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Abstract

Background. Anorexia nervosa (AN) is a serious psychiatric illness that remains difficult to
treat. Elucidating the neural mechanisms of AN is necessary to identify novel treatment tar-
gets and improve outcomes. A growing body of literature points to a role for dorsal fronto-
striatal circuitry in the pathophysiology of AN, with increasing evidence of abnormal task-
based fMRI activation within this network among patients with AN. Whether these abnor-
malities are present at rest and reflect fundamental differences in brain organization is unclear.
Methods. The current study combined resting-state fMRI data from patients with AN (n = 89)
and healthy controls (HC; n = 92) across four studies, removing site effects using ComBat har-
monization. First, the a priori hypothesis that dorsal fronto-striatal connectivity strength –
specifically between the anterior caudate and dlPFC – differed between patients and HC
was tested using seed-based functional connectivity analysis with small-volume correction.
To assess specificity of effects, exploratory analyses examined anterior caudate whole-brain
connectivity, amplitude of low-frequency fluctuations (ALFF), and node centrality.
Results. Compared to HC, patients showed significantly reduced right, but not left, anterior
caudate-dlPFC connectivity ( p = 0.002) in small-volume corrected analyses. Whole-brain ana-
lyses also identified reduced connectivity between the right anterior caudate and left superior
frontal and middle frontal gyri ( p = 0.028) and increased connectivity between the right
anterior caudate and right occipital cortex ( p = 0.038). No group differences were found in
analyses of anterior caudate ALFF and node centrality.
Conclusions. Decreased coupling of dorsal fronto-striatal regions indicates that circuit-based
abnormalities persist at rest and suggests this network may be a potential treatment target.

Introduction

Anorexia nervosa (AN) is a serious psychiatric disorder characterized by extreme restriction of
food intake, fear or avoidance of weight gain, and persistent body image disturbance
(American Psychiatric Association, 2013). It is associated with severe medical and psychiatric
symptoms, substantial social and economic burdens, and high mortality rates (Arcelus,
Mitchell, Wales, & Nielsen, 2011; Gibson, Workman, & Mehler, 2019; Mehler & Brown,
2015). Current behavioral and pharmacological treatments are disappointing, with low rates
of recovery and high rates of relapse (Berends et al., 2016; Khalsa, Portnoff,
McCurdy-McKinnon, & Feusner, 2017). The significant burden of AN and the limitations
of available treatments highlight the need for a better understanding of underlying neural
mechanisms of illness. Examination of the brain at rest, absent task demands, and perform-
ance differences between groups, may be particularly valuable for identifying neural circuit
abnormalities and clarifying which brain regions and networks may prove useful as novel
treatment targets.

Neural systems linking the frontal cortex and the striatum are engaged during executive
function processes that guide human behavior in a healthy brain (Alexander, DeLong, &
Strick, 1986; Haber & Knutson, 2010). Altered connectivity within these fronto-striatal circuits
has been linked to a range of psychiatric disorders (Burguière, Monteiro, Mallet, Feng, &
Graybiel, 2015; Furman, Hamilton, & Gotlib, 2011; Kim et al., 2019; Morein-Zamir &
Robbins, 2015). The dorsal fronto-striatal system includes connections between the dorsolat-
eral prefrontal cortex (dlPFC) and the dorsal striatum, consisting of the caudate and putamen
(Alexander et al., 1986; Morris et al., 2016), and is thought to mediate cognitive processes such
as inhibitory control, goal-directed behavior, reward responsivity, and cognitive flexibility, that
are potentially clinically relevant in AN (Grahn, Parkinson, & Owen, 2008; Ojha, Parr, Foran,
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Calabro, & Luna, 2022; Staudinger, Erk, & Walter, 2011; Vaghi
et al., 2017). Indeed, findings from MRI studies provide conver-
ging evidence of abnormalities within dorsal fronto-striatal
regions among patients with AN, both structurally and across a
variety of tasks (Foerde et al., 2020; Foerde, Steinglass,
Shohamy, & Walsh, 2015; Foerde et al., 2021; Frank, Shott,
Hagman, & Mittal, 2013; Friederich et al., 2012; Martin
Monzon et al., 2017; Sanders et al., 2015; Titova, Hjorth,
Schiöth, & Brooks, 2013; Zhu et al., 2012). Further, initial studies
of the neural mechanisms of restrictive eating have found associa-
tions between the anterior region of the caudate – and, in one
study, its connections to the dlPFC – with maladaptive restrictive
food choices in AN (Foerde et al., 2015; Foerde et al., 2020; Foerde
et al., 2021). Whether these abnormalities are reflective of a per-
sistent disturbance (i.e. present at rest) in dorsal fronto-striatal
connectivity among patients with AN remains unclear.

