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AN EXAMPLE ON CANONICAL ISOMORPHISM

MITSURU NAKAI

A nonnegative locally Holder continuous second order differential
P = P(z)dxdy (z = x + iy) on a Riemann surface R is referred to as a
density on R. A density P is said to be finite if P is integrable over
R, i.e.

(1) f P{z)dxdy <oo .
J R

Suppose that R is hyperbolic, i.e. there exists the harmonic Green's
function G(z,ζ) on R. A density P on such a surface R is said to be
Green energy finite provided the Green energy integral

(2) if G(z, ζ)P(z)P(ζ)dxdydξdη < oo (ζ = ς + iη) .
JJ RXR

Using a density P on a Riemann surface R we can consider a second
order self ad joint elliptic differential equation

(3 ) Δu(z) = P(sMs) (i.e. d* du = MP)

invariantly defined on j?. Denote by P(JB) the space of C2 solutions of
(3) on R and by PX(R) the space of u e P(R) with a certain boundedness
condition X. As for X we take £> to mean the boundedness, D the
finiteness of the Dirichlet integral

DR(u) = I du Λ*du ,
JR

E the finiteness of the energy integral with respect to P :

Λ * du + uΨ) ,
JR

and the combinations BD and BE with obvious meanings. We use the
standard notations H(R) and HX(R) for P(R) and PX(#) with P Ξ O ,
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26 MITSURU NAKAI

and in this case of harmonic function, E = D.
The space PX(R) (X = B, D, E, BD, BE) consists of only constants

for nonhyperbolic R, and avoiding such a trivial case we assume that
R is hyperbolic. Then the operator T defined by

( 4 ) Λ = ^ + i - [ (?(., ζ)P(ζ)u(ζ)dξdη

is an injective positive linear operator from PX(R) to HX(P) for X =
B, D, E, BD, BE (cf. e.g. [1]). We denote by TΣ the operator T considered
only on PX(R), i.e.

Tx = T\PX(R) ,

and if Tx: PX(R) ~> HX(R) is surjective, then we say that PX(R) is
canonίcally ίsomorphic to HX(R). For a systematic exposition on canonical
isomorphisms we refer to [2].

It is known (cf. e.g. [1]) that: 1) The space PBD(R) (PBE(R), resp.)
is dense in PD(R) (PE(R), resp.) with respect to the topology defined
by the uniform convergence on each compact set of R and by the Dirichlet
(energy, resp.) integral over R 2) If P is a Green energy finite (finite,
resp.) density on R, then TBD (TBE, resp.) is surjective. In view of
these there naturally arises the question: Is TD (TE, resp.) surjective
for any Green energy finite (finite, resp.) density P on RΊ The purpose
of this paper is to answer negatively to this question by proving the
following

THEOREM. There exists a both finite and Green energy finite density
P on the hyperbolic simply connected Rίemann surface R such that TD

and TE are not surjective.

It has been known that there exists a density (a finite density, resp.)
on the hyperbolic simply connected Riemann surface R such that TBD

(TBE9 resp.) is surjective and yet TD (TE, resp.) is not (Singer [6] ([3],
resp.)). Our theorem contains the above as a special case. The simply
connectedness of R in our theorem is not an essential restriction. Actually
our theorem is true for any Riemann surface with the property HD(R)
— HBD(R) Φ φ. The only reason we put the restriction is to simplify
the reasoning and to avoid inessential complications. At the end of the
introduction the author should mention his indebtness to Professor Moses
Glasner who gave him an important incentive to the present work.
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CANONICAL ISOMORPHISM 27

1. As a conformal representation of the hyperbolic simply connected
Riemann surface R we take the unit disk in the complex plane C. Thus
we always mean in the sequel by R the unit disk \z\ < 1 and by β the
unit circle \z\ — 1. Then a density P may be considered as a nonnegative
locally Holder continuous function P(z) on R. The P-unit e is defined by

e(z) = lim er(z)

where βr is the solution of (3) on the disk \z\ < r < 1 with boundary
values 1 on \z\ = r.

