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FINITE SUBGROUPS IN INTEGRAL GROUP RINGS 

MICHAEL A. DOKUCHAEV AND STANLEY O. JURIAANS 

ABSTRACT. A /?-subgroup version of the conjecture of Zassenhaus is proved for 
some finite solvable groups including solvable groups in which any Sylow/7-subgroup 
is either abelian or generalized quaternion, solvable Frobenius groups, nilpotent-by-
nilpotent groups and solvable groups whose orders are not divisible by the fourth 
power of any prime. 

1. Introduction Let Zl\ZG denote the group of units of augmentation one of the 
integral group ring of a finite group G. The Zassenhaus conjecture (ZC3) says that any 
finite subgroup of Z1\ZG is conjugate in QG to a subgroup of G (see [19, Chapter 5]). 
Its particular case (ZC1) states that the same is true for torsion units of ll\ TG. We know 
that (ZC3) holds for nilpotent groups [22] and for split metacyclic groups ([15], [21]). 
K. W. Roggenkamp and L. Scott have shown that the Zassenhaus conjecture is false 
and a counterexample is a finite metabelian group [11]. However, somewhat weaker 
statements hold for large families of finite and infinite groups (see [19, Chapters 5 and 6] 
and [1], [3], [4], [7], [8], [9], [10], [12]). In the present paper we consider the following 
/7-subgroup version of (ZC3). 

( _ 7C\\ *f H is a/7-subgroup of U\ZG then there exists a unit a G QG such 
^ that arxHa C G. 

In particular, if (p-ZC3) is true for a group G then any Sylow/7-subgroup of Zl\ZG 
is rationally conjugate to a/7-subgroup of G. Conjugation of those Sylow subgroups of 
Zl\ZG which can be embedded into a group basis is investigated in [9], [10]. 

In this paper all groups G are assumed to be finite. In Section 2 we establish a reduction 
modulo a normal subgroup. We apply it to generalize a result of [16] and to prove (p-
ZC3) for nilpotent-by-nilpotent groups. In particular, this conjecture is true for both 
metabelian and supersolvable groups. We also give a partial solution of Problem 32 of 
[19] and point out that (p-ZC3) implies a positive solution of that problem. In Sections 3 
and 4 we establish (ZC3) for S4 and a covering group of it, the Binary Octahedral Group. 
We apply these results in Section 5 to prove (p-ZC3) for solvable groups in which any 
Sylow subgroup is either abelian or generalized quaternion. As a consequence we deduce 
(p-ZC3) for solvable Frobenius groups. We also prove (p-ZC3) for a family of groups 
including those solvable groups whose orders are not divisible by the fourth power of 
any prime. 
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2. A reduction step and some applications. For an element a = EgeG &(g)g of 
TG we put a(g) - T,hecg

 a(n) where Cg is the conjugacy class of g G G. We use symbol 
~ to denote conjugation in a group. 

Let N be a normal subgroup of G, G = G/N, *F: ZG —> Z(G/N) the natural map, 
g = ^(g) for g G G. This notation will be used in all what follows. 

LEMMA 2.1. Let a G U\ZG be a torsion unit, [3 = ^(a) and (o(a), \N\) = 1. If the 
order ofg G G is relatively prime to \N\ then a(g) = ]3(g). 

PROOF. Set Sg = {h G G : h ~ g in G} and fg = { * G S g : o(/*) = <?(g)}. We see 
that /3(g) = T,h£Sg

 a(h)- Note that if h is not in S'g then (o(A), |N|) 7* 1 and consequently 
there is a prime/? such that/? | o(h) but/? does not divide o(a). By [19, Lemma 38.11], 
a(h) = 0. Since the complement of S'g in Sg is a normal subset of G, we have that 
/3(g) = T,hesf a(h)- It suffices to show that the elements of S'g are conjugate to g. Indeed, 
if h G Sg then t~xht- gO for some t eG,0 £ Afand the equality o(/z) = o(g) implies that 
the cyclic subgroups (g) and (gO) are complements forNinNx\ (g). Since (o(g), |Af|) = 1, 
we get, by Schur-Zassenhaus Theorem, that gO is conjugate to g. The result follows. • 

The next result generalizes [7, Lemma 2.3]. 