Resting-state fMRI (rsfMRI) measures low-frequency fluctua-
tions in blood oxygenation level dependent (BOLD) signal across
the brain in the absence of task or stimuli (Lee, Smyser, &
Shimony, 2013; Smitha et al., 2017). By identifying temporal cor-
relations between regions, rsfMRI characterizes the functional
architecture of the brain at rest. RsfMRI is increasingly used to
identify individualized targets for brain stimulation, such as
repetitive transcranial magnetic stimulation (rTMS; Fox, Halko,
Eldaief, and Pascual-Leone, 2012b; Fox, Liu, and Pascual-Leone,
2013). These targets are often within the dlPFC, due to the ease
of access with non-invasive techniques, and connections between
dlPFC and subcortical regions such as the dorsal striatum
(Hanlon et al., 2013; Hanlon et al., 2015; Hanlon, Dowdle, &
Henderson, 2018). Investigating resting-state functional connect-
ivity between the dlPFC and the anterior caudate may be particu-
larly useful for treatment development in AN due to these
connections and the potential centrality of the anterior caudate
in maladaptive eating behavior.

Existing rsfMRI studies of patients with AN are limited by
small sample sizes, with an average sample size of approximately
27 per group. The largest rsfMRI study of AN, barring a
meta-analysis (Su et al., 2021) and systematic review (Gaudio,
Wiemerslage, Brooks, & Schiöth, 2016), examined data from 74
patients and 74 HC, though this study investigated amplitude of
low frequency fluctuations (ALFF), a metric of BOLD signal
intensity, and regional homogeneity, rather than functional con-
nectivity of brain regions (Seidel et al., 2019). To maximize sam-
ple size and increase the reliability of findings, the current study
combined data across four samples to obtain the largest dataset
of rsfMRI among individuals with AN to date.

The primary aim of this study was to examine connection
strength in dorsal fronto-striatal circuitry among patients with
AN at rest. Seed-based functional connectivity analyses with small-
volume correction were conducted to test the a priori hypothesis
that connection strength between the anterior caudate and dlPFC
would differ among patients with AN compared to healthy controls
(HC). Hypotheses were non-directional as research on task-based
functional connectivity between these regions has found both
hyper and hypo-connectivity among patients with AN depending
on task demands (Foerde et al., 2015).

To further examine the specificity of dorsal fronto-striatal con-
nectivity differences, we explored whole-brain connectivity and
regional BOLD signal of the anterior caudate at rest by comparing
patients and controls on measures of seed-based functional con-
nectivity, regional intensity (amplitude of low-frequency fluctua-
tions [ALFF]), node centrality (intrinsic connectivity contrast

[IC], and global correlation [GCOR]). Finally, among patients
with AN, we explored relationships between rsfMRI measures
and clinical symptoms.

Materials and methods

Procedures

The current study includes data from 181 participants (89 patients
with AN, 92 HC), combined from four studies (Cha et al., 2016;
Foerde et al., 2015; Foerde et al., 2020; Uniacke et al., 2019).
RsfMRI data from two studies were reported previously (Cha
et al., 2016; Uniacke et al., 2019), but did not include analyses
of dorsal fronto-striatal circuits. RsfMRI data from the remaining
two studies (Foerde et al., 2015; Foerde et al., 2020) have not been
previously analyzed. All studies were approved by the NYSPI
Institutional Review Board. Prior to participation, adults provided
written informed consent and adolescents provided assent with
parental consent.