We state a sufficient condition for a given positive bounded solution
u of (3) on R to be the P-unit e: If

( 5 ) lim u(reίθ) = 1

for almost every e** e β, then u is the P-unit e. The harmonic Green's
function Giz,ζ) on R is given by

G(z, 0 = log

and, by (4), the function

Tu(z) - + -A- f log
2τr J Λ

belongs to HB(R), where dμ(ζ) — P(ζ)u(ζ)dξdη is a measure on i? with a
finite total mass. By the Littlewood theorem (cf. e.g. Tsuji [7])

im log
r-»l JR

lim 1-ζre*

- ζ
= 0

for almost every eίθ e β. Therefore (5) implies that l i m ^ Tu(reίθ) = 1
for almost every eiΦ e β, and a fortiori the Fatou theorem implies that
Tu = 1. In particular, w < 1 on R. By the maximum principle, u <
er < 1 on 121 < r for every r e (0,1). Hence we conclude that u < e < 1
on i? and the condition (5) is also satisfied by e. By the same reasoning
as above we obtain Te = 1, i.e. Tu = Te. The injectiveness of T implies
that u = e.

A key lemma for the proof of our theorem is the following ingenious
result of Singer [5]: For every u e PD(R) we have

( 6 ) DR(eTDu) < oo
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28 MITSURU NAKAI

Our program of the proof is to find an heHD(R) and a positive C~

subharmonic function e on R with (5) such that P{z) = Δe{z)\e{z) satisfies

(1) and (2) and yet DR(e-h) = oo. Then e is the P-unit and h <£ TD(PD(R))

by (6), i.e. TD is not surjective, from which nonsurjectiveness of TE

follows since PE(R) c PD{R).

2. We start with constructing an heHD(R). We use the notation

£7(ζ, r) to denote the open disk in C with center ζ e C and radius r > 0.

Let {dn} (n = 0,1, •) be the sequence determined by

d0 = 1 , dn\dn_x = exp (-2τm4) (w = 1,2, •) .

We define an fn e C(C) Π H(U(1, d«-i) - 17(1, <U) by / n = 0 on C - C/(l, d ^ J

and fn = 1 on [7(1, dn) (n = 1,2, . . . ) . Then

Dc(fn) = 2πllog(dn_ι/dn) = n~* .

Let fen = ίίyn, the harmonic function on R with boundary values fn on β.

Clearly hn > 0 on .β. By the Dirichlet principle

By the triangle inequality

( m+p \ / m+p

Σ K) < ( Σ n
n=m+l / \n=m+l

for every m and p = 1,2, . Hence the sequence {Σ?=i ^w} (w = 1,2, •)

in HD(R) is convergent in the Dirichlet integral on i2. On the other

hand 2]?-i fcκ = 0 on the part β~ of β in the second and third quadrants.

Therefore

h(z) = Σ fcn(2)

is convergent on R, heHD(R) Π C(B — {1}), and h(z) —> oo as z e J? — {1}

tends to 2 = 1.

We denote by A n the part of β Π [Z7(l, d Λ .J - U{l,dJ\ in the first

quadrant. Then A n is an open arc in β such that

( 7 ) h\An>n (n = l ,2, . ) .

We denote by αn the midpoint of An and by 2σn the length of An. The

sequence {an} (n — 1,2, •••) of points in β and {σn} (w = l,2, •••) of
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CANONICAL ISOMORPHISM 29

positive numbers will be used later in the construction of a subharmonic
function e on R.

3. The construction of e is rather complicated and requires a bit
delicate estimates. Therefore it is convenient to prepare several elementary
lemmas first in nos. 3-7, and then the construction will be carried over
in nos. 8-11. The proof of the theorem will be completed in the final
no. 12.