THEOREM 2.2. Let H be a finite subgroup of Ux TG such that (|//|, | JV|) = 1 and G0 

be a subgroup ofG with (|Go|, |N|) = 1. Then His rationally conjugate to Go iff^(H) is 
conjugate to ^(Go) in QG. 

PROOF. We only have to prove the converse. Let H = *¥(H) and G0 = ^(Go). Let 
7_1//7 = Go for some 7 G QG, a G H and /? be as above. We see that ha = 7"1/?>7 is, 
up to conjugacy, the unique element of G with J3(ha) ^ 0. From [19, Lemma 38.11] it 
follows that {o{ha), |AT|) = 1. From the Schur-Zassenhaus Theorem it follows that we 
can choose ga G G such that ha = ^(ga) and (o(ga), |iV|) = 1. Then it follows from [19, 
Lemma 38.11] and Lemma 2.1 that, up to conjugacy, ga is the unique element of G with 
&fe*) f 0- Since (|Go|, |iV|) = 1, the restriction of *¥ to Go gives an isomorphism between 
Go and Go- Denote by *Fi the inverse of this isomorphism and define a homomorphism 
<t>\H-+ Go by setting 4>{a) = lFi(7"1/37). Since (o(<l)(a)), \N\\ = 1,Lemma 2.1 implies 

that a(<t>(a)) = /?(¥</>(«)) = Kh<x) ¥ ° a n d ^(a) i s conjugate to ga . It follows by [19, 
Lemma 41.4] that H is rationally conjugate to Go. • 

REMARK. We have proved that if// < UxTG and (|//|, |Af|) = 1 then *¥ is injective 
on//. 

As a consequence we have the following: 

COROLLARY 2.3. Suppose that (ZC3) holds for the factor group G/N. Then any finite 
subgroup / / C 11\ZG whose order is relatively prime to the order ofN is rationally 
conjugate to a subgroup ofG. 

We also obtain some consequences for split extensions. 

COROLLARY 2.4. Let G be an extension of a nilpotent group N by a group X which 
satisfies (p-ZC3). If the orders ofN and X are relatively prime then G satisfies (p-ZC3). 
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PROOF. Let H be a finite /^-subgroup of U{LG. If/? does not divide the order of 
N then we use Theorem 2.2 and the assumption on X. If/? does divide \N\ then G has 
a normal Sylow /^-subgroup and hence, by [19, Theorem 41.12], we obtain that H is 
rationally conjugate to a subgroup of G. m 

We give now an improvement of Lemma 37.13 of [19]. 

LEMMA 2.5. Let G = TV X X, where the orders ofN and X are relatively prime, and 

let a = vw G U\TG be a torsion unit with v G U{\ + A(G,NJ) and we U{IX. If 

(o(a), \N\ j = 1 then a and w are rationally conjugate. 

PROOF. We observe that a(g) = w(g) for all g G G. Indeed, if (o(g), \N\) f 1 then 
it follows from [19, Lemma 38.11] that a(g) = w(g) = 0. If (o(g), \N\) = 1 then, by 
Schur-Zassenhaus Theorem, we may suppose that g GX and apply Lemma 2.1. 

Now let d be a divisor of o(a). Then a** = v̂ vv̂  with vd G l /( 1 + A(G, AO) and we 
use the same reasoning for the units c^, wd. Hence, according to [13, Theorem 2], a and 
w are conjugate in QG. * 

The next result is a modification of Lemma 37.6 of [19]. 

LEMMA 2.6. Let H\ and H2 be isomorphic finite subgroups of Zl\ZG with a given 
isomorphism (p:H\ —> Hj. Suppose that \(h) = \{^p{h)) for all h G H\ and all absolutely 
irreducible characters \ ofG. Then H\ is conjugate to H2 in QG. 

PROOF. We extend the representation Y: G —> Gl(«, C) corresponding to \ linearly 
to T\\H\ —» G1(«,C). By assumption the characters of T\ and Tup are equal and, 
consequently, the images of H\ and H2 are conjugate in any simple component of CG. 
Hence H\ is conjugate to H2 in CG and Lemma 37.5 of [ 19] implies that the conjugation 
can be taken in QG. • 

Now we extend Theorem 37.17 of [19]. 

THEOREM 2.7. Let G be as in Lemma 2.5. Then any finite subgroup HofZl\ZG with 
(|//|, |iV|) = 1 is rationally conjugate to a subgroup ofU, IX. 

