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Summary

Cluster analyses of gene expression data are usually conducted based on their associations with the
phenotype of a particular disease. Many disease traits have a clearly defined binary phenotype
(presence or absence), so that genes can be clustered based on the differences of expression levels
between the two contrasting phenotypic groups. For example, cluster analysis based on binary
phenotype has been successfully used in tumour research. Some complex diseases have phenotypes
that vary in a continuous manner and the method developed for a binary trait is not immediately
applicable to a continuous trait. However, understanding the role of gene expression in these
complex traits is of fundamental importance. Therefore, it is necessary to develop a new statistical
method to cluster expressed genes based on their association with a quantitative trait phenotype. We
developed a model-based clustering method to classify genes based on their association with a
continuous phenotype. We used a linear model to describe the relationship between gene expression
and the phenotypic value. The model effects of the linear model (linear regression coefficients)
represent the strength of the association. We assumed that the model effects of each gene follow a
mixture of several multivariate Gaussian distributions. Parameter estimation and cluster assignment
were accomplished via an Expectation-Maximization (EM) algorithm. The method was verified by
analysing two simulated datasets, and further demonstrated using real data generated in a
microarray experiment for the study of gene expression associated with Alzheimer’s disease.

1. Introduction

With the advent of microarray technology, it is now
possible to measure the expression levels of many
genes simultaneously under various conditions. In the
original microarray experiments, conditions were
defined as control and treatment (Schena et al., 1995).
Each control and treatment may be replicated several
times to provide an assessment of the experimental
error. The treatment–control design has been adopted
in research with various organisms, including plants
(Desprez et al., 1998), animals (Anholt & Mackay,
2004; Lazarov et al., 2005), humans (Zhang et al.,
1997) and microbes (Han et al., 2004). The purpose of
this kind of study is to detect genes whose expression
levels respond to the treatment. Statistical methods
for such data analysis include the simple t-test

(Devore & Peck, 1997), the Bayesian method com-
bined with the t-test (Baldi & Long, 2001), SAM
(significance analysis of microarrays; Tusher et al.,
2001), the regression approach (Thomas et al., 2001)
and the model-based cluster analysis (Yeung et al.,
2001). In many microarray experiments, gene ex-
pressions are examined in multiple (more than two)
conditions. For example, the control may be rep-
resented by tissues sampled from affected persons
with a certain disease before a special drug treatment
and the treatment may be represented by tissues
sampled from persons with the same disease but
treated with various doses of the drug, each dose
representing a level of the treatment. Because there
are multiple levels of treatment, a traditional t-test
is no longer sufficient and analysis of variance
(ANOVA) seems to be more appropriate (Kerr et al.,
2000; Wolfinger et al., 2001; Chu et al., 2002; Cui
& Churchill, 2003). An alternative approach to

* Corresponding author. Tel : +1 (951) 8275898. e-mail : xu@gen-
etics.ucr.edu

Genet. Res., Camb. (2005), 86, pp. 193–207. With 3 figures. f 2005 Cambridge University Press 193
doi:10.1017/S0016672305007822 Printed in the United Kingdom

https://doi.org/10.1017/S0016672305007822 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672305007822


microarray data analysis with multiple conditions is
the cluster analysis (Eisen et al., 1998), which aims to
classify genes with similar expression patterns into
the same cluster. Genes within the same cluster are
studied as a whole group for their association with a
certain disease.

Numerous clustering methods have been proposed
for microarray data analysis. Commonly used ones
include hierarchical clustering (Carr et al., 1997),
k-means (Tavazoie et al., 1999), the graph-based
CAST algorithm (Ben-Dor & Yakhini, 1999), support
vector machines (Brown et al., 2000), self-organizing
maps (Herrero et al., 2001) and multilayer per-
ceptrons (Mateos et al., 2002). These algorithms are
largely heuristically motivated and do not require any
underlying statistical models. Recently, model-based
methods of clustering have been paid much attention
by many investigators because they are built on a
solid mathematical and statistical foundation (Yeung
et al., 2001; McLachlan et al., 2002; Ghosh &
Chinnaiyan, 2002; Qu & Xu, 2004). The model-based
clustering methods have been implemented in two
ways: unsupervised (Yeung et al., 2001; McLachlan
et al., 2002; Ghosh & Chinnaiyan, 2002) and super-
vised (Qu & Xu, 2004). The unsupervised clustering
method simply classifies genes based on their ex-
pression patterns across treatments or conditions
without resorting to any prior knowledge of gene
function. The supervised clustering method, however,
requires preclassified samples (arrays) and tries to
classify unknown genes into these known clusters.
If the functions of existing gene clusters are known,
the supervised clustering method serves as a tool for
identification of gene function.

If a microarray experiment is carried out across a
large number of conditions (levels of treatment) and
these levels change in a quantitative manner, we will
expect that genes expressions will be highly correlated
among levels that are quantitatively close. The model-
based clustering analysis allows investigators to
model and estimate the covariance structure. Use of
an elegant covariance structure will significantly
increase the efficiency of the cluster analysis. If the
quantitative levels are the times after a certain drug
injection, the experiment is called time-course micro-
array experiment (Saban et al., 2001). If the levels
refer to different dosages of a certain drug treatment,
the experiment is called dose-response microarray
experiment (Peddada et al., 2003). Data collected
from both time-course and dose-response experiments
can be analysed using the mixed effects model devel-
oped by Luan & Li (2003). The mixed-model analysis
is a model-based clustering method in which gene
expression levels are described as a function of time
or drug dosage. The functional relationship is
approximated by the B-splines (Luan & Li, 2003). The
parameters involved in the smooth function curve are

partitioned into a vector of fixed effects and a vector
of random effects. Conceptually, the cluster analysis is
made based on these parameters rather than on the
original data points. In other words, gene clustering is
based on the shape of the expression profile because
the shape is determined by the parameters.

There is another class of microarray experiments in
which different conditions refer to different subjects
(or individuals) selected based on their phenotypes.
For example, Blalock et al. (2004) set up a microarray
experiment to study the relationship of gene
expression and the severity of Alzheimer’s disease.
The authors selected 31 subjects each with two quan-
titative measurement of disease severity (MMSE,
Mini-Mental State Examination; NFT, Neuro-
fibrillary Tangle count). The phenotypes of both traits
vary more or less in a continuous manner. To study
the association of gene expression with the two traits,
Blalock et al. (2004) calculated the Pearson corre-
lation of gene expression and the trait value. The
genes are then sorted according to the magnitude of
the correlation coefficients. Genes ranked at the top of
the list are reported as being effective on the disease.
We propose to use the magnitude of the regression
coefficient of gene expression on phenotype to
measure the strength of gene-trait association. This
implies that a significant correlation is only bio-
logically meaningful if the regression of the expression
on phenotype is also high.