Let λ be a cross cut in R, i.e. an analytic arc contained in R except
end points joining two distinct points in β. We denote by F one of
regions in C bounded by β and λ. We take one more cross cut γ in F
joining two distinct points in β Π F different from end points of λ. The
region in F bounded by β and γ is denoted by V. Let Y be the empty
set φ or the union of disks Xj (j = 1, , k) such that Xj a V and Xt

Π Xj = φ (iΦj). Let & = ^(F Y) be the class of functions u in
C(F) Π H(F - Y) such that u\ 7 U (β Π F) = 0. The assertion is: There
exists a positive constant cx = cλ(F Y, γ) such that

( 8 ) <JDV(U) < cxmax\u\

for every ue^.
To show this let β0 be a Jordan arc joining two end points of λ

outside F such that the region Fo bounded by λ and β0 contains F and
let Γo be the union of disks Xj0 (j = 1, , k) concentric to Xj such that
Xj0 c Xj. Since u\(d(F — F) — X) — 0 for every u e ZF which is harmonic
on F — Y, the symmetry principle on harmonic functions assures that
every u \ (F — F) simultaneously has the harmonic extension u to Fo — Fo

if we take β0 and Γo close enough to β and Y, respectively. By the
maximum principle, \u\< max^l^l on F and thus

\u\ < max \u\

on FQ — Fo for every ue^. Let a e V — Γ, r(a) > 0 be such that

£7(α, 2r(α)) c F o - Fo, and P(s, 2r(a)eie) be the Poisson kernel on U(a,2r(a)),

i.e.

== f* P(2j, 2r(a)eiθ)v(a + 2r(a)eiθ)dθ
Jo

for every v harmonic on C7(α, 2r(α)). Since
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30 MITSURU NAKAI

dt Jo dt

for t = x and ?/, we have

9

P(z, 2r(a)eίθMa + 2r(ά)eiθ)dθ

dt
sup |

\z-a\=2r(a)

where

K(a) = sup
|ζ-α|=2r(α), |z

which is seen to be finite by using the concrete representation of P(z, ζ).
Since V — Y is compact, it can be covered by a finite number of disks
V(av9 r(αv)) ( α v e 7 - Γ ; y = l, ,f), Then the required c\ is (max^^ #(oϋ)2

multiplied by the area of F — Y.

4. Let λ, γ, V, and F be as in no. 3. This time we assume Y Φ φ,
i.e. Y is the union of disks Xj (j = 1, -,k) such that Xj czV and
Xi f] Xj = φ (ί Φ j). By exactly the same consideration as in no. 3, we
obtain: There exists a positive constant c2 = c2(F Y, jθ such that

k

δ Jδ < c2 max I

= &(F Y) and

f*du < c2(max|/|jimax|^|

(9)

for every wι

(10)

for every / e (7(7) and every u e <F = J^ίF Y).

5. We introduce the notation V(ζ,r) for ζeβ and r > 0 to mean
V(ζ,r) = R Π U(ζ,r). Let Y be the empty set φ or the union of disks
X3 (j = 1, . . . , ft) such that Xό d R and X̂  Π X^ = φ (i Φ j). Let σ =
σ(l, Y) be the distance dis (Y, 1) between the point 2 = 1 and Y if Y =£ ^
and σ = 2 if Y = 0. We fix Y and take one more variable disk X such
that I c β - F . Consider the harmonic measure w — w(-, Y U X) of
Y U X in R, i.e. weC(R) such that w|X U Y = 1 and w\β = 0. The
third lemma is: For any numbers η19 η2 and s with 0 < ηx < η2 and
0 < s < σ(l, Y) there exists a number p e (0, s) and a disk X with X c 7(1, p)
such that

(ID f
J-3X
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CANONICAL ISOMORPHISM 31

where dX is positively oriented with respect to X, and

(12) Vι < Dva,p)(w( , YUX))<η2.

Actually we can choose U(t, ε) as X where t is on the real axis.