PROOF. For a G H we write a = vw with v G U(1 + A(G, N)) and w G Wi ZX By 
Lemma 2.5 the isomorphism H 3 a = vw —» w satisfies the hypothesis of Lemma 2.6. 
Hence / / is conjugate to //0 in QG, where Ho is the image of// in IZi ZX • 

COROLLARY 2.8. Let N be a normal subgroup of G and H be a finite subgroup in 
1 + A(G, N). Ifp is a prime which divides \H\ thenp divides \N\. In particular, ifN is a 
Hall subgroup of G then \H\ divides \N\. 

PROOF. We already know that \H\ is a divisor of |G|. Suppose that there exists a 
prime p that divides the order of//and does not divide \N\. Let a G / /be a unit of order 
p. Then ^(a) = 1 and, by Theorem 2.2, we have that a is rationally conjugate to 1, a 
contradiction. • 

THEOREM 2.9. Let Gbea nilpotent-by-nilpotent group. Then (p-ZC3) holds for G 
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PROOF. Let / /be a/?-subgroup of U\ ZG and G\ be a normal nilpotent subgroup of G 
so that G/G\ is nilpotent. If G\ is not a/?-group, then G possesses a normal //-subgroup 
N. It follows from Theorem 2.2 and induction on the order of G that H is conjugate in 
QG to a subgroup of G. If Gi is a/?-group, then the Sylow p-subgroup of G is normal 
and [ 19, Lemma 41.12] implies that H is rationally conjugate to a subgroup of G. • 

The proof of the following lemma can be found in [7] (see Lemma 1.5). 

LEMMA 2.10. Let Gbea solvable group andP an abelian Sylowp-subgroup ofG. If 
P is not normal in G then Opi{G) f 1. 

PROPOSITION 2.11. Let P be an abelian Sylow p-subgroup of a solvable group G. If 
H is a finite p-subgroup of U\ ~LG then H is rationally conjugate to a subgroup ofG. 

PROOF. By [ 19, Theorem 41.12] we may assume that P is not normal in G. It follows 
from the preceding lemma that N = Op>{G) f 1. Since the factor group G/N satisfies 
our hypothesis we can use Theorem 2.2 and induction to conclude that H is rationally 
conjugate to a subgroup of G. • 

S. K. Sehgal has proposed the following question [19, Problem 32]: 
Letue1l(l+ A(G,NJ) be a torsion unit with N<G. Does o(u) divide \N\? 
Now we point out that (p-ZC3) implies a positive solution of this question. 

PROPOSITION 2.12. Let N be a normal subgroup of a group G which satisfies (p-ZC3). 
IfH is a finite subgroup of<ll(l+ A(G, AT)) then \H\ divides \N\. 

PROOF. Let Hp be a Sylow/?-subgroup of//. By (p-ZC3), Hp is rationally conjugate 
to a subgroup HQ of G. Going down modulo N we see that HQ C N. Hence \HQ\ divides 
\N\, and consequently |//| divides \N\. • 

Note that Corollary 2.8 gives a partial solution of this problem. 

3. (ZC3)for5,4. The Zassenhaus conjecture for cyclic subgroups in Z1S4 was proved 
in [5]. In this section we prove the following: 

THEOREM 3.1. (ZC3) holds for S4. 

PROOF. Let G = S4 and let H be a finite subgroup of 'ZZiZG. It is known that G 
has a faithful irreducible complex representation T: G —•> Gl(3, C) such that the trace of 
r((12)) is 1. We denote also by T the extension of this representation to ZG. Since (ZC1) 
holds for G it follows that T is faithful on //. Therefore 

(3.2) |r(//)| = |//|. 

Denoting by F the Fitting subgroup of G we have that F = ((12)(34), (13)(24)) and 
GjF - S3. Since F is abelian, there exists an invertible matrix X such that X~XT(F)X 
has a diagonal form. It is easy to see that 

(3.3) J T 1 r ( F ) Z = { / , d i a g ( - l , - l , l ) , d i a g ( - l , l , - l ) , d i a g ( l , - l , - l ) } . 
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Denote by W the natural map TG -* ZG/F, H = ¥( / / ) and H0 = Hf](l + A(G, F)). 
In view of (ZC1), going down modulo F, we obtain that 

(3.4) h G H0 if and only if 7_1/*7 G F for some unit 7 G QG. 