Participants
All participants were female, between the ages of 14 and 40 years,
not pregnant, with estimated IQ > 80 and without MRI contrain-
dications. For individuals who participated in multiple studies,
data from only one study was used. Across all studies, patients
met DSM-5 (American Psychiatric Association, 2013) criteria
for current AN and were excluded if they met criteria for current
substance use disorder, lifetime psychotic disorder, or other major
neurological disorders. Patients were free from psychotropic med-
ications, except from one patient taking an antidepressant and
were medically stable. HC had a BMI within the normal range
(18.5–25 kg/m2) and were excluded if they met criteria for any
current or past psychiatric diagnoses. Diagnosis of AN and pres-
ence of co-occurring psychiatric disorders were confirmed using
Eating Disorders Assessment for DSM-5 (EDA-5; Sysko et al.,
2015) and Structured Clinical Interview for DSM-5 (SCID-5;
First, Williams, Karg, and Spitzer, 2015). Height and weight
were measured by stadiometer and Detecto scale, respectively,
and used to calculate BMI (kg/m2). Two studies obtained esti-
mated IQ from the Wechsler Abbreviated Scale for Intelligence,
2nd edition (WASI-II; Wechsler, 2011); and two obtained esti-
mated IQ from the Wechsler Test of Adult Reading (WTAR;
Venegas and Clark, 2011) for individuals 16 and older.
Standardized norms for the WTAR are not available for the six
individuals under age 16, and IQ data were missing from an add-
itional six participants.

Clinical assessments
Across all studies, psychological features of AN were assessed via
the Eating Disorder Examination-Questionnaire (EDE-Q;
Fairburn and Beglin, 2008) Global Score, and self-reported dur-
ation of illness. Two of the four studies also assessed actual eating
behavior via calorie and percent fat intake during a buffet-style
meal, using previously validated procedures (Sysko, Steinglass,
Schebendach, Mayer, & Walsh, 2018).

MRI acquisition
Anatomical and resting-state fMRI scans were collected from all
participants. For all studies, participants were instructed to ‘let
their mind wander freely’ during the resting-state fMRI scans.
Three studies instructed participants to keep their eyes open dur-
ing the scan; one study instructed participants to keep their eyes
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closed. See online Supplementary Table S1 for the resting-state
scanning sequence parameters in each of the four studies.

Statistical analyses

Participant demographics
Demographic and clinical variables were compared between diag-
nostic groups with independent-samples t tests using SPSS ver-
sion 28.

MRI preprocessing
MRI data were preprocessed and analyzed using the CONN tool-
box version 21a (Whitfield-Gabrieli & Nieto-Castanon, 2012).
Preprocessing steps included realignment and unwarping, slice-
timing correction, outlier identification, normalization, and
smoothing with an 8 mm smoothing kernel full width at half
maximum. Time series data were denoised using linear regression
of potential confounds, including fMRI signal from white matter
and cerebrospinal fluid, subject-motion parameters (three transla-
tion, three rotation, and associated first-order derivatives), out-
liers, and temporal band-pass filtering (0.01 to Inf). Outliers
were volumes with excessive movement, defined as framewise dis-
placement (FD) >0.5 mm or global signal intensity changes (GSC)
>3 S.D. using the artifact detection tool (ART1). Outliers were
indexed with nuisance regressors (motion corrupted volume
and volume preceding it) and runs with >25% outlier volumes
were excluded from analyses. Six runs (3 AN, 3 HC) with >25%
outlier volumes were excluded from analyses. No group differ-
ences in head motion were detected (see online Supplementary
Table S2 for mean FD/GSC). For participants with rsfMRI data
from multiple runs, data from each preprocessed, denoised run
were concatenated for first and second-level analyses.

Regions of interest (ROIs)
Four ROIs were selected for use in analyses: left and right anterior
caudate, and left and right dlPFC (Fig. 1a). As in prior publica-
tions (Foerde et al., 2015; Foerde et al., 2020; Foerde et al.,
2021), the left and right anterior caudate ROIs were defined
using masks for the left and right caudate from the
Harvard-Oxford Atlas maximum-likelihood subcortical atlas
included in FSL (Jenkinson, Beckmann, Behrens, Woolrich, &
Smith, 2012). These seeds were thresholded at 25% probability
and further parcellated to isolate their anterior portion by only
including the portion of the mask anterior to y = 0. The dlPFC
ROIs were defined using Brodmann’s areas 9/46d and 9/46d
based on the Sallet Dorsal Frontal Connectivity-Based
Parcellation Atlas (Sallet et al., 2013).

Data harmonization
Because data in the current study were collected across several
MRI scanners, inter-site variability may arise from differences
in scanner acquisitions. Therefore, fMRI data were harmonized
using ComBat, a validated methodology designed to reduce vari-
ability related to differences in MRI acquisition, while preserving
biological variability (Fortin et al., 2018; Fortin et al., 2017;
Yamashita et al., 2019; Yu et al., 2018). Parameter estimates
from each analysis were extracted and harmonized using the
CombatHarmonization package in R Studio (R Studio
Team, 2020). To control for site effects, the study site for each
participant was entered into the model. Participant age, BMI,
IQ, and group (AN v. HC) were included to preserve these factors
as sources of biological variability.

