2.1.6) (with £L ~ 1) and 
(B2c): 

Comparing this equation with Equation (B3), we can estimate the magnitude of the 
convective velocities needed to generate the observed latitudinal differential rota­
tion: 

(LP£) 2~Lo- 2/16. (B4) 
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Since these large-scale convective motions are concentrated near the equator, they 
give rise to a pole-equator difference in flux. The ratio of the convective flux (at 
r = 0.9, for example) to the purely conductive flux (evaluated in the absence of 
convective motions) is given by 

•r2 J J Uc

r 6 sin 0 &6 d0/(4in|/(l - v)) 

\ L r " 0 s i n ^ d ^ d < ^ -

An estimate of 0 for the (L, L) mode (0 ~ 0t) can be obtained from Equation 
(A5b): 0l~Pl- This order-of-magnitude relation holds only if d$/dr« t j / (1 - tj)r2, 
that is, if the distortion of the mean temperature gradient, produced by convection, is 
small (cf. Durney, 1968a, Figures 2 and 3). With the above value of @£, it is readily 
found that 

Q ~(1-V)(LPt)2~(I-r,)L*2/16. (B5) 
For L = 10 and a = 1, Q — 0.12. The value of Q given by Equation (B5) should not 
be taken too literally (it is probably an underestimate; see Gilman, 1972, Figure 10). 
Equation (B5) shows, however, a basic difficulty associated with this approach to 
differential rotation: to generate the observed solar differential rotation, an appreci­
able fraction of the energy flux must be carried by the large-scale convection. To give 
rise to transport of angular momentum towards the equator, this large-scale convec­
tion must be highly non-axisymmetric (m ~ L) and must be concentrated, therefore, 
near the equator. Large pole-equator differences in flux appear unavoidable. It is of 
interest to note that our estimate of the pole-equator difference in flux (Q) needed to 
generate the observed differential rotation shows that Q is proportional to the square 
of the Prandtl number. 

Appendix III 
We choose normalized spherical coordinates; it is thus unnecessary to distinguish 
between covariant and contravariant components of vectors and tensors. In the case 
of axial symmetry, the components of the viscous force and the viscous stress tensor 
are given by 

= r 5 dr T J + ^in7 ^ ( S m W r ~ ( C l a ) 

*-H^T")
 + r ^ ^ 9 T " ) - S S ! r * i T " ( C l b ) 

with 
^ = 7 ^ ( r 3 r - ) + 7 i h k ^ ( s i n 2 ^ ) <c l c> 

r„ = 2 5 ^ + 2 7 , ( 1 - s ) ^ ( C 2 a ) dr dr 

T dUe i 7 , ( i - s ) a p - t / , ) 
ZE-RIDE+rdr UEL+ R dr~~ ( C 2 b ) 
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nn dO 
Te<p = sT1sme— (C2e) 

T<p<p=-j^[Ur+ Ue cotg 0]. (C2f) 

An anisotropic turbulent viscosity of the following form has been assumed ri00 = 

Appendix IV 

With p, p, T, Ur and 17$ defined by Equations (2.3.8), (2.3.9) we obtain from 
Equations (2.3.6): 

PuPig = -(pup2y + v[2y/r2-2Vp'l?>r2p 
- +(12/r4 + 8p ,/3r 3p 4- 8(p7p)73r2)] (Dl) 

PuPi = - PP'/P - <A Wr 2 + 2p'/rp 

+ (p7p)') + <M12/r 3+4p7r 2p)]. (D2) 

In these equations the primes denote derivatives with respect to r; the viscosity has 
been assumed to be isotropic and of the form 17 = pv with v (a slowly varying quantity 
in the Sun) constant. 