6. To prove the assertion in no. 5 we first consider the function

f(t,ε)= ί *(Zw(.,Γ U U(fi,e))
J-9Z7(ί,e)

for t e [σ0,1) (σ < σ0 < 1) and ε e (0,1 — t). As auxiliary results to prove

(11) and (12) we assert the following:

(13) lim/(σ0,ε) = 0 ;
6-0

For any fixed ε0 e (0, min [(σ0 — σ), 1 — σ0])

(14) / ( , ε 0 ) e C [ ( 7 0 , l - ε 0 ) ,

i.e. f(t, ε0) is continuous on the interval [σQ, 1 — e0) as a function of t,

and

(15) lim /(t, βo) = oo .
ί-l-εo

We fix an εx e (0, min [σ0 — σ,l — σ0]). Then w(-,Y U Z7(<J0, ε)) together

with its first derivatives converge to w(-,Y) and its first derivative

uniformly on each compact subset of R — Y — {σ0}, and in particular on

dU(σ0, ελ)9 and therefore

lim f * c M ,X U U(σ0,ε)) = f *dw(>,Z) = 0 .
6-0 j3Z7((7o,ei) J3Z7((7o,6i)

Since f(σo,ε) = —I ^ d ^ C ^ Z U U(σo,ε)) for εG(0,εi), we deduce (13).
J3Z7"(*O, I )

Fix a t0 e [σ0,1 — ε0) and an εx e (ε0, min [σQ — σ, 1 — σ0]). It is easily

seen that w(-,Y U U(t,e0)) together with its first derivatives converge to

w( , 7 U U(t0, ε0)) and its first derivatives uniformly on each compact

subset of R — Y — U(to,εQ) and in particular on 9Z7(to>ei) as t —> ίo

view of

= - f
for £ in |ί — ίo| < εx — ε0, we conclude (14) as in the proof of (13).

Let uQ be the harmonic measure of Y U U(l — ε0, ε0) with respect to
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R, i.e. u0 e C(R - {1}) Π H(R - Γ U [7(1 - e0, ε0)) such that M = 1 on

7 U ([7(1 — ε0, e0) — {1}) and ^ = 0 on β — {1}. Suppose DR(u0) < + co.

By the Dirichlet principle, -D^o) > DR(vt), where ^ = w( , ϋ(t9ε)) with

a fixed ε e (0,ε0) and a t e (1 — ε0,1 — ε). Observe that DR(vt) = 2π/log μt

where /£, is the modulus of the annulus R — U(t,ε). We know that

lim^!,, μt = 1 (cf. e.g. Sario-Nakai [4 p. 28]), which implies a contradic-

tion. Thus we must have

DE(u0) = oo .

On the other hand, wt = w(-9Y\J U(t, ε0)) together with its first derivatives

converge to u0 and its first derivatives uniformly on each compact sub-

set of R — Y — [7(1 — ε0, ε0) as t —• 1 — e0* Therefore

lim
ί-l-βo

< oo .= I * du0
\JdY

By the Fatou lemma, DR(u0) < lim inf t^^eo DR(wt) and thus

lim DR(wt) = oo .

Observe that

DR(wt) = f(t, ε0) + I * dwt .
J -BY

Hence we see that (15) is valid.

7. We proceed to the proof of the assertion in no. 5. First we

choose and fix a p e (0, s) so small that

Let γ = B Π dϋ{l,p) and Λ = 22 Π 9[7(l,/o/2). The region bounded by ^

and j U, resp.) containg Y in its interior is denoted by V (F, resp.).

The above inequality means that

- ΓU

(16)

We consider auxiliary functions wr e C(R — β Π 3ί7(l, r)) Π

with wr = 1 on T U

for re (0,^/4).

yields

) - j8 Π 3ί7(l, r)] and w r = 0 on β - β Π [7(1, r)

For any disk X with X c 7(1, r), the maximum principle
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,Y) < w( ,Y [J X) <wr

33

on R, and sup^ \w( , Y) — w(> , Y U I ) | < supA | ^ ( , Y) — w r | = ε(r). Since
wr converges to w(-, Y) uniformly on each compact of R — {1}, we have
limr_oε(r) = 0. Observe that

f w(.,D*dw(.,Y) - ί

is dominated by the sum of

U Ul)

and

|J w( ,
Observe once more that w( , Γ U l ) ~ w ( J )
no. 4. Thus the last term is dominated by