The simple regression analysis for gene expression
data may be sensitive to outliers because the corre-
lation coefficients are calculated one gene at a time,
although the expression data are collected jointly.
Joint analysis may extract more information from the
data, and thus increase the efficiency of gene cluster-
ing. In addition, the threshold P value chosen to
declare significance is somewhat arbitrary, making the
simple regression analysis inconsistent. Instead of
sorting genes based on the Pearson correlation, we
propose to take a regression approach by clustering
genes according to their regression coefficients. From
the statistical test point of view, simple correlation
analysis is equivalent to simple regression analysis.
Therefore, we call the simple correlation or regression
analysis SimpReg for short. In contrast to SimpReg,
we call the proposed cluster regression analysis
ClusReg. Although both methods are regression
analyses, the result of ClusReg can be different from
that of SimpReg. This is because gene expression data
are analysed jointly in ClusReg so that information
from other genes can be incorporated into the analysis
of the current gene of interest. In addition, all linear
models are directly expressed as linear functions of
regression coefficients, which allow biologically un-
interested effects, i.e., dye effect, to be explicitly
taken into account when estimating the regression
coefficients.
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In ClusReg analysis, gene expression is the response
variable and the phenotypic value is the independent
variable. We further partition each regression co-
efficient into a fixed effect and a random effect.
The Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) is used to estimate parameters
and to assign each gene to a cluster. The fixed effect
for each cluster is estimated using all genes clustered
in the same group and the random effect for each gene
is estimated via the best linear unbiased prediction
(BLUP) technique (see Robinson, 1991, for the theory
of BLUP). Gene clustering and parameter estimation
are conducted jointly by utilizing data of the entire
microarray experiment.

2. Theory and methods

(i) Mixed model of gene expression

Let Xj ( j=1, …, n) be the phenotypic value of a con-
tinuous variable for the jth individual in a population
of size n (the number of subjects). Let Yij (i=1, …, m
and j=1, …, n) be the normalized (log transformed)
expression level of the ith gene measured from the jth
individual, where m is the total number of genes. We
assume that these genes are from c different clusters,
indexed by k=1, …, c. Let Zi be the cluster indicator
for the ith gene, which takes one value from {1, …, c}.
For the ith gene in the kth cluster, we propose the
following mixed-effects model for the observed gene
expression of the jth individual :

YijjZi=k=(bk0+Xjbk1)+(ci0+Xjci1)+eij: (1)

The first term of this model is used to describe the
mean regression profile for the kth cluster. The second
term in the above equation is used to model the ran-
dom effect of the regression profile for the ith gene,
where ci=[ ci0 ci1 ]

T is a vector of random regression
coefficients with a jointN(0, S) distribution. This term
is used to model gene-specific deviation of the
regression from the cluster mean. Here we assume
that the random coefficients of all genes share a com-
mon covariance matrix, regardless of the clusters. The
last term in (1) is used to model the uncorrelated
measurement error eij under the assumption of
eijyN(0, s2), for i=1, …, m and j=1, …, n.

The above model may be conveniently expressed in
matrix notation. Let Yi=[Yi1 … Yin]

T be the vector of
expression of the ith gene in all subjects. Let us further
define bk=[ bk0 bk1 ]

T as a 2r1 vector, X=
1 � � � 1
X1 � � � Xn

� �T
as

an nr2 matrix, and ei=[ei1 … ein]
T as an nr1 vector.

The matrix version of (1) is

YijZi=k=X bk+Xci+ei: (2)

The expectation and the covariance matrix of (2) are

mk=E(YijZi=k)=X bk (3)

and

V=Var(YijZi=k)=XSXT+Is2, (4)

respectively, where I is an identity matrix with
dimension nrn. Model (2) is a mixed-effects model
(Laird & Ware, 1982; Robinson, 1991) where bk is a
vector of fixed effects and ci is a vector of random
effects. The only difference between this model and a
typical mixed-effects model is that the fixed effects and
random effects share a common design matrix X.

(ii) Likelihood function of Gaussian mixture

Conditional on Zi (the cluster label for gene i), Yi is
described by a mixed-effects model (2). However, Zi is
unknown and it is one of the important quantities that
we want to infer in the cluster analysis. Let
p={p1 … pc} for gc

k=1pk=1, be the proportions of
genes contained by the c clusters. Before we observe
Yi, the probability that gene i belongs to the kth
cluster is simply pk, which is called the prior prob-
ability of Zi=k and denoted by pk=Pr(Zi=k).
Because Zi is missing, the probability density of Yi is a
mixture of c normal distributions. As a result, the log
likelihood function has the following form:

L(y)=g
m

i=1
ln g

c

k=1

pkp(YijZi=k; bk,S, s
2)

� �
(5)

where y is a vector of parameters and

p(YijZi=k; bk,S, s
2) / 1

jVj1=2
exp x

1

2
(YixXbk)

TVx1

�

r(YixXbk)

�
(6)

is a normal density (the kth component of the mixture
distribution). There is no closed form for the maxi-
mum likelihood estimate (MLE) of y due to the
mixture property of the likelihood (equation 5).
However, explicit MLE of the parameters (except p)
does exist if the Zis and cis are known. We can take
advantage of this property and use the EM algorithm
(Dempster et al., 1977) to find the MLE of y, as
described below.

(iii) EM algorithm for cluster analysis

The EM algorithm (Dempster et al., 1977) is a specific
numerical algorithm for solving the MLE of par-
ameters. It is particularly suitable for the mixed-model
analysis because such a model can be formulated as a
missing value problem. The missing values are the
cluster labels (Zi) and the random regression coef-
ficients (ci).

The target likelihood function to be maximized
in the M-step and the derivation of it are
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given in Appendix A. Here we only describe the
EM-steps:

Step 0 : Initializing parameter, y=y(0).
Step 1 (E1): Updating the cluster indicator variable:

pik=E[d(Zi, k)]=
pkp(YijZi=k; bk,S)

g
c

kk=1

pkkp(YijZi=kk; bkk,S)

: (7)

Step 2 (E2): Updating the random effect:

ĉi=E(cijYi,Zi=k)=SXT(X SXT+Is2)x1(YixXbk):

(8)

The conditional covariance matrix of ci should also
be calculated in this step:

Ŝi=V(cijYi,Zi=k)=SxSXT(XSXT+Is2)x1XS: (9)

Such a matrix will be used later in the M-steps.