We may also assume that H is not cyclic. According to Lemma 2.6 it suffices to find a 
monomorphism ip:H—*G such that h ~ (f(h) in QG for all h G //. We consider several 
cases. 

CASE 1. H = (w, v) is isomorphic to the Klein four group. Since \H\ divides |G|, the 
order of //divides 6 and [//: H0] = 1 or 2. 

If the index is 1 then, by (3.4), the map </?:// —> F defined by (p(u) = (12)(34), 
(p(v) = (13)(24) is a group isomorphism such that h ~ (p(h) in QG for all h G //. Thus, 
H is rationally conjugate to F. 

Suppose now that [//: //o] = 2. Choose generators w, v such that u £ Ho and Ho = (v). 
We have that u ~ (12) and v ~ (12)(34) in QG. Clearly uv fi H0 and, therefore, 
uv ~ (12) ~ (34) in QG. We now define an isomorphism cp:H —> ((12),(12)(34)) by 
putting (p(u) = (12), ip(v) = (12)(34). Then h is rationally conjugate to (p(h) for all h G H 
and consequently H is conjugate in QG to a subgroup of G. 

CASE 2. The order of H is 8. Note that in this case [// : H0] = 2. We show that H is 
not abelian. First suppose that H is elementary abelian and let wi, W2, W3 be generators 
of// such that H0 = (w27 "3). There exists a matrix Y such that F - 1 r ( / / )F consists of 
diagonal matrices. For h G H we put d(/*) = y_1r(/2)7. Note that 7 - 1 / /o7 consists of 
the diagonal matrices given in (3.3). So there is u G //o so that d(u) = diag(l, —1,-1). 
Now since u\ does not belong to Ho we may suppose that d(u\) = diag(— 1,1,1). Hence 
d(uu\) = diag(—1, — 1, — 1), a contradiction since uu\ is rationally conjugate to (12). 

Let H = (w, v), where o(u2) = o(v) = 2. Note that u does not belong to H0 and, 
consequently, //0 is generated by w2 and v. Let Fbe such that Y~lT(H)Y is in diagonal 
form. As above, the diagonal form of Ho consists of the matrices given in (3.3). Since 
u2 G Ho we may assume that d(u2) = diag(—1, — 1,1). Hence, d(u) = diag(±/, ±/, ±1). 
Choose w G H0 so that d(w) = diag(l, — 1, — 1). The element uw has order 4 so, since 
(ZC1) holds for G, we see that uw is rationally conjugate to (1234). Hence, d(u) and 
d(uw) are conjugate. However, it is easy to check that the matrices diag(±/, ±/, ±1) and 
diag(±/, ±/, ±l)diag(l , —1, —1) are not conjugate in Gl(3, C), a contradiction. 

Thus H is not abelian and since Ho has exponent 2 we see that H must be isomorphic 
to the dihedral group of order 8. Let H = (w, v : u4 = v2 = 1, v~xuv = u3). Then u is 
not in Ho and we may choose v such that Ho is generated by u2 and wv. By (3.4), the 
nontrivial elements of Ho are conjugate to (12)(34). Since (ZC1) holds for G we have 
that the other elements of order 2 are rationally conjugate to (13) ~ (24) and those of 
order 4 are conjugate to (1234). Put H\ = ((1234), (13)) and define an isomorphism of// 
to H\ given by (p(u) = (1234), ip(v) = (13). Then it is clear that h and (f(h) are rationally 
conjugate for all h G //, and hence H ~ H\ in QG. 
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CASE 3. The order of H is 6. Since (ZC1) holds for G we must have that H is 
isomorphic to S3. Let H = (w,v) with w3 = v2 = 1. Note that //0 has to be trivial, 
otherwise H would be cyclic. Hence the elements of order 2 in H are rationally conjugate 
to (12). Define amonomorphism </?://—• G by <p(u) = (123) and ip(v) = (12). Then it is 
clear that h and (p(h) are rationally conjugate for all h G H and hence H is conjugate in 
QG to a subgroup of G. 

CASE 4. The order of// is 12. Since Z1\ZG does not have elements of order 6 we 
have, by [2, pp. 134—135], that H is isomorphic to A4. Then the elements of order 2 
are pairwise conjugate in H and case 1 implies that //0 is rationally conjugate to F. If 
(p:H —-> A4 is any isomorphism then, clearly, h is rationally conjugate to (p(h) for all 
h G //. Hence, / / is rationally conjugate to A4. 