Y) in the sense of

, Y U X)|Vsup , Y U Z) -

r) < c2(max|w( , Γ)| + ε(r))ε(r)

as a consequence of (10). By fixing r e (0, /?/4) so small that

ε(r) ί |*dw( , Y)| + cJmax\w(., Y)\ + ε(r))ε(r)

we conclude that

f w(.,Y)*dw(.,Y) - f M JUl)*to( J U
Jr Jr

whenever X c C7(l,r) ίl R = F(l,r). This with (16) gives

f w( ,Y U X)*dw( ,Y Ό X) < (JJ2 - ηd/2
Jr

(17)

for every disk X with I c
We next take f(t,ε) considered for the present w( , Y U U(t,ε)) as

in no. 6 for t e [r/2,1) and ε e (0,1 - t). By (13) we can choose ε0 6 (0, r/2)
with /(r/2,ε0) < C?7i + ^)/2. By (14) and (15), the mean value theorem
applied to /( ,ε0) e C[r/2,1 — ε0) yields the existence of t0 e (r/2,1 — ε0)
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such that f(to,εo) = (ηx + %)/2. Finally we prove that X = U(to,εo) is the

required. First, X c Z7(l, r) c Z7(l, p). The (11) is clearly satisfied since

Vi < fa + 92)/2 < 372- Observe that

f y U DX)) = /(to,εo) + f

where γ is oriented in the direction of dV(l9p). In view of (17) and

o) = (ηλ + 572)/2, we conclude that (12) is true.

8. Having finished preparations in nos. 3-7, we proceed to the

construction of e as announced at the end of no. 1. The construction

will be carried over related to the heHD(R) constructed in no. 2 and

in particular related to the sequences {an} c β and {σn} defined in no. 2.

First choose an SjGίO,^) such that h\U(a19s^) > 1. By no. 5, we can

find a p1 e (0, s j and a disk Xλ with Xλ c U(alf pj such that

(18)

Next choose s 2e(0, σ2) such that h\ Z7(α2, s2) > 2. Let γ = R f) dU(a2, s2)

and λ = R Π dU(a2, s2/2) and V (F, resp.) be the region bounded by β

and γ (λ9 resp.) containing Xx. Let w r be the function in the class

C(R — β Π 3f/(α2,r)) Π £Γ(i2 - Xx - V(a2, r)) such that wr = 1 on Xj U

[F(α2, r) - θ Π 9C7(α2, r)] and wr = 0 on β — U(a2, r) for r e (0, s2/2). Take

any disk X with X c i7(α2, r). The maximum principle yields ux < u < wr

on R where nx = ^ ( , Xj) and tt = w( , Xx U X). Observe that ^ — u

in the sense of nos. 3 and 4. Since \u — uλ\ < \ux — wr\,

ί * du — I * cfâ

where c2 is the constant in (9), and

< VDv(u — uj < Cj max \uλ — wr\

where cx is the constant in (8). Since wr converges to ux uniformly on

each compact subset of R — {α2} as r —> 0, by using (18) and the above

we can find an r2 e (0, s2/2) such that
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(2-1 l-2 < f *dw(.,X1 U X)< 2 I"2

(19) I J-dXt

[2-1 Λ-> < DV(aupl)(w(-,X1 U X)) < 2 I" 2

for any disk X with X c £7(α2, r2). Again using the results in no. 5,

we can find a p2 e (0, r2) and a disk Z 2 with X2 c £7(α2, /?2) such that

, ^ U X2) < 2 2"2

,X, U X2)) < 2 2-2 .

Combining this with (19) we have

ί2"1 i~* < ί * d ^ ( , Z, U Z 2 ) < 2 r 2 0' = 1 ,2 ) ;
(20) <^ J -iXj

[2-1 r 2 < DF<β/>M)(w( , I 1 U I ! ) ) < 2 . i~2 0' = 1,2) .

