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ABSTRACT. The effect of tidal friction in the lunar orbit is one of 
the classic examples of ad hoc modelling of an unknown physical pheno­
menon. The two basic calculational approaches in current use are deve­
loped in some detail, and numerical tests and comparisons are presented. 
Although attention is normally concentrated on the acceleration in or­
bital longitude produced as a result of terrestrial dissipation, it is 
shown that the variation in Earth-Moon distance due to Earth tides is 
far from negligible. A significant, though minor, fraction of this 
variation is supplied by the radial component of the acceleration, which 
would exist even in the absence of tidal friction. In fact, this repre­
sents almost all the difference in the predictions of the two models. 

1. INTRODUCTION 

Over approximately the past fifty years, the most classic example 
in the lunar orbit motion of purely empirical modelling of an unknown 
or non-understood physical phenomenon has been what is supposed to be 
the effect of tidal friction in the Earth. Logical physical arguments 
(e.g. Darwin 1898, Munk & Macdonald 1960) lead inescapably to the con­
clusion that the existence of tidal friction in the Earth insures the 
production of a secular acceleration in the lunar orbit, as a means of 
conserving the total angular momentum of the Earth-Moon system. Until 
fairly recently, this phenomenon was treated in a completely arbitrary 
manner; since there was no geophysical theory with which to predict the 
magnitude, any unexplainable secular acceleration in the observed lunar 
longitude was simply assumed to be due to the tides. The absence of a 
theory made it impossible to contradict this point of view. 

Although the tidal friction now has a competitor for the production 
of a secular acceleration (e.g. Van Flandern 1981), the logical situa­
tion has not much changed today. Equivalent physical models have been 
proposed, but there is still no theory to support them; estimates of 
the magnitude of the tidal friction effect are and must still be purely 
empirical. Nonetheless, all serious numerical integrations of the lunar 
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orbital motion have included some provision for introducing the effect 
of the tides. There have been two basic ways to do this, one being 
purely ad hoa, the other with a certain amount of geophysical window-
dressing. Mulholland (1980) has designated these two procedures as the 
arithmetic and analogue methods, respectively. We are not aware of any 
explicit and detailed development of these two methods in the open lite­
rature, and our own derivations appear to differ slightly from those 
used elsewhere. It thus seems appropriate to present them here, as well 
as the results of some numerical studies. 

2. THE ARITHMETIC MODEL 

The arithmetic method consists simply of inserting an ad hoc acce­
leration into the equation of motion in such a way as to mimic the ave­
rage secular acceleration in longitude W determined from observation. 
Suppose, following Oesterwinter & Cohen (1972), that the acceleration 
in longitude is produced by a force of constant magnitude, acting al­
ways in the osculating orbital plane of the Moon and normal to the lunar 
radius vector. Bearing in mind that no physical justification is given 
for this assumption, we can generate the desired direction vector as 
the vector product of the angular momentum vector ~K with the Earth-Moon 
vector r. For the magnitude of this acceleration, Gauss's form of the 
planetary equations (e.g. Brouwer & Clemence 196f, p. 301) gives 

h n da/dt (1) 

where a is the semi-major axis, n the anomalistic mean motion, or the 
first time derivative of the mean anomaly, and t the time. Using 
Kepler's third law, and supposing that the unmodelled acceleration in 
longitude is identical with the unmodelled acceleration in mean anomaly, 
then the cartesian acceleration required to produce an average accele­
ration in the lunar mean longitude L of 

A d2I/dt2 = W (2) 

is given by 

A d2S/dt2 = I a W (t/h) x (?/r) (3) 

This method contains no physics, and it ignores the periodic effects 
caused by the 5% variation in lunar distance, but it sometimes serves. 

3. THE ANALOGUE MODEL 

3.1 The Tide-Raising Potential 

The analogue method has a lot of physics in it, or at least what 
appears to be physics. We begin with the potential function felt by a 
test point inside the orbit of the Moon, due to the gravitational 
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attractions of Earth and Moon, 
00 , 

V = GE_ + GM ^(n/r)'1 P.(cos S) (4) 
rl r Z_J t 

i=2 

where G Is the Universal gravitational constant, E and M the masses of 
Earth and Moon respectively, r the geocentric distance of the Moon, r: 

the geocentric distance of the test point, P- the Legendre polynomial of 
degree i , and S the geocentric angle subtended by the Moon and the test 
point. If the test point were a zero-mass free body, this would be the 
restricted problem of three bodies. Suppose, however, that the test 
point is fixed to the surface of Earth, which we suppose for the moment 
to be perfectly rigid. The first term, now constant, is superfluous 
and can be discarded. That which remains is the "tide-raising potential 
at the Earth's surface", due to the action of the Moon: 