For a polytrope and for / = - 1 . 5 p j p ' u the right-hand side of Equation (D3) becomes 

R H S - ^ - ^ f c - ^ - ^ H ' . (D4) 
yv (2y-3) \ R o 

Appendix V 

The viscosity coefficient is taken to be proportional to the density: 17 = pv, and the 
anisotropy factor s is defined by vee = = svn = sv. The meridional motions are 
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assumed to be given by Equation (2.3.9), and the angular velocity ii by Equation 
(2.3.17). The equations for <o0(r) and <o2(r) are then obtained from Equation (2.3.3) 
(Durney, 1974b): 

14 p'\ , 2 ^ 2 ( 1 - 5 ) / p' 3o>0\ 
\r p/ r r \ p r J 

W , x 2 far r x _ 
- — 3 — (20>2 + C0 2 r ) + ~ — [ 0 > 0 ~ 5 * > 2 j 5r pi> 3 r pi> 

= . ^ . « i z £ ) ( g : + 3 ) , ( E 1 ) 

3 r pv r \p r) 

14 p'\ , 10*> 2s 2 ( l - s ) / p' 3o>2\ 
0>2 + l — I JO> 2 9 1 1 6 > 2 " 1 C U 2 + I 

\r p) r r \ p r I 

2«A L , , , 2(2a>2 + rq)2)1 , 4far t 4a>2\ 

- ~ 3 ^ - 5 — • ( E 2 ) 
r pv 3r pj> 

From the difference 5pr 4 (El)-pr 4 (E2) it is easily shown that 

£ [sr4pa>0 +10(1 - s ) r 3 p ( l + a)0) - r4pa>'2 - 2(1 - s)r3pa>2 

10 o 2 o 2 ,1 -—fa2<o2+-fa2(o0+-fa2 =0 (E3) 
7j> *> v \ 

Equation (E3) is a particular form of Equation (E4): 

£ J J r 3 sin2 OiT+r-pUrUJ d0 d<£ = 0. (E4) 

Equation (E4) can be derived from the steady state azimuthal equation of motion 
(see Equation (2.3.3)) with only one assumption: the dependence of p on 0 is small 
and can be neglected; in particular, the assumption of axial symmetry is unnecessary. 

The boundary conditions that are commonly imposed on Equations ( E l , E2) are 
zero stresses and vertical velocities (T^r = Ur = 0) at both ends of the convection zone 
(r = R„ R 0 ) . In this case the integrated version of Equation (E4) is the compressible 
version of Equation (2.1.9). It should be noted that in the compressible case we have 
expanded the angular velocity in Legendre polynomials whereas in the Boussinesq 
approximation the expansion of the toroidal velocities is given by Equation (A3b) of 
Appendix I: it is an expansion in terms of &PL(cos 0)/d0. 

Appendix VI 

The perturbed pressure, density, and temperature are expanded in Legendre 
polynomials according to Equation (2.4.8). We neglect quadratic terms in the 
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4 
f 3o>2CRc)*'Pc(''sin0) 
'* (~RcL)2(l-i<o2(Rc)(rsine/Rc)2) 

x\(L + # c ) log l * ! * * e - r cos d] + f(r sin 0) (F6) L sin 0 J 
where L has been defined in Equation (2.3.15) and £(r sin 0) is an arbitrary function 
of r sin 0. 

differential rotation (i.e., a>o, o>2, (o0(o2) and in the perturbation (i.e., \ i & where x, £ 

stand for p, p, T and i, / = 0, 2,4). Then 
Ul/r = fi7gr[l + 2o>0 - 2a>2/5 - P2(l + 2<o0 - 10a>2/7) - 36*>2P4/35] 

( F l ) 

t / J cotg 0/r = flor(l + 2<o0+2w2P2) sin 0 cos 0. (F2) 
Substituting Equations (2.4.8) and ( F l , F2) into Equations (2.4.1) and (2.4.2), we 
obtain 

dpjdr = -p M g; dp 0/dr = - p 0 g + | f l o r p u ( l + 2o>0-2fti2/5); 

dp 2/dr = - p 2 g - f ^ r p M ( l + 2o) 0 - 10o>2/7); (F3a) 

dp 4 /dr= -p4g-JS&lrpu<02-
Pi = -\putior2(\ + 2(0O+2<»>2/l); 

6 , 2 2 (F3b) 
p 4 = - 3 5 1 / 0 ' * PU*>2 • 

With the help of the gas equation [p, = (RJpL)(piTu +pu7^), i = 2,4], Equations (F3) 
allow us to calculate T2 and T 4; we obtain 

T2 = - J f l g r 2 ( / i / U +piT M /gp M ) ( l + 2o>0+2o>2/7) 