Hypothesis testing

Seed-based functional connectivity
Seed-based functional connectivity analyses were conducted
using the left and right anterior caudate as seeds. Mean time
series from each seed was correlated with all voxels in the brain,
thereby producing two whole-brain functional connectivity
maps per participant. Whole-brain connectivity maps were
Fisher-transformed and extracted for harmonization, following
procedures described above. Harmonized anterior caudate
connection strength was then compared between diagnostic
groups. Statistical significance was determined with voxel-wise
height threshold of p-uncorrected <0.001 and cluster-size
p-FDR-corrected threshold p < 0.05. To test the primary hypoth-
esis that patients with AN would exhibit differences in dorsal
fronto-striatal connectivity, small-volume correction was
employed to restrict the analysis to the DLPFC ROIs. Group
differences were tested using general linear models (GLMs),
with ipsilateral connection strength as the dependent variable
and group as the independent variable, while controlling for age
and IQ. Small-volume correction analyses were repeated with
unharmonized data, with the addition of site as a control variable,
as well as a group-by-site interaction term. To explore additional
group differences in anterior caudate connectivity, whole-brain
analyses without small-volume correction were performed on har-
monized and unharmonized functional connectivity maps using
the same GLMs as described above.

Exploratory MRI analyses

To further explore whether potential group differences in anterior
caudate-DLPFC connectivity may be indicative of group differ-
ences in localized activity or globally reduced connection to
other brain regions, we conducted two additional exploratory
fMRI analyses using the CONN toolbox (Nieto-Castanon, 2020;
Whitfield-Gabrieli et al., 2016): Anterior Caudate Regional
Intensity, and Anterior Caudate Node Centrality. Statistical signifi-
cance was determined with a height threshold of p-uncorrected
<0.001 and cluster-size p-FDR-corrected threshold p < 0.05.

Anterior caudate regional intensity
Previously identified group differences in anterior caudate activity
(Foerde et al., 2015; Foerde et al., 2020; Foerde et al., 2021) and
connectivity (Foerde et al., 2015) during a food choice task may
also be reflective of a persistent, baseline disturbance in anterior
caudate activity, such that patients with AN may have hypo- or
hyper-activation of this brain region, regardless of task. ALFF is
defined as the root mean square of BOLD signal within each
voxel following band-pass filtering, and is considered a measure
of baseline regional intensity of BOLD signal in a given region
(Zang et al., 2007). To further characterize the activity of the
anterior caudate at rest, whole-brain ALFF was calculated and
harmonized. Harmonized ALFF values within the anterior caud-
ate ROIs were then compared between groups, with ALFF within
each region as the dependent variable and group as the independ-
ent variable, while controlling for age and IQ. Analyses were
repeated with unharmonized data, with the addition of site as a
control variable, as well as a group-by-site interaction term.

Anterior caudate node centrality
We explored node-level centrality of the anterior caudate at rest
using intrinsic connectivity contrast (IC) and global correlation
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(GCOR). IC and GCOR provide measures of node centrality, i.e.
the mean connection strength of a given voxel with all other
voxels across the brain. IC is defined as the root mean square
of correlation coefficients between the ROI and all other voxels,
whereas GCOR is calculated using the mean correlation strength
between the ROI and all other voxels (Martuzzi et al., 2011;
Nieto-Castanon, 2020). Whole-brain IC and GCOR were calcu-
lated and harmonized. Harmonized IC and GCOR values within
the anterior caudate ROIs were then extracted and compared

between groups, with each measure of node centrality as the
dependent variable and group as the independent variable,
while controlling for age and IQ. Analyses were repeated with
unharmonized data, with the addition of site as a control variable,
as well as a group-by-site interaction term.

Clinical correlates
Partial correlations controlling for age and IQ were conducted to
explore associations between regions with group differences in

Figure 1. Results of seed-based analysis comparing left and right anterior caudate-dlPFC connectivity between HC and individuals with AN. (a) Anterior caudate
seed (light blue) used in functional connectivity analyses with a small volume correction within the ipsilateral dlPFC target region (green). (b) No significant group
differences in left anterior caudate-dlPFC connectivity. (c) Group difference in right anterior caudate-dlPFC connectivity; compared to HC, individuals with AN
exhibit significantly reduced connectivity between the right anterior caudate and voxels within the right dlPFC target region.
*Group difference remains significant when removing one outlier from HC group, p = 0.002.
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connection strength and clinical variables within the AN group,
including psychological features of AN (measured via Global
EDE-Q scores), duration of illness and, among a subsample of
participants (n = 45), restrictive eating behavior (measured via cal-
oric and percent fat intake during a buffet-style meal). Multiple
comparisons were controlled for using Bonferroni corrections.