00 

u = f~ X/*/r) i v ° o s s) (5) 

i=2 
where we have replaced v^ with the (constant) radius R of the Earth. 
Following the usual procedure, we will replace the angle S with its 
equivalent in spherical coordinates. For the sake of conceptual sim-
licity, the reader may suppose for the moment that the angles X and <j> 
are the terrestrial longitude and latitude, although the form is invari­
ant with the spherical system chosen; once again the unsubscripted and 
subscript 1 variables refer to the Moon and the test point, respectively. 
It can be readily verified that the potential (5) may then be written 

CO 1 

U = (GM/r) VlB/r)* V (2-60j)[(i-3)\/(i+j)l] 

i=2 j=0 

•P. .(sin <}>) P- .(sinch) cos j'(X-Xi) (6) 
1 'V I'd 

;where 6QJ is the Kronecker delta, and the P• • are the associated Legen-
>dre functions. 

3.2 The Lunar Earth Tide and its Gravitational Influence on an 
External Free Body 

We now have a tide-raising potential of the form 

V-lUi (7) 
i 

a spherical harmonic expansion in the coordinates of the Moon and the 
surface point. The Earth, however, is not perfectly rigid and will 
therefore distort under the action of this potential. The deformation 
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of the body of the Earth will be accompanied by a corresponding deforma­
tion of its gravitational potential. At the surface, this will be 

U = I K-U. (8) 
s • i ^ 

which is essentially a definition of the Love numbers k^. The extra 
potential that will perturb any free body in the vicinity is, according 
to a theorem by Dirichlet, 

U = I (B/r2)
i+1 k.U. (9) 

where r2 is the geocentric distance of the perturbed body. 

Let us now return to the question of the coordinate system in 
which eqn. (6) is written. The relation has the same form no matter 
what set of spherical coordinates is used, so we should choose the most 
convenient. A qualitative description of the tidal distortion is that 
Earth is stretched out with approximate rotational symmetry about the 
extensional axis, which is approximately coincident with the line join­
ing the centers of Earth and Moon. Suppose, instead of geographic coor­
dinates (longitude and latitude), we choose to measure X and $ in and 
normal to the lunar orbit plane. With this frame, it is clear that we 
can now justify simplifying the calculation by considering only the bi-
modal tesseral deformation, i.e. the term i=j=2. The potential then re­
duces to 

U= (9/12) k2(GM/r3)(E5/r3
2) cos2<|> cos 2 ^ cos 2(X-XX) (10) 

To this point, the development is valid even for a perfectly ela­
stic Earth, one in which there are no frictional losses. Qualitatively, 
the existence of tidal friction produces a time lag T in the response of 
the Earth to the tidal perturbation from the Moon. Since Earth's rota­
tion rate w is different from the lunar mean motion, this implies that 
the tidal bulge will be displaced from the Earth-Moon direction by the 
tidal lag angle 

6 = (to - n) T (11) 

[We adopt the sign convention of Kaula (1968), rather than that of Yoder 
et al. (1978)]. Another way of saying this is that the deformation of 
the Earth at time t = t* + T is caused by the lunar position at time t*, 
and 

X, - X + 6 (12) 

If we further recognize that both the Moon and the bulge will lie in or 
very near the lunar orbit plane, we may set <J>=<t>j=0, and expression (10) 
reduces to 

U = (3/4) k2cos 26 [GM/r3(,t*)][R5/r3
2(t)] (13) 
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Taking the gradient with respect to the coordinates of the perturbed 
body, we finally obtain for the inertial acceleration imposed on any 
exterior free body at time t by the semi-diurnal lunar Earth tide 

d2£2/d*
2 = - 3 qk2 cos26 [GMlr\t*)] W/r2(t)]

5 ?2(t) (14) 

where, for reasons that will be clarified later, we have introduced the 
constant q=3/h. 

3.3 The Tidal Acceleration of the Moon 

The lunar tide produced on the Earth perturbs the Moon's own orbit. 
That it is the Moon itself that generates this tide is irrelevant to 
its action on the orbit. In evaluating eqn. (14), however, the require­
ment to evaluate the lunar position at two different times is inconve­
nient. This is circumvented by recognizing that the inferred value of 
T is about ten minutes, during which time the Moon moves only about 1/6 
of its diameter. One may then use the linearized relation 

?(*) = r(i*) - 6 ?(t*) x t (15) 

to eliminate t from the left-hand side, which also breaks the vector 
into explicit radial and transverse components, t. being the unit z-
vector. Finally, recognizing that the magnitude of the acceleration is 
extremely small, and that previous simplifications have already been at 
a more questionable level, we suppose that the acceleration at time t* 
is negligibly different from that at time t. The results in the final 
expression for the cartesian acceleration 

d2£/dt2 - - 3qk2 cos26 GWQ+M/E) (i?5/r8) (r - 6 r x t) (16) 

where the factor (1+M/E) accomplishes the translation from barycenter 
to geocenter. 