- ^ - f l g ^ ( 7 r w i + m i + 12i»2) (F4) 
g

 2 

35 g 
We assume that the angular velocity and meridional motions are given by 

Equations (2.4.14) and (2.3.7), respectively. Keeping only the largest term of 
R<T> (yp'U? sin 6 dO/Br) but all inertial terms of Equation (2.3.3), it is readily found 
that the azimuthal equation of motion can be written 

- ^ s i n 6——r cos 6 
d0 dr 

3a>2(Rc)vp'u(rsmO)4 

2R2

c(l-2

ia>2(Rc)(r/Rc)2sm20)-

Equation (F5) can be solved analytically if the pressure and density are related by a 
polytropic relation (pM = Pudp/PucY) with y = 5 , which is very close to the adiabatic 
(y -1) value (we neglect perturbations in pressure and density due to the motions). 
The general solution of Equation (F5) is in this case given by 
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DISCUSSION 

Roxburgh: (1) Is it not possible that AF is large in the bulk of the convective zone but becomes small in the 
surface layers where AVTbecomes large since with a large A VTa small circulation could possibly destroy 
the AF? 

(2) In your calculation you assume that the turbulent model can be applied all the way to the surface of 
the convective zone, but in the surface layers radiative transport becomes dominant and even if AF/F is 
large for the convective flux, the convective flux itself goes to zero at the surface so AF could also go to 
zero. In the top 1000 km where radiative transfer is dominant the AF can be wiped out. 

Durney: (1) It is possible, However, one cannot help thinking that somehow the main effect of the 
constraint imposed by rotation on convection is only differential rotation and not large pole-equator 
differences in flux inside the convection zone. We do not know at present how a large AO can be achieved 
with a small AF. 

(2) I think that it is unlikely that a large AF can be wiped out in the top 1000 km with no manifestations 
at the surface. Differential rotation could be a surface phenomenon but then no large APs are needed, but 
this appears to be in contradiction with dynamo models. 

Schroter: One of your alternative solutions out of the dilemma is the suggestion of the existence of a 
large pole-equator flux difference within the convective zone. Would you expect from such a fact an 
observable difference in the appearance (size, contrast, life-time, etc.) of the solar granulation pattern 
between pole and equator? 

Durney: I think it is unlikely. If a large pole-equator difference does indeed exist inside the solar 
convection zone, it completely disappears in the surface layers and would not affect, I think, the solar 
granulation. 

Weiss: We can place some constraints on the variation of energy flux with latitude. In the radiative zone 
AF must be very small, any significant variation of flux on an equipotential surface will rapidly be 
eliminated by mass motions. At the photosphere we observe no appreciable variation. On the other hand, 
a significant variation in the deep convective zone might be eliminated near the surface just as the 
supergranular temperature variations are below the limit observation. 

Durney: It is possible, and to answer this question with certainty is an important problem that remains 
to be solved. However, the Sun could satisfy the constraints imposed by rotation on convection by 
processes of which we do not have yet any idea. 

Chvojkovd: During the maximum of a solar cycle high magnetic fields of about 10 3 G should be 
expected just below the photosphere. Thus at the top of the convection zone there should exist a layer in 
which the magnetic pressure prevailed the kinetic one, the motion would become nonisotropic, the field 
would act against most of the movements of the described mechanism. Hence, the differential rotation 
should be most probably somewhat smaller during cycle maxima. Is it so or is the layer H2/Sir > \pV2 too 
thin and insignificant for affecting the result? 

Durney: If we accept Parker's point of view, the solar cycle is generated in the lower part of the 
convection zone and the magnetic flux tube rises at about the Alfvenic speed, thus very rapidly in the 
surface layers. Large toroidal fields waiting to be dissipated or carried away by the solar wind should be 
present below the photosphere and could indeed influence the Sun's differential rotation. I think that there 
are observations confirming this. 

Mestel: I seem to recall that Biermann postulated that there should not be any large latitude variations 
in flux, and then derived the necessity for circulation from momentum balance. Kippenhahn then used this 
circulation to construct the departure from uniformity of rotation. 

Durney: I think that Biermann postulated a different rate of momentum exchange between the 
direction parallel and perpendicular to gravity. He then proved that conservation of angular momentum 
precludes solid rotation. 
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