CASE 5. / / is a group basis. We shall show that H is isomorphic to S4. First note that 
H is solvable. Put H\ = OyiH). Note that H® is normal and has order 4 in this case. 
So if H\ is not trivial then H would have an element of order 6 which is, obviously, a 
contradiction. According to case 2, the Sylow 2-subgroups of//are dihedral of order 8. 
Hence, [6, p. 462] implies that H is isomorphic to S4. Denote by ip the extension of any 
isomorphism G ^ H to the integral group rings. It follows from [19, Theorem 43.6] 
that {p is an inner automorphism induced by a unit of QG. Consequently, H is rationally 
conjugate to G. • 

4. (ZC3) for the binary octahedral group. Let G be the Binary Octahedral group. 
We know that the center Z{G) of G is cyclic of order 2, GjZAG) - S4i the Sylow 
2-subgroups of G are generalized quaternion of order 16 and that any group with these 
properties is isomorphic to G (see, for example, [20, 2.1.14]). Moreover, the Fitting 
subgroup F of G is isomorphic to the quaternion group of order8 and G/F & S3. Let 
N = Z(G) = (z) and let *¥: T.G —> ZG/Nbe the natural map. 

LEMMA 4.1. We can choose a Sylow 2-subgroup P = (a, b : as = 1, b2 = a4, b~lab = 
a~l) ofG and its generators so that ¥(#) = (1234), F = (a2, ab) and a2 ~ ab in G. 

PROOF. Obviously, we can take a P with *¥(F) = ((1234), (13)). Since F is the 
inverse image of ((12)(34),(13)(24)), weseethatF= (a2,ab). Letx G Gbe an element 
of order 3. Thenx-1a2jc 7* a6. Going down modulo Af to £4 we see that x~la2x G {a2k+lb} 
and consequently a2 ~ ab in G. • 

We also note that a is not conjugate to a5 in G. For if x - 1ax = a5 for some x eG then 
jt-1Pjc = P as (a2,ab) is the Fitting subgroup. However, NG(P) = P and consequently 
JC G P, a contradiction. 

In all that follows in this section we choose P and its generators as in the lemma 
above. If c G G is an element of order 3, then we obtain, looking at S4, the following 
representatives of the conjugacy classes of G: 

order of an element 1 2 3 4 6 8 
representatives 1 z c a2,b zc a, a5 
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We note that *F maps the two conjugacy classes of elements of order 4 of G to the two 
classes of elements of order 2 in S4. We begin by proving that the Zassenhaus conjecture 
holds for cyclic subgroups in ZG. We say that a £ ZG satisfies the unique trace property 
if there exists a g E G, unique up to conjugacy in G, such that a(g) f 0. 

PROPOSITION 4.2. (ZC1) holds for G. 

PROOF. Let a e U\ZG be a torsion unit, (3 its image in ZS4 andg G G. Denote by 
g = Yfe). Since (ZC1) holds for S4 we have that 

(43) ^ ) e { 0 , l } . 

Note first that the unit group U\IG has a unique element of order 2. So we may 
suppose that the order of a is not 2. If o(a) = 3 then we apply Theorem 2.2. If the order 
of a is 6 then we may write a = zc*o, where the order of c*o is 3 and so we are done by 
the previous case. Going down modulo N we see easily that the only possibilities left for 
the order of a are 4 and 8. 

Let a be a 2-element such that o(a) > 4. We want to show that every element of (a) 
has the unique trace property. Note that z does not belong to the support of a. If g has 
order 3 or 6 then [19, Lemma 38.11] implies that a(g) - 0. So we may suppose that g 
is of order 4 or 8. Let g and go be elements of G whose orders are 4 and 8 respectively. 
Going down modulo N it is easy to see that 

(4.4) m=m, 
P(go) = a(go)+cc(g?0). 

Since go is not conjugate to go in G, there exists an absolutely irreducible character 
X of G so that xfeo) ^ xfeo)« It is e a s v to see that the degree of \ divides 4 and % is 
not zero on an element of order 8. Moreover, \ is faithful as ^(a) = ^(a5). Let T be the 
representation associated with x- Then T(z) = —/ and therefore 

(4-5) Xfeo5) = -Xfeo). 

