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INCLUSION THEOREMS FOR THE ABSOLUTE 
SUMMABILITY OF DIVERGENT INTEGRALS 

BY 

H A R V E Y D I A M O N D , B R I A N K U T T N E R A N D L O U I S E A. R A P H A E L * 

ABSTRACT. Some inclusion theorems are obtained relating the 
absolute summability of divergent integrals of the form fâf(x)dx 
under three summability methods: Abelian A(x), Abelian A(lnx) 
and Stieltjes S(x). 

1. Introduction. If the application of a summability method to a divergent 
series (or integral) yields summability means of bounded variation in the 
summation parameter, then the series (or integral) is said to be absolutely 
summable. It is natural to ask which results of summability theory, in particular 
the inclusion theorems, hold in analogous form for absolute summability. In 
[6], for instance, D. Rath proved that a classical inclusion theorem for Abelian 
summability due to Hardy [2] remains true if summability is replaced through
out by absolute summability. 

In this paper we obtain some inclusion theorems relating the absolute 
summability of divergent integrals of the form Jo /(*) dx under three summa
bility methods: Abelian A(x), Abelian A(lnx), and Stieltjes S(x). Our results 
constitute an absolute summability analogue of two inclusion theorems appear
ing in [5]; these theorems are restated in Propositions 1 and 2 in the next 
section. We also provide examples which demonstrate proper inclusion. Such 
examples were lacking for the inclusion theorems of [5]. 

The Abelian methods A(x) and A(lnx) are well known, employing the 
multipliers e~sx and x~s respectively, where s is the summation parameter 
tending to 0+. The Stieltjes summability method being less well known, we will 
provide a brief background.f 
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The name "Stieltjes" was introduced by Raphael in [5] to refer to summabil-
ity methods having multipliers of the form (l + sAn)-1 in the case of divergent 
sums (An representing a sequence increasing to infinity with n), and (1-f-
sg(x))"1 in the case of divergent improper integrals (g(x) increasing to infinity 
with JC); these methods are denoted by S(A„) and S(g(x)) respectively. In 
connection with sums, Stieltjes methods have been studied from time to time in 
the classical literature (see [5] for some references); the first systematic 
treatment for integrals is in [5]. Recently, Stieltjes summability has arisen 
naturally in the Tikhonov regularization of eigenfunction expansions associated 
with Sturm-Liouville equations, providing a stable method of summing such 
expansions if the coefficients are known only approximately. In particular, 
using the Tikhonov regularization method, it was proved in [7] that for regular 
Sturm-Liouville systems, the expansion of an L2 function is summable S(An) at 
continuity points, where the An are the eigenvalues; in [5] a class of singular 
Sturm-Liouville expansions on [0, <») was shown to be summable S(x) at 
continuity points to its corresponding L2 functions (these expansions taking the 
form of improper integrals with respect to the spectral measure of the eigen
values). 

2. Basic Definitions and Results. The functions to be integrated are as
sumed Lebesgue measurable, locally integrable real valued functions defined 
on the half line [0, oo). The integral Jo f(x) dx means l im^^Jo f(x) dx provided 
the limit exists or is infinite. We write f{x)e BV(0, o°) if / has bounded 
variation on (0, °°). 

DEFINITION 1. The integral J'Q / is summable by the Abel method A(x) to the 
sum L (written fâf = L A(x)) if cf)(s) = Jo /(x)exp(-sx) dx converges for s>0 
and lims_^0 <t>(s) = L. The integral is said in addition to be absolutely summable 
if <t)(s)eBV(0,oo) also holds. In this case we write fâf = L\A(x)\. 

DEFINITION 2. The integral Jo / is summable by the Abel method A (In JC) to 
the sum L (written J ^ / = L A (In x)) if <t>(x) = Jo f(x)x ~S dx converges for s > 0 
sufficiently small and lims_*0 <t>(s) = L. The integral is said in addition to be 
absolutely summable if <j>(s)eBV(0,c) for some c > 0 . In this case we write 
£ / = L | A ( l n J c ) | . 

DEFINITION 3. The integral Jo / is summable by the Stieltjes method S(x) to 
the sum L (written J o / = L S(x)) if <f>(s) = Jo f(x)(l + sx)~j dx converges for 
s > 0 and lims_^0 cf)(s) = L. The integral is said in addition to be absolutely 
summable if <£>(s)eBV(0, oo) also holds. In this case we write fâf=L \S(x)\. 

REMARK. The summability means <t>(s), in Definitions 1, 2, and 3 above will 
be referred to as the Abel, Mellin, and Stieltjes means of / respectively. 