Results

Participant demographics

A total of 181 resting-state scans from 89 AN (54% binge-eating/
purging subtype) and 92 HC were collected. Demographic and
clinical characteristics of participants are presented in Table 1,
for each study separately and for the full combined sample. As
anticipated, BMI was significantly lower and psychological symp-
toms of AN, as measured by the EDE-Q Global score, were sig-
nificantly higher among patients with AN than HC. Scatterplots
representing the distribution and range of clinical characteristics
of the patient sample (BMI, EDE-Q Global scores, Duration of
Illness) are included in online Supplementary Figure S1.
Because IQ was included in the harmonization model as a source
of biological variability, the results of harmonized analyses among
169 participants with complete data are presented below. Analyses
of unharmonized data with (n = 169) and without (n = 181) IQ as
a covariate yielded a similar pattern of results and are presented in
the Supplement.

Hypothesis testing

Seed-based functional connectivity
Results showed no significant effect of group for left anterior
caudate-left dlPFC connectivity, F[1167] = 2.51, p = 0.115, ηp2 =
0.02. A significant effect of group was observed for right anterior
caudate-right dlPFC connectivity (F[1169] = 9.45, p = 0.002, ηp2

= 0.05), such that individuals with AN had reduced mean connec-
tion strength (M = 0.02, SE = 0.004) as compared with HC (M =
0.05, SE = 0.005; Figure 1; Table S3). The same pattern of results
was obtained with unharmonized data, with a significant effect of
group for right, but not left, anterior caudate-dlPFC connectivity;
group-by-site interactions were non-significant (see online
Supplementary Figure S4, S6 and Tables S5, S9). Unthresholded,
whole-brain maps of these seed-based analyses using harmonized
and unharmonized data can be found at https://neurovault.org/
collections/FWXXMIWD/.

Results of follow-up analyses with harmonized data indicated
no significant difference between subtypes of AN (online
Supplementary Figure S2). To determine whether psychiatric
comorbidities among patients with AN affected results, we con-
ducted a sensitivity analysis comparing HC and AN patients
with no psychiatric comorbidities, and observed the same pattern
of results (online Supplementary Figure S3).

Exploratory MRI analyses

Whole-Brain functional connectivity
Results of exploratory whole-brain analyses identified a significant
effect of group for right anterior caudate connectivity with the
superior frontal gyrus (SFG) and occipital cortex (Fig. 2, online
Supplementary Table S4): compared to HC, individuals with AN
exhibited decreased connectivity between the right anterior caudate
and the left SFG, and increased connectivity between the right Ta
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anterior caudate and left occipital cortex. There was no significant
effect of group for left anterior caudate connectivity. Seed-based
functional connectivity analyseswith unharmonized data also iden-
tified reduced right anterior caudate-left SFG connectivity, with
additional findings of group differences in left and right anterior
caudate connectivity with the insula, hippocampus, and supramar-
ginal gyrus. Group-by-site interactions were not significant
(see online Supplementary Figures S5, S7 and Tables S6, S10).

Anterior caudate regional intensity
There were no significant effects of group on ALFF for the left
or right anterior caudate (Table 2). The same results were
obtained with unharmonized data analyses, with no significant
effects of group or group-by-site interactions. Results of statis-
tical comparisons of ALFF between groups using harmonized
and unharmonized data are included in online Supplementary
Tables S7, S11.

Figure 2. Top row: Comparison of whole-brain connectivity with the right anterior caudate between HC and individuals with AN (AN > HC = red; HC > AN = blue).
Compared to HC, individuals with AN exhibit hypoconnectivity between the right anterior caudate and bilateral superior frontal gyrus/left middle frontal gyrus
and hyperconnectivity between the right anterior caudate and bilateral occipital cortex. Bottom row: right anterior caudate functional connectivity maps
among HC (left) and patients with AN (right).
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Anterior caudate node centrality
There were no significant effects of group on IC or GCOR for left
or right anterior caudate (Table 2). The same results were
obtained with unharmonized data, with no significant effect of
group and no significant group-by-site interaction. Results of stat-
istical comparisons of IC and GCOR between groups using
unharmonized data are included is online Supplementary
Table S8, S12.

