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SURFACES WITH ISOMETRIC GEODESICS
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The aim of the paper is to prove the Theorem: Let M be a surface in the euclidean space £ ' which is
diffeomorphic to the sphere and suppose that all geodesies of M are congruent. Then M is a euclidean sphere.
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0. Introduction

The aim of this paper is to prove the following:

Theorem. Let M be a surface in the euclidean space E3, which is diffeomorphic to the
sphere S2. We suppose that all geodesies of M are congruent. Then M is a euclidean
2-sphere.

The basic idea of the proof is the following: We consider a curve F o in £ 3 such that
each geodesic of M is congruent to F o and let k(s) be the curvature function of To. By
supposing that k{s) is not constant, we find a surface S in the unit sphere bundle Si(M)
of M such that the projection n: S-*M with n(vp) = p is a covering map of M. But in
this case, an everywhere non-zero vector field, tangent to M, can be constructed and it
is well-known that this is impossible [5]. So the function k(s) is constant and we get
easily that M is a euclidean 2-sphere.

We would like to make the following remarks:

(i) The hypothesis that M is diffeomorphic to S2 is not an essential restriction. In fact,
if M is compact and 7r1(M)#0, then there are geodesies on M which do not have the
same length [1,2]. On the contrary, there exist surfaces in E3, diffeomorphic to the
sphere S2, which have all their geodesies closed and of the same length, i.e. the Zoll's
surfaces [1].

(ii) Actually, in the above mentioned theorem we may assume that the curve To is
closed. In fact a theorem of Lusternik guarantees the existence of closed geodesies in M
[4]. Lusternik's theorem however, is quite technical and our proof does not depend on
any detailed information about To.

(iii) This theorem would be trivial if we had supposed that there is a fixed point p of
M, such that for every two geodesies yi,y2 passing through p there exists a rotation of
E3 around p taking y1 toy2. However such a point p does not in general exist.
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We would like to thank the referee for suggesting the use of the formula, appearing in
the proof of the Lemma., which also simplifies the proof of Proposition 3.

We denote by <, > the usual inner product in E3 and by A the shape operator of M.
Let vp in SX(M). There exists a unique geodesic y: ( — oo, oo)-»M such that y(0)=p,

y'(0) = vp. We denote by K(VP), I(VP) the normal curvature and torsion of y at p, and we
have that:

K(VP) = (Avp, vp), T(VP) = <Avp, Jvp},

where in general, by Jvp we denote the vector that we obtain if we rotate vp in TpM by
n/2 and such that {vp, Jvp, np} form a positively oriented basis of £3.

In what follows we will refer to them as the curvature and torsion of vectors of
S\M).

We consider now a fixed curve F o in E3 such that each geodesic of M is congruent to
To. Below we suppose that the curvature of F o is not constant and F o is not a plane
curve. In fact in each case we can easily deduce that all points of M are umbilical and
consequently M is a sphere. Let <x(s), se{ — oo, oo) be a parametrisation by arc-length of
F o and let k(s), z(s) be the curvature and torsion functions of a(s) respectively.

1. The covering space S of M

In this paragraph we will suppose again that the curvature function k(s) is not
constant. So we will find a surface S in Sl(M) which is a covering space of M.

Proposition 2. Let K: S1(M)-^R be the differentiable function defined by K(VP) =
\(Avp,vpy\ and let k0 be a non-critical value of k(s). Then the set tc~1(k0) is a compact
surface in S1(M).

Proof. Let vp in x~1(k0) and y be the geodesic of M with y(0) = p, y'(O) = vp. Then we
have

d_
'da r = 0 ds s(0) do

But the last product is different from zero: The term dk/ds\s(0) is different from zero
because fc0 is a non-critical value of k(s) and the term ds/da\Q = l because the function
s(a) defines a reparametrization by arc-length of F o .

So the function K is of rank 1 on K~1(k0) and consequently K~l(k0) is a surface in

Now the covering space of M will be chosen among the components of a surface
K~1(k0), for a suitable non-critical value k0 of k{s).
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Lemma, (i) There is a non-critical value k0 of k{s) and a component S of K~i(k0),
which contains at least one non-principal vector.

(ii) Every vector v in S is non-principal.

Proof, (i) The fact that the function k(s) is not constant implies that M contains
non-umbilical points. Let p be a non-umbilical point of M and let vp be a unit vector of
TpM with x{vp)=£0; in other words vp is a non-principal vector.

*I K(vp) = k and k is a non-critical value of k(s), then, setting ko=k, we choose among
the components of K~l{k0) that one which contains the vector vp and we denote it by S.

If K(VP) = k and k is a critical value of k(s), we consider an open neighbourhood V of
vp in TPM, sufficiently small, such that ue F=>T(U)^0 . Standard calculations show that

d_
dt 1 = 0

and hence the values K(V), veV form an open subset U in the range of the curvature
function k(s). Now by Sard's theorem there exists in U a non-critical value k0 of k(s)
and evidently if we consider the surface K~l(k0), there exists a component S of K~i(k0)
which contains a unit vector v with T(U)#0 .

(ii) In R2 we consider the curve /?(s) = (fc(s), T(S)), se( — 00,00). Since k0 is a
non-critical value of k(s) the set of s with k{s) = k0 is a discrete subset of ( — 00,00).
Therefore there exists at most a countable number of points s, in ( — 00,00), i =
1,2,... such that fc(sj) = /c0. Hence the set of values TJ = T(S,) is also countable, and since S
is connected it follows that x is constant on S. Therefore all vectors in S are
non-principal.

We can now prove the following proposition:

Proposition 3. Let n:S-*M be the projection on M with n(vp) = p. Then the pair (S,n)
is a covering space of M.

Proof. Consider the curve 8(t) = (vp + tJvp)/\vp+tJvp\ in Sl(M), for vpeS. Then the
tangent vector S'(0) of S spans the kernel of the derivative at vp of the canonical
projection map from S\M) to M. However this is transverse to the tangent plane TVpS
of S, since d/dt\,=0K(d{t)) = 2x(vp)^0. Therefore the projection n has rank 2 everywhere
on S and consequently n is a local diffeomorphism.

On the other hand n is closed, since S is compact. So n is onto and (S,rt) is a
covering space of M. •

Corollary. The curvature function k(s) of F o is constant.

Proof. M is simply connected and therefore has no non-trivial covering spaces. So
the projection n:S-*M is a diffeomorphism. Now if each p in M is mapped to the
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vector n~l(p) of S, we get a differentiable vector field tangent to M, everywhere
non-zero, which is impossible [5]. In this way, the hypothesis that k(s) has non-critical
points leads to contradiction. So k(s) is a constant function. •

3. Proof of the theorem

According to the corollary above, k(s) is a constant function. Therefore all the unit
tangent vectors of M have the same curvature, which implies that all the points of M
are umbilical. So M is a euclidean 2-sphere. •

One should notice here that the above proof works equally well when the surface M
is embedded into the hyperbolic space H3 or into the sphere S3 and all geodesies of M
are congruent in H3 or S3 respectively.

Now it is natural to ask how this theorem is generalized in the case where M is an
arbitrary submanifold in a euclidean space E". In fact, suppose that M is a submanifold
of codimension m in a euclidean space E", with m < n — 1. If all geodesies of M are
congruent, then the question which arises naturally is the following: Is the submanifold
M a sphere or a hyperplane in E", if it is compact or non-compact respectively?

This question is the subject of a forthcoming paper.
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