Step 3 (M1): Updating the mixing proportions:

pk=
1

m
g
m

i=1
pik: (10)

Step 4 (M2): Updating cluster means:

bk=(pkmXTX)x1 g
m

i=1
pikX

T[YixXE(cijYi,Zi=k)]:

(11)

Step 5 (M3): Updating the covariance matrix of the
random effects :

S=
1

m
g
m

i=1
g
c

k=1

pik E(cic
T
i jYi,Zi=k)

=
1

m
g
m

i=1
g
c

k=1

pik (ĉiĉ
T
i +Ŝi):

(12)

Step 6 (M4): Updating the residual variance:

s2=
1

mn
g
m

i=1
g
c

k=1

pikE(jjYixXbkxXcijj
2
)

=
1

mn
g
m

i=1
g
c

k=1

pikY
T
i (YixXbkxXĉi): (13)

Steps 1 to 6 are repeated until a certain criterion of
convergence is reached. Like any other numerical
algorithms of optimization, the EM algorithm only
provides a local solution. Usually, several different
initial values of y should be tried to increase the
probability of finding the global solution.

(iv) Number of clusters and hypothesis tests
of cluster means

The above EM algorithm applies to situations where
the number of clusters, c, is fixed. In reality, c should

be estimated from the data. A commonly used
method for inferring c is to calculate the Bayesian
information criterion (BIC) and choose c that
minimizes the BIC value. BIC is considered as an
approximation to the Bayesian factor, and is
defined as

BICc=x2L(ŷc)+ dim(yc) ln (m) (14)

for c clusters, where ŷc is the MLE of the parameter
vector yc under c clusters and dim(yc) is the
dimension of yc, i.e., the number of parameters in the
model.

Once the number of clusters is determined, we can
concentrate on each of the clusters and test the sig-
nificance of the cluster means. There are numerous
methods for the significance test. For illustration
purposes, we use the general Wald test statistic
(Fahrmeir & Tutz, 1994) to test the cluster means ; in
principle any appropriate statistics can be used here.
The estimated mean of cluster k is b̂k=[ b̂k0 b̂k1]

T

and the variance matrix of the estimate is approxi-
mated by

Var(b̂k)=Vbk
=[mpkX

T(X ŜXT+Iŝ2)x1X�x1: (15)

To test the hypothesis that b̂k=0, the following test
statistic may be used:

wk=b̂TkV
x1
bk

b̂k: (16)

In microarray data analysis, investigators may be
interested in the hypothesis that b̂k1=0 and the
value of the intercept is irrelevant. The test statistic
can be derived using a general method for testing a
linear contrast. Let LTb̂k be a linear contrast of
the cluster means. To test the hypothesis that
LTb̂k=0, we use

wk=b̂TkL(L
TVbk

L)x1LTb̂k: (17)

It is now obvious that b̂k1=0 can be formulated as
LTb̂k=0 where LT=[ 0 1 ]. The Wald statistic in (17)
is then compared with the threshold x0.95,1

2 =3.82 (95th
percentile of the chi-square distribution with one
degree of freedom). b̂k1 is said to be significantly dif-
ferent from zero if wk is greater than this quantity. We
can also compare two clusters using the Wald test
statistic. Assume that we want to test the hypothesis
that b̂kxb̂kk=0. The test statistic appears to be

wkkk=(b̂kxb̂kk)
T(Vbk

+Vbkk
)x1(b̂kxb̂kk): (18)

(v) BLUP of the gene expression profile

After the EM algorithm converges and the number of
clusters is determined, we obtain all the estimated
parameters. We also have the posterior probability
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that the ith gene belongs to the kth cluster,
pik=Pr(Zi=k|Yi), for i=1, …, m& k=1, …, c. Based
on these probabilities, we can assign the ith gene to
the kth cluster if pik=max(pi1, …, pic). We can also
try to cluster only those genes with the maximum pik

greater than a predetermined cut-off value, and
declare other genes as unclassified.

After gene clustering, we can obtain the estimate of
the gene expression profile using gene expression data
from the same cluster. For the ith gene in the kth
cluster, the best linear unbiased predictor (BLUP) of
the random regression coefficients ci is

ĉi=ŜXT(X ŜXT+Iŝ2)x1(YixXb̂k): (19)

The corresponding estimate of the individual gene
expression profile for the ith gene in the kth cluster is

ŶijZi=k=Xb̂k+Xĉi (20)

The estimated gene expression profiles can be plotted
against the phenotypic value.

(vi) Extension to the heteroscedastic
covariance matrix

The basic assumption of the EM analysis presented
earlier is that the covariance matrix of the random
regression coefficients is constant across clusters, the
so-called homoscedastic covariance matrix. In this
section, we try to extend the algorithm to handle
situations where the covariance matrix is not constant
but varies across clusters. In addition, we may relax
the assumption of independent residual errors for
genes within the same cluster. The model for the ith
gene in the kth cluster is

YijZi=k=Xbk+XcijZi=k+ei (21)

where cijZi=k �N(0,Sk) is the random regression
coefficient with a different covariance matrix for a
different cluster. The residual error is assumed to
be eiyN(0, D), where D is a diagonal matrix. The
expectation and covariance matrix of model (21) are

mk=E(YijZi=k)=Xbk (22)

and

Vk=Var(YijZi=k)=XSkX
T+D, (23)

respectively.
The EM algorithm is largely the same as that of the

homoscedastic covariance matrix model except that
the step of updating S is replaced by c steps of up-
dating Sk for k=1, …, c, and updating s2 is replaced
by updating D, as shown below:

Sk=
1

mpk

g
m

i=1
pikE(cic

T
i jYi,Zi=k) (24)

and

D=
1

m
g
m

i=1
diag g

c

k=1

pikE [(YixXbkxXci)

�

r(YixXbkxXci)
T]

�
: (25)

3. Application

(i) Simulation studies under the homoscedastic
covariance matrix model

In the first simulation experiment, we chose c=5 and
simulated expression of 1000 genes on 50 subjects
(microarray chips), each of which has a phenotypic
value normally distributed with mean 20 and
standard deviation 9, which were estimated from the
phenotypes of a real microarray experiment (Blalock
et al., 2004). The parameters used in the simulation
are given in Table 1 (dataset 1). These parameters are
similar or comparable to the estimated parameters
obtained from the Alzheimer’s disease microarray
experiment (Blalock et al., 2004). We intentionally
made the differences among clusters 2, 3 and 4 very
small to evaluate the efficiency of our method in
dealing with the difficult situation. The initial values
of parameters for the EM iterations were chosen as
follows. First, we fitted each gene to a simple linear
regression model on the phenotypic value and esti-
mated bi0 (intercept) and bi1 (regression coefficient) for
each gene, indexed by i for the ith gene.We then sorted
the genes by the estimated bi1 and divided the 1000
genes into five clusters each with 200 genes based on
their ranks in the sorted dataset. The mean intercept
and the mean regression coefficient for group k were
treated as the initial value of vector bk. The average
value of all the 1000 estimated residual variance was
used as the initial value of s2. The initial value of the
covariance matrix for the random regression coeffi-
cients was chosen as S(0)=Is2 where I is an identity
matrix with dimension 2r2. Finally, the prior for the
membership probability of each gene was chosen
from a uniform distribution. The EM iterations were
stopped when the difference between successive
parameter estimates was less than 0.0001 for each
parameter. Similar criteria and rules were used in all
subsequent data analyses.