9. Repeating the process as in no. 8, we can find a sequence {pn}

with pn e (0, σn) and a sequence {Zn} of disks Xn with Xn c U(an, pn)

(n = 1,2, •) such that

2-1 r 2 < f *d

( ( , U(21)

for every n = 1,2, . Although it should be clear by no. 8, we show

how to find pn+ί and Xn+1 when {pv} (v = 1, -,ri) and {PFJ (y = 1, -,ri)

satisfying (21) have already been found. Choose sn+1 e (0, σn+1) such that

hI U(fln+1, sn+1) > w + 1. L e t r = β n d ϋ ( β n + 1 9 sn+1) and ί = 5ΠdU(an + ι, βn+1/2)

and T (F, resp.) be the region bounded by /3 and ^ (λ, resp.) containing

U*-i-^* Let wr be the function in the class

C(R-β\J dU(an+1,r)) Π # ( # - U -?* - V(an9r))

such that wr = 1 on (U*-i-X*) U [^(α^^r) - j S Π 3ί7(αn+1,r)] and w r = 0

on β — U(an+1, r) for r e (0, sn+1/2). Take any disk Z with X c U(an+1, r).

The maximum principle yields

on β where un = w(-, {Jl=ιXk) and u = w( ,((J%=1Xk) U X). Observe
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that u — u
n
 G ̂ (F, (J*-i X

k
) in the sense of nos. 3 and 4. Since \u — u

n

<un- wr,

Σ
.7 = 1

* dU —
J -3Xy J -3

*du~

where c2 is the constant in (9), and

- un)

— un) < cx max \un — wr

for j = 1,2, , n. Since wr converges to un uniformly on each compact

of R — {an+1} as r —> 0, by using (18) and the above, we can find an rn+1

e (0, s2/2) such that

(22)

for every disk X with X c Ϊ7(αn + 1,rn + 1). Again using the results in

no. 5 we can find a pn+1 e (0, rn + 1) and a disk Z w + 1 with Z n + 1 c U(an+ί, pn+1)

such that

,(U X*) u xfj

1 (^+ 1)"2< f *dwΛ,ίjχΛ < 2 (w+ I)"2

|2-».(w + I)"2 < 2V«..+IlΛ.+ι,(w( , y **)) < 2 (n + I)"2

and clearly h \ U(an+1, ρn+1) > n + 1. Combining this with (22) for Z = Xn+1,

we deduce that {p*} (k = 1, , n + 1) and {Xft} (A; = 1, , n + 1) sat-

isfies (21).

10. Since w{-,{JZ=1Xk) increases as n increases and is bounded

by 1,

(23) w( • ,\J Xk) = limw( ,{J Xk)

exists on R, which is continuous on R — {1}, 1 on U*-i-X*> 0 on β — {1},

harmonic on R — UΓ=i Xk* a n d superharmonic on R. Set un = w(-> U*=i ^*)

and Wo, = w(>, (JΓ=i -X"*)-

R(un+p - un) = nfi \ (1 - un)*d(un+p - wn)

https://doi.org/10.1017/S0027763000021760 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021760


CANONICAL ISOMORPHISM 37

= Σ? ( f (! - un)*dun+p - DXk(un))

Here 0 < 1 — un < 1 and *cZ^n+p > 0 on —dXk for fc =

and a fortiori by (21)

On letting p —> oo and by using the Fatou lemma

Dniu,. — un) < 2 2 k~2

for every n. Thus

(24) lim DR (w(., U

On the other hand,

, U Z f c)) - 0

= ± f *

and we conclude with (24) that

(25) DB(w(.9 0 X*)) < 2 "2 < oo .

Passing to the limit in (21) by using (23) and (24) we obtain the follow-

ing:

2-1 r 2 < f
(26)

0' = 1,2,

11. Take two concentric disks Wn and Zn to Z n such that Zn c

Z n c I B c ? B c F n c C7(αTO, Pn) (n = 1,2, . . ) . By applying the regu-

larization (cf. e.g. Yosida [8], Tsuji [7], Sario-Nakai [4; p. 150]) to

w( ,Un=i-^n) o n e a c ^ Wn — Zn (n = l,2, •••), the resulting C°° super-

harmonic function on R will be denoted by g. Then

- U (Wn - ^ ) ) =
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The first inequality of (26) is also valid if the integrating curve — dXj
is replaced by —dWj and a fortiori we have

(27) 2-1 r 2 < f *dg£ 2 r 2 (j = 1,2, . . .) .