,3.4 The Constant q 

We have introduced the constant q in an attempt to minimize the 
confusion for those who compare the above result with eqn. (5) of 

i Williams et al. (1978). Accounting for the sign convention on 6, the 
only difference between us is the factor qcos26 given above. While no 
details are given of the other derivation, it seems evident that they 
have used the approximation cos26=l. Independent derivations by seve­
ral different people associated with our work have invariably produced 
the result ^=3/4, rather than the value unity implied by our JPL col­
leagues. Surely, we will soon discover where the problem lies. None­
theless, it is important to point out that this in no way affects the 
major conclusions in the numerical discussion that follows. Indeed, 
one may legitimately take the operational point of view that the analy­
sis of observations provides an experimental value of q& instead of 6. 
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4. NUMERICAL COMPARISONS AND CONCLUSIONS 

Comparing eqns. (3) and (16), one notes three differences: a) the 
directions of the transverse components are nearly the same; b) the 
analogue method introduces a radial component that is not dependent on 
tidal friction, only on the elastic deformation; and c) its scalar co­
efficient has a periodic variation. Both methods have empirical para­
meters to be determined from observation, insuring that the average 
values of the coefficients will be the same. In principle, the radial 
term will look like an extra mass, affecting the mean motion. In prin­
ciple, the variable coefficient will produce larger short-periodic 
variations. How important are these differences in numerical applica­
tion? 

This question can, and should, be answered definitively by analy­
tical means. It was a natural thing, however, to perform some numerical 
tests while converting our integration program from the arithmetic to 
an analogue formulation. We will discuss three specific cases here: 1/ 
the arithmetic method with f/=-26 arcsec/century2; 2/ the analogue method 
with &2=0.30 and &q=~2.55 degrees, chosen to produce the same effect in 
longitude; and 3/ the elastic analogue case with /c2=0.30 and zero lag 
angle. Figure 1 shows the first of these cases, while Figure 2 gives 
the third, both over a 400-day interval. We were surprised to find 
that a graph of the differences between cases 2 and 3, overlaid on Fi­
gure 1, shows only barely discernible variations from those curves. 
The same situation obtains when the differences between cases 2 and 1 
are overlain on Figure 2. Both of these discoveries point to the same 
conclusion: the only difference in practice between the arithmetic and 
analogue methods is due to the radial, non-frictional, term. It is a 
result of the Earth' s non—rigidity, but not of dissipation processes. 
The greater rigor of derivation in the analogue approach appears to buy 
no advantage whatsoever in modelling the acceleration in longitude. 
Stated differently, the arithmetic method would be the full equivalent 
of the analogue procedure, if only a suitable radial term were added. 

A secondary implication is that the full effect of case 2 may be 
obtained by adding Figures 1 and 2. 

It is customary in discussions of lunar ranging that attention be 
concentrated on the effect on the range observable of the acceleration 
in longitude, an effect that varies as the sine of the local topogra­
phic hour angle of the observed point; this is often near zero. Exami­
nation of the above figures shows that, in fact, the direct effect in 
Earth-Moon radial distance is also extremely important, reaching a 
maximum peak-to-peak amplitude during this 400-day span of about 35 cm. 
On the other hand, the effect on the mean motion is essentially trivial 
— about 0.06 arcsec/century, within the current noise on mass deter­
minations. The structural features of the graphs suggest that the 
periodic behavior is dominated by at least two near-monthly frequencies 
and a semi-annual one, which may be caused by phase interference between 
them. These conjectures should be tested analytically. 
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Figure 1: The differential effect of modelling tidal friction with the 
arithmetic method, with W = -26 arcseconds/century2. This is virtually 
identical with the effect of the transverse component of the analogue 
approach. 
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Figure 2: The effect of the elastic tide for k2 = 0.30, which is also 
virtually identical with the difference between the full analogue model 
and the arithmetic model. 
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DISCUSSION 

King : Williams et al. (1978) pointed out a 9-cm term in longitude 
with 18.6 year period. In principle, this permits eventual sepa­
ration of the diurnal and semi-diurnal tidal components, which is 
an exciting prospect for the future. 
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