The following inclusion theorems are from [5]. 
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PROPOSITION 1. If fâf = L A(x) and Jof(x)(l + sx)~l dx converges for s > 0 

then fàf=L S(x). 

PROPOSITION 2. If J^/ = L S(x) and fâf(x)x~sdx converges for s>0 suffi
ciently small then j^f(x)x~sdx=L A(lnx). 

The next proposition contains identities which were used in the proofs of 
Propositions 1 and 2 and which will prove similarly useful later in this paper. 

PROPOSITION 3. If Jo f(x)e~sx dx is bounded for s > 0 and Jo /(x)(l + sx)_1 dx 
converges for s > 0 , then Jo /(x)(l + sx)_1 dx = (IIs) Jo exp(— f/s) 
Jo/(x)exp(—xf) dxdt /or s > 0 . 1/ Jo /(x)(l + sx)_1 dx is bounded for s > 0 and 
Jo f(x)x~~s converges for s>0 sufficiently small, then for s > 0 sufficiently small 
we have 

J /(x)x"sdx=[(sin7rs)/77] ! ts_1 f f(x)(l + txT*dxdt. 
J 0 J 0 Jo 

REMARK. Proposition 3 shows that the Stieltjes means can be obtained 
directly from the iterated Laplace transform of /. This allows us to exploit the 
large body of Laplace Transform results and examples in studying the Stieltjes 
summability method. 

The following Lemma is a slight restatement of a result due to Knopp [3]. 

LEMMA 1 (Knopp). Suppose that 
1. g(s)eBV(0,oo), 
2. Jo h{b, s) ds exists for b G (0, c) where c may be infinite, 
3. jr Hb, s) ds e£V(0 , c) uniformly for t > 0 . 

Then <f>(b) = Jo h(b, s)g(s) ds e BV(0, c). 

Knopp's Lemma was used by Rath to prove the results in [6]. 

3. Main Theorems. The following two inclusion theorems for absolute sum
mability are analogous to the inclusion results of Propositions 1 and 2. 

THEOREM 1. If fâf=L |A(x)| and Jo /(x)(l + sx)_1 dx converges for s > 0 then 

£ / = L | S ( x ) | . 

Proof. From Proposition 1, Jo / = L S(x) so that we need only show that 
Jo /(x)(l + sx) -1eBV(0,oo). We show this using Knopp's Lemma. We have 
Jo /(x)(H-bx)_ 1 dx = (l/b) Jo exp(-s/b) Jo /(x)exp(-xs) dx ds. By assumption 
Jo /(x)exp(-sx) dxGBV(0,oo) so the first hypothesis of Knopp's Lemma is 
satisfied. For the second hypothesis, (lib) Jo exp(—s/b) ds = 1 for all fr>0. 
Finally, for each f, (1/b) JJ°exp(-s/b) ds = exp(-r/i>) is positive, monotone in
creasing and bounded by 1, hence its total variation on (0, oo) is bounded by 1 
uniformly in t. This proves the theorem. 
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THEOREM 2. If J^/ = X. |S(JC)| and Jof(x)x s dx converges for 0<s<c then 
Jo f = L |A(lnx)| and ^ f{x)x~s dxeBV{0,cf] for any c'<c. 

Proof. Define h(s) = $Q f(x)x~s dx, 0<s<c. By Proposition 3, J o / = L 
A(ln x) so we need only show that h(s)eBV(0, c']. Given any a, c' such that 
0 < a < c ' < c it is easy to prove that h(s) is infinitely differentiate for se 
[a,c']. This in turn implies the boundedness of h'(s) on [a,c'] so that h(s)e 
BV[a, c'\ It remains then to show that h(s) e BV(0, a] for some a<c. In what 
follows, we let a be any number satisfying 4a <min( l , c). From Proposition 3 
we have 

[ f(x)x-sdx = [(sinTrs)Iir] J 6S _ 1 | J /(jcXl + ftx)"1 dx 1 d£ 

= [(sinirs)/7r]f bs~Hl + b r 2 a [ ( l + &)2a [ /(*) 

x (1 + bx) l dx \db, 0 < 5 < a. 