Clinical correlates

Among patients with AN, no partial correlations survived correc-
tion for multiple comparisons. Summary of correlational findings
are included in online Supplementary Table S13.

Discussion

The present study combined data across four studies of indivi-
duals with AN and healthy peers to investigate differences in dor-
sal fronto-striatal circuits in the largest investigation of
resting-state functional connectivity in AN to date, to our knowl-
edge. Consistent with our a priori hypothesis, decreased connec-
tion strength between the right anterior caudate and the right
dlPFC was found among patients with AN relative to HC.
Results of exploratory whole-brain analyses suggested reduced
connectivity between the right anterior caudate and left SFG/
MFG, providing additional evidence of reduced dorsal
fronto-striatal circuit connectivity among patients with AN.

Data on the dorsal fronto-striatal circuit among patients with
AN are limited, though emerging research points to disturbances
in connectivity within this circuit (Foerde et al., 2015; Haynos
et al., 2019). Insights from task-based fMRI research indicate
that connectivity within this circuit mediates several important
functions in healthy individuals relevant to AN, including goal-
directed behavior and decision-making (Heekeren, Marrett, &
Ungerleider, 2008; Hutcherson & Tusche, 2022). Among patients
with AN, certain research suggests that differential connectivity
strength within this circuit may underlie restrictive decisions
about food: during a food choice task, patients showed hypercon-
nectivity between the anterior caudate and dlPFC when making
decisions about low-fat foods, but reduced connectivity between
these regions when making decisions about high-fat foods, as

compared with HC (Foerde et al., 2015). The current findings
of reduced rsfMRI connection strength are consistent with that
of a previous rsfMRI study, which found reduced connection
strength between a bilateral dorsal caudate seed and frontal regions,
including the SFG and orbitofrontal cortex (OFC), among 19
patients with AN-R (Haynos et al., 2019), and indicate that these
network-level abnormalities persist even at rest. The association
between functional connectivity at rest and connectivity when
completing a task or confronted with disorder-relevant cues has
not been fully explored in AN, and merits further investigation.

Identification of abnormalities within dorsal fronto-striatal
connections among individuals with AN suggests this circuit
may be a potential target for treatment. The dlPFC, in particular,
is the brain target for rTMS in the treatment of other psychiatric
disorders, such as major depressive disorder (MDD; O’Reardon
et al., 2007). Initial studies of rTMS to the same dlPFC target
used for MDD among patients with AN found modest improve-
ment in symptoms (Dalton et al., 2018; 2020a; 2020b). A more
recent study by our group found that compared to sham, rTMS
to a region of the dlPFC previously implicated in food choice
among inpatients with AN was associated with a significant
reduction in fat avoidance, as measured by a food choice task
(Muratore et al., 2021). The present findings of differences in
right anterior caudate-dlPFC strength provide evidence to further
support the use of the dlPFC as a potential brain stimulation tar-
get through which to modulate dorsal fronto-striatal circuitry
among patients with AN. Given the substantial variability in
intrinsic connectivity, rsfMRI data also enables selection of indi-
vidualized cortical targets within the dlPFC region based on func-
tional connectivity to subcortical regions of interest, which
preliminary research suggests may improve rTMS treatment
effects in other psychiatric disorders, such as MDD (Cash,
Cocchi, Lv, Fitzgerald, & Zalesky, 2021; Cash et al., 2019; Fox,
Buckner, White, Greicius, & Pascual-Leone, 2012a; Fox et al.,
2013; Ning, Makris, Camprodon, & Rathi, 2019; Weigand et al.,
2018); see online Supplementary Figure S8 for an illustration of
the individual variability of the dlPFC voxel with peak connectiv-
ity to the anterior caudate among patients in the current sample.
Individualized targets based on rsfMRI connectivity are still rela-
tively novel and require further validation, but may provide a
means through which to improve clinical outcomes among
patients with AN.