Table 1 also gives the results of ClusReg analysis at
c=5. We can see that the estimated parameters agree
well with the true parameters. The last column of
Table 1 gives the Wald test statistic (wk) of each clus-
ter for testing the null hypothesis of bk1=0. The test
statistic is significant for each of the clusters when
x0.95,1
2 =3.82 (95th percentile of the chi-square distri-
bution with one degree of freedom) was used as
the critical value of the test statistic. Even if we
chose x0.995,1

2 =7.8 (correction for multiple tests) as the
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critical value, the test statistic is still significant.
Table 2 gives the error rates of cluster assignment of
the genes. Clusters 1 and 5, which are far removed
from the remaining clusters, have quite small error
rates. Clusters 2, 3 and 4, however, are subject to high
error rates due to the small differences among the
means of the three clusters.

We also analysed the same dataset (dataset 1) by
varying the number of clusters (c changes from 2 to 9)
and found that the optimal BIC occurs at c=3
(see Fig. 1a for the BIC profile across the number of
clusters). This is expected because clusters 2, 3 and 4
in the simulation were indeed very close to each other
and could be treated as a single large group.
Eventually, we evaluated the results with c=3 by
combining the three closely related clusters as cluster
II whereas the original clusters 1 and 5 were renamed
as clusters I and III, respectively. The results with
c=3 are listed in Tables 1 and 3. The test statistic for

the mean of cluster II is no longer significant. The
error rates are also improved.

To test efficiency of various methods, empirical
Type I (a) and Type II (b) error rates were calculated
in this simulation study. Let N be the total number of
true neutral genes (cluster II) andNe be the number of
neutral genes that were incorrectly assigned into
cluster I or III. Let S be the total number of true
significant genes (cluster I+cluster III) and Se be the
number of significant genes that were claimed to be
neutral by mistake. We defined a=Ne/N, b=Se/S
and 1xb as the empirical Type I error, Type II error
and statistical power, respectively.

For comparison, we also reanalysed the data with
simple regression (SimpReg) in the following steps:
(1) we calculated the P values for individual genes
based on the simple regression (Pearson’s correlation)
analysis, (2) we selected q which lies between 0 and 1,
and this is the maximum FDR (false discovery rate ;

Table 2. Number of genes assigned to clusters for the simulated data (dataset 1)
when c=5 was chosen. The sum of each column represents the true number of genes
simulated from that cluster and the sum of each row represents the number of genes
assigned to that cluster (similar table structure was also used in other tables for
the purpose of comparison)

Estimate

True

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Sum

Cluster 1 40 2 1 3 0 46
Cluster 2 0 0 8 5 1 14
Cluster 3 0 28 32 48 4 112
Cluster 4 10 170 218 381 1 780
Cluster 5 0 0 1 3 44 48

Sum 50 200 260 440 50

Table 1. True parameters and the estimated parameter values in the simulation experiment (dataset 1): (a)
parameters used in the simulation experiment and their estimated values when the number of clusters was set at
five (c=5); (b) estimated parameters from the same simulated data but with the number of clusters set at three
(c=3)

Cluster bk0 bk1 pk S s2 wk

a 1 True 6.48 x0.1 0.05 True

S=
1 0:006

0:006 0:001

� �Estimate 6.608 x0.101 0.049 True 503.70
2 True 6.25 x0.001 0.20 0.36

Estimate 5.757 x0.008 0.200 14.27
3 True 6.18 0.0001 0.26

Estimate 6.368 0.013 0.245 11.92
4 True 5.99 0.001 0.44 Estimate

Ŝ=
1:0065 0:0055
0:0055 0:0009

� � Estimate
Estimate 6.164 x0.005 0.458 0.358 44.09

5 True 5.25 0.1 0.05
Estimate 5.007 0.108 0.049 573.90

b I Estimate 6.633 x0.099 0.05 Estimate

Ŝ=
1:047 0:007
0:007 0:001

� � 466.50
II Estimate 6.128 x0.0008 0.9 0.358 0.57
III Estimate 4.997 0.107 0.05 533.30
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Benjamini & Liu, 1999) that we are willing to tolerate
on average, (3) we sorted genes based on the P values
in ascending order (p(1)fp(2)f … fp(m)), and let H(i)

be the null hypothesis corresponding to P value p(i),
(4) we let r be the largest i for which p(i)f i

m
q

c(m)
, where

c(m)=1 under the assumption of independence of
the P values, (5) we reject the null hypotheses,
H(1), …, H(r), which means that these genes are
significantly related to the phenotype, and (6) for
significant genes, we assigned those with positive
correlation coefficients to one cluster and those with
negative correlation coefficients to another cluster;
the remaining non-significant (neutral) genes were
classified into the third cluster.

We set the FDR at q=5% and the cut-off P value
in this situation was 0.0297. The result is given in
Table 3, showing a 1xb=0.98 power with an
a=0.5589 Type I error. This indicates that the simple
regression analysis detected more significant genes
than the actual number of genes. Many neutral genes
(in cluster II) were incorrectly assigned into groups I
and III. This is not efficient in gene identification as
demonstrated by Wayne & Mclntyre (2002). We then
set the number of significant genes detected by
SimpReg analysis to the same number as we detected
with the ClusReg analysis. Overall, the two methods
generated similar results (see Table 3 for comparison).
However, the cut-off P value to declare significance
in the SimpReg analysis is about 3.6Ex13 and the
expected FDR is as small as 4.3Ex12. This cut-off
P value and the corresponding FDR may be too
stringent in reality. We also see that both the Type I
and Type II errors are greater than those in the
ClusReg analysis.