To apply Knopp's Lemma we must show first that g{b) = 
(l + b)2a iofM(l + bx)-1 dxGBV(0,oo). By assumption, %f(x)(l + bx)-ldxe 
BV(0, oo) so g(6) G B V(0, 1] is certainly true. We will show that g(b) e BV[l , oo) 
by proving that Jo l&'WI db <oo. Differentiating, 

g ' ( b ) - 2 a ( l + b)2a~1 f / (xXl + ftx^dx-U + b ) 2 ^ x/(x)(l + ftx) ~2dx 

(1) 

We rewrite the first integral as Jo f(x)x~3a(x3a/l4-bx) dx. Since 3a <c , 
$of(x)x~3adx exists. We also have x3 a/(l + b x ) < l / b 3 a and for each b, the 
function has a unique maximum. Applying Bonnet's second mean value theo
rem, we can obtain Jo /U) ( l + bx)'1 dx < b~3a sup 0 < a < 3 < 0 0 |J« /(x)x~3a dx| < 
Mb~3a for some constant M. The first term in (1) is then bounded in absol
ute value by 4aN/bl+a for fc> 1. The second integral in (1) may be treated in 
a similar fashion, so that we obtain Jo xf(x)(l + bx)~2 dx <M/b 1 + 3 a and can 
then bound the second term in (1) to be less than 2M/bl+a in absolute value 
for b > l . Finally, we have \g'(b)\<3M/b1+a, proving that Jo |g'(b)l db<™ and 
hence that g(b)e J3V(0, oo)̂  using the arguments above. 

To complete the proof using Knopp's theorem, we must show that 
[(smTrs)lir]$7bs-\l + by2adbeBV(0, a] uniformly for t > 0 . Integrating by 
parts gives 

sin77sf°° b s - 1
 J7 sin7rs ts „ sin7rsf°° bs 

~ J , (TT^*=
 m (i+o2-+2û-^-J, (ÏTftV^*- (2) 

Clearly, (sin ITS)/ITS e B V[0, a] . Next, it is easily seen that ts/(l + 0 2 a ^ l for 
(s, t )e[0, a ]x [0 , oo); and furthermore, for any fixed te[0, °°), the function is 
either non-increasing or non-decreasing in s. Thus the total variation of 
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fs/(l + 0 2 a is less than 1, uniformly in t > 0 . We show next that the integral in 
(2) is of bounded variation on [0, a] uniformly in t by showing that its 
derivative is uniformly bounded: 

Ids JL ( l + 6) 1 + 2 a I " ! ( l + 6 ) 1 + a ( l + 6)a Jo ( l + b) 1 + a 

where the last step follows from the bound bsl(l + b)a < 1 for s e [0, a] and all 
b>0. The final integral exists and its value is of course the required bound. 
This completes the proof. 

An immediate corollary of Theorems 1 and 2 is the following: 

THEOREM 3. If fâf = L \A(x)\ and fâ f(x)x~s dx converges for 0<s<c then 
j"o f = L |A(lnjc)| and fâ f(x)x~s dxeBV(0,c'] for any c'<c. 

Proof. The existence of $Q f(x)x~s dx for 0 < s < c implies the existence of 
the Stieltjes means for all b > 0 . Theorems 1 and 2 may then be applied 
successively to complete the proof. 

Theorem 3 may be considered an integral analogue of Rath's result in [6]; or 
a second generation analogue of Hardy's result in [2]. 

4. Examples. The examples below are intended to help delineate the 
boundaries of the various summability classes. Some of our examples employ 
complex-valued functions to help simplify the analysis; real-valued examples 
may be obtained by considering real and imaginary parts of these functions. 

(a) Summability |A(x)| but not S(x) or A(lnx): /(x) = xsinx. The Stieltjes 
and Mellin means of this function do not exist; the Abel means may be 
obtained from a table of Laplace transforms and summability |A(x)| verified. 

(b) Summability \A(x)\ and \S(x)\ but not A(lnx): f(x) = xV2eix. From 
Laplace Transforms, f(x) is |A(x)| summable; the Stieltjes means of / exist so 
by Theorem 1 / is also |S(x)| summable. However, the Mellin means of / do 
not exist. 

(c) Summability |A(lnx)| but not summable S(x) or A(x): /(x) = xlc/(l + x) 
where c is a non-zero constant. This example is motivated by the example in 
[2] of an infinite series, £n=i n_1 _lc, which is summable A(lnn) but not 
summable A(n). To verify the properties, we note that the Mellin transform of 
/, obtained from tables in [1] is given by 

f00 x's+ic 

— rdx = 7rcsc[7r(l-s + ic)], 0 < s < l 
Jo (1 + x) 

and summability |A(lnx)| then follows easily. Using contour integration or 
Laplace transform tables, the Stieltjes means of / may be shown to be: 

f M . . v L ^ dx = T{1 + W-icXl - sTHl - s-«). J0 ( l + x)(l + sx) 
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As s—>0, the means do not approach a limit so f(x) is not summable S(x). 
That f(x) is not summable A(x) may be deduced either directly from the 
Laplace transform of / or by applying Theorem 1. 