Table 2. Anterior caudate regional intensity and node centrality and regional intensity analyses. General linear models examined effects of group (AN v. HC)
controlling for age and IQ

Left anterior caudate Right anterior caudate

Measure Predictor F p η2p F p η2p

Regional intensity Amplitude of low-frequency fluctuations (ALFF) Group 0.54 0.464 <0.01 0.99 0.322 0.01

Age 2.09 0.150 0.01 0.91 0.342 0.01

IQ 0.001 0.979 0.00 0.41 0.521 <0.01

Node centrality Intrinsic connectivity (IC) Group 0.46 0.498 <0.01 0.46 0.500 <0.01

Age 2.34 0.128 0.01 1.29 0.259 0.01

IQ 1.13 0.289 0.01 0.59 0.444 <0.01

Global correlation (GCOR) Group 0.95 0.332 0.01 2.35 0.128 0.01

Age 5.67 0.018 0.03 2.98 0.086 0.02

IQ 0.46 0.498 <0.01 0.54 0.463 <0.01
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Altered connection strength between the anterior caudate and
dlPFC could stem from abnormal resting-state BOLD signal
within the anterior caudate or could reflect broader, abnormal
anterior caudate connectivity across multiple brain regions.
To explore each of these possibilities, we examined group differ-
ences in amplitude of low-frequency fluctuations (ALFF), a
proxy of BOLD signal intensity, and node centrality (using IC
and GCOR) of the anterior caudate. We found no group differ-
ences in any of these measures, suggesting that on average, the
anterior caudate’s regional intensity and its connection strength
to other areas of the brain is comparable between patients with
AN and HC. These results point to some degree of specificity,
such that abnormalities in anterior caudate connection strength
may be specific to dorsal fronto-striatal circuitry. Alternatively,
abnormalities in anterior caudate connection strength with
brain regions other than the dlPFC may be obscured by heteroge-
neous connectivity such that some regions have increased con-
nectivity while others are reduced, resulting in no group
difference, on average.

Exploratory analyses of connectivity between the right anterior
caudate and each of the regions with differential connection
strength between AN and HC (right dlPFC, left SFG/MFG,
right occipital cortex) found no significant correlations between
connectivity and psychological features of AN after correcting
for multiple comparisons. This may be due to our sample size:
recent research suggests that sample sizes in the thousands may
be necessary to reliably detect brain-behavior associations due
to small effect sizes (Marek et al., 2022); therefore, even with
the relatively large sample in this study, we may still be underpow-
ered to detect stable brain-behavior associations (Grady, Rieck,
Nichol, Rodrigue, & Kennedy, 2021; Yarkoni, 2009).

This study also found heightened connectivity between the
right anterior caudate and right occipital cortex among patients
with AN. Prior studies in rsfMRI have identified decreased con-
nectivity within visual networks and between visual and sensori-
motor networks among patients with AN (Amianto et al., 2013;
Favaro et al., 2012; Phillipou et al., 2016), which the authors sug-
gested could underlie body image disturbance. Anatomical and
functional connections between the anterior caudate and occipital
lobe, specifically, have been shown in healthy individuals and are
termed the visual cortico-striatal loop (Nasr & Rosas, 2016; Seger,
2013), though the function of this loop is still largely unknown
and warrants additional investigation, particularly among clinical
populations such as patients with AN.

This study has strengths and certain limitations. The use of
Combat to harmonize data is a particular strength of the study,
as it allowed for examination of rsfMRI data across different scan-
ners to maximize power. Further, our sample was almost com-
pletely unmedicated, enhancing confidence that findings are not
confounded by the effects of psychotropic medications. A limita-
tion of this study is that it examined brain differences in patients
currently ill with AN; therefore, decreased coupling between the
dlPFC and dorsal striatum at rest among patients with AN
could represent a biological vulnerability to the development or
maintenance of AN, or could function as a biomarker of illness
secondary to patients’ malnourished state. Additionally, this
study included females only, which limits the generalizability of
findings. Future studies may wish to explore whether connectivity
within these circuits is also relevant to males with AN.

The reduction in dorsal fronto-striatal connection strength
among patients with AN may reflect an important marker of
the disease state or mechanism and could be considered a

potential target for brain stimulation treatments. Continuing to
amass larger samples by pooling data from smaller studies, as
done here, is critical to reaching the goal of full-powered studies,
particularly among uncommon and difficult-to-treat disorders,
such as AN. Identification of promising targets for neuromodula-
tion is a priority due to the challenges in treatment of AN. Future
investigations of differences in dorsal fronto-striatal resting-state
functional connectivity among a large sample of weight-restored
patients with AN could further clarify the role of these circuits
in illness and recovery.
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