(ii) Simulation studies under the heteroscedastic
covariance matrix model

In the second simulation experiment, we simulated a
heteroscedastic covariance matrix for the random
regression coefficients. Again, we chose c=5 and the
true parameters are given in Table 4 (dataset 2). We
simulated 1000 genes on 10 subjects (microarrays),

each of which has a phenotypic value evenly dis-
tributed between 1 and 5. The data were analysed
using the heteroscedastic covariance matrix model.
The BIC profile shows that c=5 leads to the optimal
BIC score (see Fig. 1b for the BIC profile). The esti-
mated parameters are also given in Table 4, showing
excellent agreement with the true parameter values.
Table 5 lists the error rates of the cluster assignment
of the genes.

We also examined the sensitivity of the method
under the homoscedastic covariance matrix model to
the assumption of heteroscedasticity. We reanalysed
the same data (dataset 2) under the homoscedastic
covariance matrix model. The BIC profile indicates
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Fig. 1. BIC profiles across the number of clusters for the simulated data: (a) a plot of dataset 1 using the homoscedastic
covariance matrix model and (b) a plot of dataset 2 using the heteroscedastic covariance model.

Table 3. Numbers of genes assigned to clusters for the
new method and comparisons with simple regression
analysis (dataset 1): (a) numbers of genes assigned to
clusters for the simulated data using ClusReg at c=3,
leading to a=0.0056 and 1xb=0.82; (b) numbers of
genes assigned to groups for the simulated data using
SimpReg with the cut-off P value equal to 0.0297 and
the expected FDR equal to 0.05, leading to a=0.5589
and 1xb=0.98; (c) numbers of genes assigned to
groups for the simulated data using SimpReg with the
cut-off P value equal to 3.62Ex13 and the expected
FDR equal to 4.3Ex12, leading to a=0.0122 and
1xb=0.76

Estimate

True

Cluster I Cluster II Cluster III Sum

a Cluster I 39 4 0 43
Cluster II 11 895 7 913
Cluster III 0 1 43 44

b Group I 50 255 0 305
Group II 0 397 2 399
Group III 0 248 48 296

c Group I 37 4 0 41
Group II 13 889 11 912
Group III 0 7 39 46

Sum 50 900 50
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that the optimal BIC occurs when c=6, although the
data were simulated at c=5. This observation further
verified that more components of the mixture model
are required when a simple covariance structure
(homoscedastic) is used than when a complex covari-
ance structure (heteroscedastic) is used (Fraley &
Raftery, 2002). We noted that when the homo-
scedastic covariance model is used for the hetero-
scedastic covariance data, cluster 2 was divided into
two subclusters. The estimated parameters for the six-
cluster analysis under the homoscedastic covariance

model are given in Table 4. We also reported the re-
sults of five-cluster analysis under the homoscedastic
covariance model (although six is the optimal number
of clusters under this model for this particular data-
set). In this analysis, cluster I corresponds to the
original cluster 1, cluster II combines the original
clusters 2 and 3, and clusters III, IV and V correspond
to the original clusters 4, 5 and 6, respectively. The
error rates are given in Table 5, showing good agree-
ment between the two models, and thus the robust-
ness of the homoscedastic covariance model.

Table 4. Parameters used in the simulation experiment and estimated parameters from the simulated experiment
(dataset 2): (a) parameters used in the simulation experiment and their estimated values under the heteroscedastic
covariance matrix model when the number of clusters was set at five (c=5); (b) estimated parameters from the
same simulated data but under the homoscedastic covariance matrix model with the number of clusters set at six
(c=6)

Cluster bk0 bk1 pk S11 S12 S22 s2 wk

a 1 True x2 x4 0.2 0.6 0.2 0.6
Estimate x1.91 x3.94 0.20 0.561 0.128 0.541 True 5451.32

2 True 5 x2 0.2 1 0.4 1 0.291
Estimate 5.10 x1.97 0.20 1.274 0.504 0.997 756.17

3 True 0 2 0.2 0.5 0 0.5
Estimate x0.06 1.81 0.20 0.569 0.052 0.441 1405.75

4 True x6 3 0.2 1 0.5 0.8 Estimate
Estimate x5.96 3.05 0.20 1.313 0.331 0.535 0.294 3309.63

5 True 3 4 0.2 0.4 0.1 0.6
Estimate 3.09 4.01 0.20 0.403 x0.04 0.553 5542.66

b 1 Estimate x1.9050 x3.9360 0.2 Estimate

Ŝ=
0:7593 0:1241
0:1241 0:5420

� � Estimate
0.2942

5452.71
2 Estimate 4.4295 x2.6089 0.089 1060.02
3 Estimate 5.6812 x1.4015 0.111 383.28
4 Estimate x0.0673 1.8079 0.2 1146.03
5 Estimate x5.9849 3.0359 0.2 3233.92
6 Estimate 3.0670 4.0094 0.2 5671.23

Table 5. Numbers of genes assigned to clusters and comparisons between the homoscedastic and the
heteroscedastic models (dataset 2) : (a) numbers of genes assigned to clusters for the simulated data under the
heteroscedastic covariance matrix model when c=5; (b) numbers of genes assigned to clusters for the simulated
data under the homoscedastic covariance matrix model at c=6

Estimate

True

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Sum

a Cluster 1 200 0 0 0 0 200
Cluster 2 0 200 0 0 0 200
Cluster 3 0 0 195 0 3 198
Cluster 4 0 0 0 200 0 200
Cluster 5 0 0 5 0 197 202

b Cluster I 200 0 0 0 0 200
Cluster II 0 200 0 0 0 200
Cluster III 0 0 195 1 5 201
Cluster IV 0 0 0 199 0 199
Cluster V 0 0 5 0 195 200

Sum 200 200 200 200 200
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(iii) Application to Alzheimer’s disease

Blalock et al. (2004) reported results of simple
Pearson correlation analysis of 9921 expressed genes
associated with some quantitative measurements for
the severity of Alzheimer’s disease with 31 subjects.
The data collected from the Alzheimer’s disease
microarray experiment were Affymetrix data. Each
data point represents the average difference of 20
PMxMM pairs of intensity differences. Therefore,
the technology that our expression data best mirrors
is the Affymetrix approach. Blalock et al. (2004) ex-
amined two traits (MMSE and NFT) in the analysis
and divided the genes into three groups based on their
correlations with MMSE and NFT. A total of 1977
genes were declared as up-regulated (either negatively
correlated with MMSE, positively correlated with
NFT, or both) and 1436 genes were down-regulated
(positively correlated with MMSE, negatively corre-
lated with NFT, or both). The majority of the genes
were neutral (correlated with neither MMSE nor
NFT). The original data are available through the
Gene Expression Omnibus (GEO) website with an
accession number GSE1297.