(d) Summability \S(x)\ but not A(x). The analysis here is more difficult than 
the preceding examples and our function is given implicitly in terms of the 
inverse Laplace transform of a specific function. In what follows, we define 

g(s)=\ f(x)e-sxdx (3) 

h(t)= f - ^ - d x . (4) 
J0 1 + tx 

The construction of our example proceeds as follows: We will choose (with 
K j 8 < 2 ) g(s) = exp{z[log(s + l / s ) ] 3 } - l and show that there is an f(x) satisfy
ing (3) with / G L 2 ( 0 , OO) through the use of Fourier Transform theory. With 
feL2 the Stieltjes means of / exist and by Proposition 2, can be obtained from 
the Abel means of g, which are then analyzed to show that / is \S{x)\ 
summable. Since g(s) has no limit as s —> 0, / is not A(x) summable, finishing 
the example. 

The following Lemma is essentially Theorem V from [4]. 

LEMMA 2. Write s = cr + it. Suppose that g(s) 

(a) is analytic in the half-plane <x>0, 

(b) satisfies \ \g(a + it)\2 dt<C for a > 0 . (5) 

with C a constant independent of a. Then there is an f(x) e L2(0, °°) such that (3) 
holds for all cr>0. 

REMARK. Lemma 2 differs slightly from Theorem V in that we have replaced 
x by —x and replaced L2 convergence (denoted l.i.m. in [4]) by the ordinary 
convergence of the improper integral in (3) which holds when <x>0 because 
/ U ) G L 2 ( 0 , O O ) . 

We now show that our example satisfies the conditions of Lemma 2. 

PROPOSITION 4. Define g(s) = exp{i[log((s + l)/s)f}- 1, 1 < 0 < 2 . Then 
hypotheses (a) and (b) of Lemma 2 are satisfied. 

Proof. It is clear that g(s) is analytic for o- = Re(s)>0. To verify condition 
(b) it suffices to study the behavior of g when s is "small" and when it is 
"large". More precisely, if r, R are any fixed constants with 0<r<R the 
contribution to the integral in (5) from that part of the range of integration for 
which r < | s | < R is clearly bounded, so that we need consider only the 
contributions from | s | ^ i ? and from |s |<r . 
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Consider the behavior of g for large s. Since log((s + l)/s) = log(l-fl/s) = 
0(l/|s|), we have g(s)-exp{i[0(l / |s |3)]}-l = 0(l/|s|3). As 0 > 1 , the contribu
tion in (3) from | s |> i? is bounded. 

Consider next the behavior of g when s is small. We have 

log 

so that 

Now 

s + 1 
log 

1 
+ i are 

s + 1 
s 

log 
s + 1 

-0(l) = log(l/|s|) + 0(l) 

HW = Dog(l|s|)]p+ODog(l/|s|)} 0 - 1 (6) 

| { l o g ( ^ ) ] 3 } | =exp{Re î [ l o g ( ^ l ) ] 3 } = exp{0Dog(l/|s|)f-1} (7) expi 

since the first term in (6) is real. As 0 < 2 we see that given any positive 
constants K and À we have for sufficiently large x, 

expK(logx)3 1 < x x . 

Thus, the last expression in (7) is seen to be 0(|s| -x) and if we choose À <\, the 
contribution to the integral in (5) from \s\<r is bounded. This completes the 
proof that the hypotheses of Lemma 2 are satisfied by g(s). 

THEOREM 4. Let g(s) = exp{i[log((s + l ) / s ) ] 3 }- l . Then there exists an f(x) in 
L2(0, °°) satisfying (3) which is not A(x) summable but is summable \S(x)\. 

Proof. The existence of an feL2(0,œ) satisfying (3) follows because g 
satisfies the hypotheses of Lemma 2. Further, / is not A(x) summable because 
g(s) has no limit as s —» 0. Since / e L 2 ( 0 , o°), the Stieltjes means of / exist, and 
as g(s) is bounded for s real and positive, Proposition 3 furnishes the Stieltjes 
means in terms of g: roo 

MO = (1/0 exp(-s/0g(s) ds. (8) 
•>o 

We must show h(t)eBV(0,<x>). 