We now treat separately the remaining two cases. 
Assume first that a has order 4. It follows from (4.3) and (4.4) that a(g0) + a(g0

5) = 0 
and that there exists a unique, up to conjugacy, element g\ G Goforder4suchthatd(gi) f 
0. Applying \ to a and using (4.3) and (4.5) we obtain that x(<*) = xfe i ) + 2<*(g0)x(go). 
It follows from the equalities g\=z = a2 that the eigenvalues of T(a) and F(gi) are ±L 
Note that in G every element is conjugate to its inverse so \ is real-valued. Consequently, 
X(a) = x(g\) = 0 and so a(go) = 0. Thus any element of (a) has the unique trace property 
and in view of [19, Lemma 41.5] a ~ g i in QG. 

Finally assume that o(a) - 8. By the same reasoning we obtain that a(g) = 0 if 
o(g) i 8 and a(g0) + aig^) = 1. Hence, 

(4.6) x(<*) = [<*feo) - a(d)]x(go) = [2a(g0) - l]xfeo). 
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The equalities a4 = z = g$ imply that the eigenvalues of a and go are primitive roots 
of unity of degree 8. Since \ is real-valued and x(go) / O w e see easily that the only 
possibilities for \{a) and x(go) are ±y/2 and ±2y/l. Using this fact and (4.6) we obtain 
that 2a(go) — 1 = ±1 and so a(go) is 0 or 1. It follows from the former case, that every 
element of (a) has the unique trace property and so, by [ 19, Lemma 41.5], either a ~ go 
or a ~ gQ in QG. • 

THEOREM 4.7. G satisfies (ZC3). 

PROOF. AS we already mentioned U{LG has a unique element z of order 2, which is 
central, and we denotedN = (z). So if H is a finite non-cyclic subgroup of U\TG then 
the Sylow 2-subgroups of H are either cyclic, or quaternion of order 8 or generalized 
quaternion of order 16. Moreover, since (ZC3) holds for 54 and this group does not have 
subgroups of order 6, ZLx TG does not contain subgroups of order 12. 

Let|//| =8 . Suppose first t ha t / /< U{\ + A(G,FJ). Then, by (ZCl),any 1 fheH 
is conjugate in QG to a2 ~ ab. Therefore, if <p: H —• Fis any isomorphism, h is rationally 
conjugate to (p(h) for all h G //, and Lemma 2.6 implies that H and F are conjugate in 
QG. 

If H is not contained in U(1 + A(G, F)) then it is easily seen that, going modulo N, 
we may choose generators /*o, h\ of H such that ho ~ b and h\ ~ a2 in QG. We now 
define a homomorphism (p:H —> (a2,b) by <p(Ao) = ^> <P(^i) = Q1- Since *¥(h\ho) fL 
u(\ + A(S4, Fit(S4))) it follows that h\h0 ~ a2b in QG and h]h0 = zhxho ~ za2Z> = a66 
in QG. Hence h and <p(h) are rationally conjugate for all h G H and consequently so are 
Hand(a2,b). 

Suppose now that the order of// is 16. We have that H ^ P. Choose generators M, 
v for H so that ¥(w) ~ (1234) and ¥(v) - (13) in QS4. It follows, by proposition 4.2, 
that v ~ b in QG and either w ~ a or u ~ a5 in QG. In the later case we consider 
a5 instead of a, so we may suppose that u ~ a. Define an isomorphism </?:// —* P by 
(p(u) = a, (p(v) = b. Observe that ^(i /v) is rationally conjugate to (1234)*(13). So if A: 
is even then *F(M*V) ~ (24) ~ (13) and consequently ukv ~ b in QG. If A: is odd, then 
*F(w*v) ~ (14)(23) in QS4 and, hence ukv ~ a2 ~ ab in QG. So we proved that h ~ (p(h) 
for all h G H and, therefore, H and P are rationally conjugate. 

Let \H\ = 24. Since S4 satisfies (ZC3) it follows that ¥(//) ~ A4 in Q54. Since^4 has 
a normal Sylow 2-subgroup it follows that H also has a normal Sylow 2-subgroup //0. 
Hence H = Ho x (v) with v3 = 1. Clearly //0 is the quaternion group of order 8 and as 
¥(//()) ~ *¥(F) in QS4, going down modulo F, it is easily seen that H0 < Zl( 1 + A(G, F)). 
Consequently, Ho is rationally conjugate to F. Let c G G be an element of order 3, 
G\ = F x (c) and <p:H -+ G\ any isomorphism. Recall that the conjugacy classes of 
elements of order 3 and 6 are respectively represented by zc and c. From this it easily 
follows that <p(h) ~ h in QG for every h G H and hence / / and G\ are rationally 
conjugate. 