According to E. M. Blalock (personal communi-
cation), Alzheimer’s is a complicated disease and
cannot be unequivocally determined by either MMSE
or NFT measurement. Blalock et al. (2004) analysed
two traits separately and classified genes based on
both traits. The results are hard to compare with our
analysis in which only one phenotype is considered.
The purpose of our analysis for the real data is to
demonstrate the method and verify the computer
program. Therefore, we only analysed one trait,
MMSE, as a working example. According to the
selection criterion given by Blalock et al. (2004), we
selected 9754 genes for analysis (note the difference
between this number and the number of genes selected
by Blalock et al.). Expression values of the 9754 genes
(subset of the original data) and the disease pheno-
typic values (MMSE) for the 31 subjects are available
on request. We recalculated the Pearson correlations
of all the 9754 genes in the way we described in the
simulation experiment.

We first analysed gene expression data with the
model-based method of ClusReg under the homo-
scedastic covariance model and then analysed the

data with SimpReg for comparison. In the model-
based ClusReg analysis, we examined the BIC scores
under c=2, …, 10 and found that c=3 is the optimal
number of clusters. The estimated parameters at c=3
are listed in Table 6. The BLUP estimates of gene
expression for the three clusters are depicted in Fig. 2
(the upper panels). The lower panels of Fig. 2 rep-
resent the BLUP estimates and the original observed
data points for a typical gene picked from each clus-
ter. Overall, 46 genes (0.47%) were negatively associ-
ated with MMSE, 342 genes (3.51%) were positively
associated with MMSE, and the remaining 9366
genes (96.02%) were neutral. The test statistic of
the regression coefficient of the neutral cluster was
still significant, but the magnitude was negligible
compared with the other two clusters.

In the simple regression analysis, we first set FDR
at 0.05 to select the cut off P value of 0.0006. Using
this cutoff P value, only 46 genes (0.47%) were
negatively associated and 79 genes (0.81%) were
positively associated with MMSE (see Table 7 for
the comparison of the two methods). The number of
significant genes was much less than that detected
with the ClusReg analysis. We then chose 0.0032 as
the cut-off P value so that the SimpReg analysis de-
tected exactly the same number of genes (388) as that
with the ClusReg analysis. The expected FDR value
with this cutoff P value was approximately 0.08. The
SimpReg analysis detected 161 genes (1.65%) with
negative association and 227 genes (2.33%) with
positive association. Table 7 also shows the compari-
son of the two methods with regard to the numbers of
genes detected in each cluster. Among the 195 genes
with negative association (46 genes by the ClusReg
analysis and 161 genes by the SimpReg analysis), only
12 were detected by both methods. Among the 472
positively associated genes (342 by the ClusReg
analysis and 227 by the SimpReg analysis), only 97
were detected by both. Many genes detected by the
ClusReg analysis failed to show significance in the
simple regression analysis and vice versa.

We examined all genes detected by one method and
missed by the other method through scatter plots. The
plots of four typical genes are shown in Fig. 3. Genes
7874 and 6205 were detected by the ClusReg analysis
but missed by the SimpReg analysis (designated as
class I genes), whereas genes 3261 and 3476 were

Table 6. Estimated parameters of gene expression associated with Alzheimer’s
disease with the model-based ClusReg analysis at c=3

Cluster b̂k0 b̂k1 p̂k Ŝ ŝ2 wk

1 6.0012 x0.0340 0.0047
Ŝ=

1:16840 0:00180
0:00180 0:00005

� � 770.05
2 6.3442 x0.0014 0.9602 0.17368 145.56
3 5.2263 0.0303 0.0351 3071.78
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detected by the SimpReg analysis but failed to show
up in the ClusReg analysis (designated as class II
genes). A common feature of class I genes is that
the observed points are spread widely around the
regression line, which is clearly in contrast to the op-
posite feature shared by class II genes whose observed
points are all concentrated around the regression line.
In addition, class I genes tend to have a steeper slope
than class II genes. The conclusion is that the two
methods detect different sets of genes because they use
different criteria of gene detection. The ClusReg
method classifies genes based on the magnitudes of
the regression coefficients while the SimpReg method
classifies genes based on the magnitudes of the corre-
lation coefficients. A gene whose observed data points
are widely spread (i.e. with a large error) is unlikely to
be detected with the SimpReg analysis because the
correlation coefficient tends to be low even if the
regression coefficient may be large. On the other
hand, a gene whose observed data points are highly
concentrated (i.e. with a small error) is likely to be
detected with the SimpReg analysis even though the
regression coefficient may be small. These genes are
likely to be excluded by the ClusReg analysis.

4. Discussion

The proposed study of gene expression associated
with a quantitative trait phenotype differs from
quantitative trait locus (QTL) mapping in several
respects. In QTLmapping, the response variable is the
phenotype of a quantitative trait and the independent

variables are (discrete) genotype indicator variables of
QTL (pieces of DNA on the genome). In the pheno-
type-associated gene expression study, the discrete
genotype indicator variables of QTL are replaced by
the continuously distributed gene expression vari-
ables. Because the number of microarrayed genes can
be extremely large and the number of microarrayed
individuals is usually small, we flipped the roles of
phenotype and gene expression in the linear model by
treating gene expression as response variables and the
phenotype as the independent variable. Since there
are multiple gene expression variables involved in a
microarray experiment, the problem becomes a multi-
variate linear model problem. However, traditional
multivariate analysis is incapable of handling such a
high dimensionality of the multivariate model. As a
result, we proposed the model-based clustering
method and treated it as a special dimension reduction
approach. The phenotype-associated gene expression
analysis also differs from expression QTL (eQTL)
analysis (Schadt et al., 2003) in that the expression
levels of genes are treated as the response variables
whereas the genotype indicators of marker loci are
treated as independent variables. The quantitative
phenotype of a trait plays no role in an eQTL analysis
other than being used to select important markers
for inclusion in the analysis. Theoretically, one can
analyse gene expression, quantitative phenotype and
markers jointly in a single step.