We can also make DWj_Ej(g — w(-,{Jn=1Xn)) as small as we wish by
choosing the regularization g close enough to w( ,Un=i-^J (cf. e.g.
Sario-Nakai [4; p. 150]) in each Wj — Zj O' = l,2, ...) and thus the
second inequality of (26) yields

(28) 4-1 r 2 < DV(ahPj)(g) < 4 r 2 0' = 1,2, •)

and we stress here once more the following

(29) h\V(apPj)>j O' = l , 2 , . . . ) .

Finally we set e(z) = 1 — g(z)/2 and observe that

(30) 1/2 < eiz) < 1

on R and that e(z) is C°° subharmonic on R. As the counter parts of
(27)-(29) we obtain

4 *de < j ~ 2 (j = 1,2, •)

16"1-/-' < DnajtβJe) < r2 (j = 1,2, . . .)(31)

12. The required density P in the theorem is given by

P(s) = Je(z)/e(z)

on R. Then e is a bounded solution of (3) with this P. Since e has
boundary values 1 on β — {1}, the condition (5) in no. 1 is satisfied by
e and therefore e is the P-unit for this P. Therefore

(32) 1 = Te = e + — f G( , ζ)P(ζ)e(ζ)cZfφ?
2ττ JR

where G(z,ζ) is the harmonic Green's function on R.
In view of (30) and (31), we deduce

f P(z)dxdy < 2 f Δe{z)dxdy = 2 Σ f Δe(z)dxdy
i R J R j = l jWj

oo Λ oo

= 2ΣJ8jr *dβ^2g;-»<oo,
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i.e. P is a finite density on R. By (30) and (32), we have

f G(.,ζ)P(ζ)dξdv<4π
J R

on R. Then by the Fubini theorem

^ G(z, ζ)P(Qdξdήdxdy

<4π[ P(z)dxdy < 8ττ j ~ | Γ2 < °°
JR .7 = 1

i.e. P is a Green energy finite density on R.
The last and the most delicate part of the proof of the theorem is

to show that TD for the present P is not surjectίve. For the aim we
shall show that the h in HD(R) defined in no. 2 does not have the
counter image of TD in PD(R), i.e.

h e TD(PD(R)) .

To prove this we estimate DR(eh). Take a concentric disk Ω to R with
Ώ aR. Then

DΩ{eh) — e2d/£ Λ*dh — 2\ edh A * Me = h2de Λ*de
J Ω J Ω J Ω

and hence

f h2de Λ*de < DΩ(eh) + ί e2dh Λ*dh + 2 ί edhΛ*hde
J Ω J Ω J Ω

By the Schwarz inequality, the last term is dominated by

2̂  f e2dh A * dkY'-ί ί h2de A * deY* .

In view of e2 < 1, on setting £Ω = ί /Λ2e Λ*deJ , we have

PQ < DΩ(eh) + DΩ(h) + 2DΩ(h)1/2.£Ω

or

(£a - DΩ(h)1/2y < DΩ(eh) + 2DΩ(h) .

Since DΩ(h) < DR(h) < <χ>, on letting β ->β, we obtain

(33) |YJ ^2de Λ * deY2 - ^(fc) 1 / 2 ] 2 < DΛ(eΛ) + 2DB(k) .
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On the other hand, by (29) and (31), we deduce

ί h2de A *de > fj ί h2de A *de

Therefore, by (33), Dn(eh) = oo. By the Singer criterion (6), this means

that h 0 TD(PD(R)), i.e. Γ^ is not surjective.

The proof of Theorem is herewith complete.

Added in Proof. The author feels it very fortunate that the

referee of this paper was at least careful enough to keep the manu-

script of this paper safely for almost three years in his drawer with-

out losing it. In the meantime further developements based on this

paper have been published by the present author in the following two

papers:

1) Extremizations and Dirichlet integrals on Rίemann surfaces, J.

Math. Soc. Japan, 28 (1976), 581-603;

2) Malformed subregions of Rίemann surfaces, J. Math. Soc. Japan,

29 (1977), 779-782.
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