We write g as a sum of three functions, gi(s), i = 1, 2, 3 which are defined by: 

r \g(s), 

Jexp iDog(l/s)]p, 

to. 
{g(s)~g2(s), 

U 

0<s<i 
*>i 
0<s<| 

s>i 
0<s<i 

s>k 
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Let ht(t), i = 1, 2, 3 denote the function obtained by replacing g(s) by gt(s) in 
the integral (8). We will prove that, for i = 1, 2, 3 we have ht(t) e BV(0, oo). l n 

the case of i = 1,3 we do this by proving that gi(s)eBV(0, oo)5 and the 
conclusion that hj(0eBV(0, oo) then follows from the application of Knopp's 
Lemma as in the proof of Theorem 1. 

Consider then gi(s). For s>%, g(s) has a continuous derivative given by 

g'(s) = 
i0 /, s + lV»-1 J , /s + 1 

' l o g — I expi log 

so that 

s(s + l) 

Wis) > v + 1 
s(s + l) \ ~ s 

The variation of gi(s) in (0, oo) is equal to 

g ( i ) + f | g ' ( s ) | d s<oo 
J112 

as required. 
Next, we consider g3(s). The function represents the difference between g 

and its asymptotic behavior, g2(s), when s is small. As in the case of g1? we 
show g3 has bounded variation by showing that the integral of the absolute 
value of g3 is finite. We calculate 

1 
S + 1 

i s + A3"1 .A s + i V A i \3 _ 1 Y, A H 
log ! expillog » + l l o g - l exp i ( log - l 

Now, uniformly in 0 < s < | , we have 

whence, 

Also, 

whence 

log = log - + log(l + s) = log - + 0(s) 
s s s 

H^T-^TH^T 

^H^M-hr i 
exp/Uog I = exp i ( log - l exp 0 s l o g - ) 

(iogi)a[i+o(s(iogi)''-1); = exp i 

(9) 
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Substituting these results into (9), we obtain 

s 

397 

g 3 ( S ) = f ( l o g i ) " 1 { e x p l - ( l o g i ) 3 } [ - ( l + 0(S))(l + 0 [ -
g(l/s). 

x ( l + 0(S(logi) e ' l l + l 

•4wn 
and we now deduce that g3(s)e BV(0, <*>). 

It remains to show that h2(t) has bounded variation. The integral which 
defines h2 is: -1/2 / IV 

h2(t) = (l/t) exp(—s/f)exp n log -1 ds. 

The analysis requires integration by parts a number of times which results in 
integrals of the form 

I ( n , a ; 0 = ^ T ï J ^ ( ^ j ) e x P ^ l o g ~ ) e x p ^ - - j d s , 

where here, and below n denotes a non-negative integer. In the proof of 
Theorem 1, Knopp's Lemma was used to show that if f(s)e BV(0, °°) then 

- j exp(--V(s)ds€J5V(0,«>). 

A similar argument shows that, more generally, 

~-, j o s"exp(-^-) / (s)ds G BV(0, oo). 

Applying this fact with f(s) replaced by (log(l/s))a exp i(log(l/s))3 for s < | and 0 
for s>2~ we obtain the result that for n > 0 , 

I(n, a; f) G BV(0, oo) if a < - 0 (10) 

since |/'(s)| is integrable in that case. 
In the integration by parts which follows, it is easy to verify that the boundary 

terms are of bounded variation in (0, oo). We then obtain the following 
recursion relation for I(n, a;t) (C denotes a constant and A(t) the boundary 
terms) : 

Kn,a; O ^ J ^ V ^ l o g i ) " 0 + ^ x p ( - ^ s [ e x p « ( l o g l ) ] 

C f1/2 r / i\«-3+i / s\"i / i \ e 

= A(t) + CI(n, a - (3 + 1 ; t) + CI(n, a - 0 ; t) 
+ CI(n + l,a-p + l;t). (11) 
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Now, since 0 > 1 , we note that in each of the last three terms of (11), a is 
replaced by a quantity which is less than a by an amount at least equal to 
j 8 - l . Thus, starting with h2(t) = 1(0, 0; t) and repeatedly applying (11), we 
eventually express h2(t) as a sum of boundary terms A(t) plus terms of the 
form CI(n, a; t) where the values of a are less than —18. Using (10), it follows 
that h2(t)eBV(Q,<x>) and the proof is complete. 

ACKNOWLEDGEMENT. The third author would like to thank Professor Billy Rhodes for his 
encouragement to study this problem. 

Added in proof. The Stieltjes summability method has also been applied to 
the study of elliptic operators under the name resolvent summability by D. 
Gurarie and M. Kon, Radial Bounds for Perturbations of Elliptic Operators, to 
appear in Journal of Functional Analysis. 
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