For the first time, we developed a clustering method
to classify expressed genes based on their association
with a continuously distributed disease phenotype.
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Fig. 2. BLUP estimates of gene expression of the three detected gene clusters (upper panels) and the BLUP estimates
along with the original observed data points for a typical gene picked from each cluster (lower panels) in the MMSE
analysis using the homoscedastic covariance model.
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Simple regression analysis has been applied to this
type of microarray analysis (Blalock et al., 2004).
However, genes were analysed separately in the
SimpReg analysis. We strongly believe that joint

analysis implemented via ClusReg is more meaningful
than SimpReg in revealing the connection between
genes and phenotype. In the SimpReg analysis,
choosing the appropriate significance level for the

Table 7. Comparison of ClusReg analysis with SimpReg analyses: (a) comparison
of the numbers of genes detected by ClusReg and SimpReg analyses for association
with Alzheimer’s disease when the cut-off P value was 0.00064 (the expected FDR
was 0.05) ; (b) comparison of the numbers of genes detected by ClusReg and
SimpReg analyses for association with Alzheimer’s disease when the cut-off P value
was 0.0032 (the expected FDR was 0.08)

Correlation

Clustering

Cluster 1 Cluster 2 Cluster 3 Sum

a Group 1 (negative association) 6 40 0 46
Group 2 (neutral) 40 9286 303 9629
Group 3 (positive association) 0 40 39 79

b Group 1 (negative association) 12 149 0 161
Group 2 (neutral) 34 9087 245 9366
Group 3 (positive association) 0 130 97 227

Sum 46 9366 342
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Fig. 3. Scatter plots of the expression levels of four genes against MMSE phenotype along with the regression lines. Genes
7874 and 6205 (upper panels) were detected by the ClusReg analysis but failed to show statistical significance in the
SimpReg analysis, whereas genes 3261 and 3476 (lower panels) were detected by the SimpReg analysis but missed by the
ClusReg analysis. The dark and light continuous lines represent the regression lines of ClusReg analysis and SimpReg
analysis, respectively.
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correlation coefficients is somewhat arbitrary, which
makes SimpReg analysis inconsistent (see Table 3).
The model-based ClusReg analysis classifies genes
based on the regression coefficients, not based on the
individual P values. In the ClusReg analysis, all genes
are analysed simultaneously in a single model, which
may avoid all potential problems associated with the
separate analysis. Because genes clustered in the same
group are combined and reported as a group, infor-
mation has been greatly increased.

Replication is always needed in various microarray
experimental designs for specific purposes (Churchill,
2002). Replication in the phenotype-associated micro-
array experiment means that the same individual
should be microarrayed more than once. With such a
replication, we are able to partition the residual error
into biological error (between individuals) and tech-
nical error (within individuals). The model developed
in this study is suitable for non-replicated exper-
iments, such as the Alzheimer’s disease microarray
experiment (Blalock et al., 2004). However, it can be
modified with little extra effort to handle data from
replicated experiments. For replicated data, we need
to modify the design matrix, X, and the dimensions of
all other matrices. Technical details of the modifi-
cation are given in Appendix B for interested readers.

We searched the NCBI gene bank and found that
117 genes have been reported to be related to
Alzheimer’s disease. Among the 117 genes, 64 of them
appeared in the list of genes analysed in this study.
Our ClusReg analysis detected 14 of the 64 genes
whereas the SimpReg analysis detected only eight. Six
genes were detected by both methods. We examined
all 50 genes that failed to be detected by ClusReg
(64x14=50) and plotted the expression profiles. All
the profiles were very flat (with no particular trends;
data not shown). These genes did not show any
association with the phenotype we analysed. There
are several explanations for this : (1) these genes may
affect the disease through other phenotypes, (2) their
expression levels do not change across any phenotype
of interest (like housekeeping genes) but their gene
products are essential to the function of other genes
that are directly related to the disease, (3) microarray
expression experiments may have some limitation for
detecting these genes (microarray is not a technology
applicable to all biological problems), (4) there might
be some subtle non-linear relationships between the
expression and the phenotypes, which failed to be
captured by the linear regression analysis, and (5) the
small sample size (31 subjects is not a large group).
Although incorporating multiple traits in the model
may increase power, we believe that the ClusReg
analysis based on one phenotype is already very
informative. It detected more indexed genes than the
SimpReg analysis. The majority of the genes detected
by the ClusReg analysis (highly associated with the

disease phenotype) have not been reported or studied,
leaving a tremendous gap for molecular biologists
to fill.

Clustering genes based on their association with a
phenotype is a true functional genomics study. If the
phenotype is an important disease in humans or an
economically important trait in agricultural species,
the technique will provide a way to identify genes in
the metabolic pathways. In the Alzheimer’s disease
analysis (Blalock et al., 2004), the subjects are a group
of genetically heterogeneous individuals. Individuals
vary due to genotypic differences as well as environ-
mental variants. The functional genes identified are
confounded with genotypic differences. This kind of
confounding can be eliminated by choosing geneti-
cally identical individuals (sampled from an inbred
line) as material for the microarray experiment.
However, many microarray experiments using inbred
laboratory animals have been designed for different
purposes, such as detecting differential gene ex-
pression responding to a drug treatment, which is not
a functional genomics study. If there is a continuous
phenotype associated with each individual from the
inbred line, genes expressions can be analysed using
the model proposed in this study. The expressed genes
identified in such a study would truly reflect the
difference in expression of the same allele because all
individuals carry exactly the same genotype.

Cluster analysis aims at classifying genes into
different groups. Model-based ClusReg analysis,
however, also facilitates statistical tests, not for indi-
vidual genes but for gene clusters, although statistical
test has never been the focus of cluster analysis.
We proposed the Wald test statistic for testing
significance of cluster means from zero. If the test
statistic is significant, all genes in the cluster are
declared as significant. We have successfully applied
this test statistic to identify significant clusters. In the
real data analysis, we reported genes in the extreme
clusters (with a high test statistic value). The proposed
Wald test statistic would allow researchers to study
the statistical power of the cluster analysis for gene
identification via simulation experiments.

We proposed two structures of the covariance
matrix for the random regression coefficients : homo-
scedastic and heteroscedastic. Both structures have
been tested and worked satisfactorily. For the simu-
lated data, clustering results were almost identical,
showing that the homoscedastic model is robust.
A general suggestion on selection between the two
models is to use the homoscedastic model when the
dimension of the covariance matrix is high and the
number of clusters is large. In the opposite situation,
the data are considered to be sufficiently rich to allow
the use of the heteroscedastic model. Theoretically, it
is possible to use the BIC score to select the appro-
priate model. The homoscedastic model is nested
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within the heteroscedastic model so that the like-
lihood value of the latter is always greater than the
former. Incorporating the penalty of the large number
of parameters in the heteroscedastic model will
eventually lead to an optimal model choice.