Finally let \H\ = 48. It follows from the information above that H/Z(H) ^ S4 and the 
Sylow 2-subgroups of// are isomorphic to P. Hence, H must be the Binary Octahedral 
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Group. Let (p:H —> G be any isomorphism. Theorem 3.1 and Proposition 4.2 imply that 
(p(h) ~ h in QG for every h G //with o(A) 7* 8. Let o(/z) = 8 and suppose that (p(h) is not 
rationally conjugate to h. We have that G = (P, c), c3 = 1 and Gi = F x (c) has index 2 
in G. Define a map 0 by a —» a5 and g —> g for any g G Gi. Since the elements of G\ are 
fixed by this map it follows that it is an automorphism of G. It is easy to check now that 
if we replace ip by </?#, we get (f(h) ~ h in QG for all h G H and consequently H and G 
are rationally conjugate. • 

5. (p-ZC3) for some solvable groups. 

THEOREM 5.1. Let Gbea solvable group such that any Sylow subgroup ofG is either 
abelian or generalized quaternion. Then G satisfies (p-ZC3). 

PROOF. Let H be a finite /7-subgroup of U\ J.G. In view of Proposition 2.11 we may 
assume that p = 2 and the Sylow 2-subgroups of G are generalized quaternion. If the 
Fitting subgroup F of G is not a 2-group, then G contains a non-trivial normal subgroup 
N of odd order. Since the factor group G/N satisfies the assumption of the theorem we 
use Theorem 2.2 and induction on \G\. 

LetFbe a 2-group. Since G is solvable, CG(F) = Z(F) [18, p. 144] and, consequently, 
G/Z(F) = NG(F)/CG(F) is a subgroup of Aut(F). According to [17, Proposition 9.10] 
if F is not isomorphic to Q$, the quaternion group of order 8, then Aut(F) is a 2-group 
and the result follows from [22]. Let F^ Qs. Then Aut(F) & S4, \Z(F)\ = 2 and, hence, 
\G\ divides 48. By [22] we may suppose that G is not nilpotent. If \G\ = 24 then G has a 
normal Sylow 2-subgroup and we can use Theorem 2.9. If \G\ = 48 then G is the Binary 
Octahedral group. In this case we apply Theorem 4.7. • 

COROLLARY 5.2. A finite solvable Frobenius group satisfies (p-ZC3). 

PROOF. By [18,10.5.6] G = Afx X where TV is nilpotent, (|iV|, |X|) = 1 and the Sylow 
p-subgroups of X are either abelian or generalized quaternion. Hence, the result follows 
from Corollary 2.4 and Theorem 5.1. • 

THEOREM 5.3. Let G be a finite solvable group andL = L(G) the last non-trivial term 
of the lower central series ofG. Ifp4 does not divide \G\ for any prime p dividing \L\, 
then G satisfies (p-ZC3). 

PROOF. Let H be a finite ^-subgroup of U\ TG. If/? does not divide \L\ then, since 
G/L is nilpotent, we apply Theorem 2.2 and the theorem of Weiss [22]. 

Let/? divide \L\ and let F be the Fitting subgroup of G. If F is not a/?-group, then 
N = Op'{F) is a non-identity normal subgroup ofG. It is easy to see that the factor group 
G/N satisfies the hypothesis of the theorem, so we may use Theorem 2.2 and induction 
on the order of G. 

Let F be a/?-group and P a Sylow /^-subgroup of G. In view of Proposition 2.11 and 
[19, Theorem 41.12] we may assume that P is not abelian and not normal in G. In fact 
\P\ - p3 because/?4 does not divide | G\. Now the same arguments as in [7, pp. 4908-4909] 
shows that/7 = 2 and G-S4. Thus, the result follows from Theorem 3.1. • 
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REMARK. The proof of the theorem shows that if H c Zl\ZG is a finite subgroup 
whose order is relatively prime to that of L then H is rationally conjugate to a subgroup 
ofG. 
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