Computer note. Data were analysed using programs
written in SAS (SAS Institute, 1989). The SAS code of
the programs and the data (including both the simu-
lated data and the real data collected from the
Alzheimer’s disease microarray experiment) are
available on request.
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also provided comments on the first draft of the manuscript
for improvement. We thank the Editor Trudy Mackay and
two anonymous reviewers for their constructive comments
on an early version of the manuscript. The research
was supported by the National Institute of Health Grant
R01-GM55321 to S.X.

Appendix A. Expectation of the complete-data

log likelihood

The missing values are the cluster labels (Zi) and the
random regression coefficients (ci). Conditional on
these missing values, the density of Yi is

p(YijZi, ci; b, s
2)

/ 1

(s2)n=2
exp x

1

2s2
g
c

k=1

d(Zi, k)(YixXbkxXci)
T

�

r(YixXbkxXci)

�
(A1)

where b={bk} is the array of mean regression co-
efficients for all clusters and

d(Zi, k)=
1 if Zi=k
0 otherwise

�
(A2)

is an indicator variable for the cluster label, which has
a multinomial distribution with probability

p(Zi;p) /
Yc
k=1

pd(Zi, k)
k : (A3)

The random regression coefficient has a normal
distribution with probability density

p(ci;S) /
1

jSj1=2
exp x

1

2
cT
i S

x1ci

� �
: (A4)

Note that equation (6) in the main text is derived from
p(Yi|Zi=k, ci ; b, s

2) using

p(YijZi=k; bk,S, s
2)=

Z
p(YijZi=k, ci; b, s

2)

rp(ci;S)dci: (A5)

The joint density of {Yi, Zi, ci} is

p(Yi,Zi, ci;p, b,S, s
2)

/ p(YijZi, ci; b, s
2)p(Zi;p)p(ci;S): (A6)

The joint distribution of the data and the missing
values for all genes simply takes the product of all
gene specific densities,

p(Y,Z, c;p, b,S, s2)

/
Ym
i=1

p(YijZi, ci; b, s
2)p(Zi;p)p(ci;S): (A7)

Let y={p, b,S, s2} be the array of parameters. Given
the missing values, the log likelihood function is

LZ, c(y)= ln p(Y,Z, c;p, b,S, s2)

=g
m

i=1
[ ln p(YijZi,ci; b, s

2)

+ ln p(Zi;p)+ ln p(ci;S)]: (A8)

This likelihood function is called the complete-data
log likelihood. In contrast to this likelihood, the likeli-
hood function defined in the main text (equation 5) is
called the observed (or incomplete-data) log likeli-
hood. The EM algorithm requires many steps of
iteration to achieve the final MLE of y. In each step,
however, the target function that is maximized is not
the observed log likelihood but the so-called expected
complete-data log likelihood function, i.e.

eL(y)=E [LZ, c(y)]=T1(y)+T2(y)+T3(y) (A9)

where the expectation is taken with respect to the
missing values Z (in the form of d) and c conditional
on y and Y. The three components of (A9) are

T1(y)=g
m

i=1
E [ ln p(YijZi, ci; b, s

2)]

=x
1

2s2
g
m

i=1
g
c

k=1

E [d(Zi, k)

�
(YixXbkxXci)

T

r(YixXbkxXci)]

�
x

mn

2
ln (s2), (A10)

T2(y)=g
m

i=1
E [ln p(Zi;p)]=g

m

i=1
g
c

k=1

E[d(Zi, k)] lnpk

(A11)

and

T3(y)=g
m

i=1
E [ln p(ci;S)]

=x
1

2
g
m

i=1
E [cT

i S
x1ci]x

m

2
ln (S): (A12)

The E-steps of the EM algorithm involve calculat-
ing the expectation of terms containing the missing
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values (d and c). In the M-steps, we take

@

@y
eL(y)=

@

@y
T1(y)+

@

@y
T2(y)+

@

@y
T3(y)=0

(A13)

and solve for y. Given the expectations of the terms
involving the missing values, the solutions of y in the
M-steps have closed forms, which are given in the
main text.

Appendix B. Algorithm for replicated microarray

experiments

For simplicity, we assume that each individual is
microarrayed r times (equal replication). Let N=nr
and Yi becomes an Nr1 vector, which is described by
the following linear model :

YijZi=k=WXbk+WXci+Wgi+ei (B1)

where

W=

J 0 � � � 0
0 J � � � 0
..
. ..

. . .
. ..

.

0 0 � � � J

2
664

3
775 (B2)

is a block diagonal matrix and J is an rr1 column
vector of unity. If the number of replicates r
varies across individuals, the unity vector J should
have a variable dimension across individuals.
Here, we introduce an additional vector of errors,
gi=[ gi1 � � � gin ]

T, called the between-individual
errors or biological errors. In contrast to gi, the re-
sidual errors ei are called the within-individual errors
or simply technical errors. We assume giyN(0, Isg

2 ),
where I is an identity matrix with dimension n. Given
Zi=k, the expectation and covariance matrices of
Yi are

mk=E(YijZi=k)=WXbk (B3)

and

V=Var(YijZi=k)=WXSXTWT+WWTs2
g+Is2,

(B4)

respectively.
The EM algorithm remains largely the same as that

of the non-replicated experimental data analysis. Here,
we only emphasize the differences. The parameter
vector now includes an additional parameter sg

2 . The
list of missing values now include an extra vector gi.

Let us define the conditional expectations and
variances of the random effects as

ĉi=E(cijYi,Zi=k)=SXTWT(WXSXTWT

+WWTs2
g+Is2)x1(YixWXbk), (B5)

Ŝi=Var(cijYi,Zi=k)=SxSXTWT(WXSXTWT

+WWTs2
g+Is2)x1WXS, (B6)

ĝi=E(gijYi,Zi=k)=s2
gW

T(WXSXTWT

+WWTs2
g+Is2)x1(YixWXbk), (B7)

R̂i=Var(gijYi,Zi=k)=Is2
gxs2

gW
T(WXSXTWT

+WWTs2
g+Is2)x1Ws2

g: (B8)

Finding these quantities represents the E-step. The
M-step includes computing the following terms:

b̂k=(pkmXTWTWX)x1 g
m

i=1
pikX

TWT(YixWXĉixWĝi),

(B9)

Ŝ=
1

m
g
m

i=1
g
c

k=1

pik (ĉiĉ
T
i +Ŝi), (B10)

ŝ2
g=

1

mn
g
m

i=1
g
c

k=1

pik(ĝ
T
i ĝi+R̂i), (B11)

ŝ2=
1

mnr
g
m

i=1
g
c

k=1

pikY
T
i (YixWXb̂kxWXĉixWĝi) :

(B12)

The detailed EM-steps follow those of the non-
replicated microarray data analysis described in the
main text.
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