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ERGODIC PROPERTIES OF BROWNIAN MOTION
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0. Introduction

Since Brownian motion is point recurrent in If1, recurrent in If2 and transient in If",
« i : 3 (see (7)), it follows that the total time spent in a bounded open set in If1 or If2 is
unbounded. With the following ergodic theorems for Brownian motion in If1 and If2 as
motivation, we examine the rate of convergence in these theorems. Note that there is no
ergodic property in If" for n ^ 3 since Brownian motion is not dense there.

Theorem 0.1. / / {X( t), 0 =i t < oô  is a separable Brownian motion process in Rl and if
f and g are any two Baire functions with finite integrals f and g^ 0 respectively over (— °° ,
oo), then

f{X(t)} dt

with probability one. See (3).

lim ± = I
9{X(t)} dt 9

\
Jo

Corollary (Ergodic Theorem for Brownian motion in If1). Let {X(t), 0 ^ f <oo } be a
separable Brownian motion process in R1. If A and B are bounded measurable non-empty
subsets of R1, then

total time spent in A by X(t) up to time T _ | A |
T-»~ total time spent in B by X(i) up to time T \ B \

Theorem 0.2 (Ergodic Theorem for Brownian motion in R2). Let X(i) be a Brownian
motion process in R2. Let Dx and D2 be bounded open sets in the plane such that D2 ^ cf>.
Then

total time spent in Dx by X(i) up to time T _ m(Dx)

T—« total time spent in D2 by X(t) up to time T m(D2)

where m(Di) is Lebesgue measure of D, in R2. See (8).

In If2 there are some independence problems for any sets D,- which are overcome by
considering a stationary Markov chain determined by the process. We are able to prove
that, almost surely,

• T

[m(D2)XD,(X(t))- m(Dl)XD2(X(t))] dtI
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which measures the difference in time spent in the sets Dt, D2 is unbounded as T
although the ratio of this difference to

• T

XD,(X(t)) dti
tends to zero at a rate given by a suitable law of iterated logarithm.

Throughout this paper we shall assume that we are dealing with a separable version of
Brownian motion process denoted by X(t) = X(t, co) = X,.

c, C, Co, C\,... will denote a finite positive constant whose value is not important and
not necessarily the same at different occurrences. Other notations are

XA for indicator function of set A,
a.s. for almost surely,
O(x) for "large order" of x,
[f] for integer part of t,
Ac for complement of set A,
A for closure of set A,
d(x, y) for distance between x and y,
dA for boundary of set A,
Px, Ex for conditional probability and expectation respectively given X(0) = x.

1. Rate of convergence in R2

Theorem 1.1. For any bounded sets A and B in R2,

= Ex ̂  m(B)XA(X(t))dt- Ex | m(A)XB(X(t))dt

conver — Oes to a finite limit as T—»oo ; where m(.) denotes Lebesgue measure in R2.

Proof. 9(t)=n ^ e-^>2< dydt- \T \ ^ > eH«-.*2, dzdt
Jo JA Zirt Jo JB 27rt

fT

fA(t)-fB(t)dt say.
Jo

Since A and B are bounded sets, we have

I (fA(t)-fB(t))dt

for sufficiently large To. To complete the proof we apply the Cauchy condition for infinite
integrals (see e.g. page 433 of (1)) to the function fA(t)-fB(t).

Theorem 1.2. Let Dt and D2 be bounded non-empty open sets in R2 such that
D\C\D2

 = 0 - Then with probability one,

f(T, fli) = [ [m(D2)xDl(XxU <o))-m(D1)Xo1(Xx(t, <»))] dt
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is unbounded as T—»°°. However with probability one,

f(T, ft,)

y,(Xx(t, ft,)) dt
as

where Xx(t, <o) is Brownian motion in R2 starting from x and (N-1) is the number of new
entries to Dx after hitting D2, up to time T.

Proof. First we obtain uniform upper and lower bounds for Px {total time spent in Dx

before hitting D2> t) for all x e D,- Let A, B be open sets such that A C Dx and D , C B
such that D2O(B)C = D say. Consider an open subset A, of A such that d(Au8A)>0.
Then

P x ( o - A < o - D ) ^ P x ( o - A l < a D ) f o r x e D

where for any Borel set B,

finf (t>0:X, e B)
(<a) = aB = i

I+00 otherwise.

Since cro is the limit of a monotone increasing sequence of non-negative simple functions
/„ say, and by Proposition 2.1 of (9)

Px(crAl^fn) is lower semi-continuous in x for each n, it follows that Px(crAl<o~D) is
bounded below and assumes its minimum for x e D\C\AC. But Px(aAl < aD)>0, so that

min Px(o-Al <o-D)=C>0 for x e DxnAc. Observe that Px(o-A <aD)- 1 for x e A and
X

we have proved

there exists a constant 0 0 such that Px(aA<aD)>C forall x e D , . (1.1)

Starting from y e A, define

TaDt — first passage time out of Du

P = d(y,Dl)
S(y, /3) = circle centre y and radius j8.

Then Py{TdD1> t}^Py{Tgs(ytP)> t}. Moreover Py{TBs(y,p)> t}> Cze~c'' by Theorem 2 of
(2). Therefore

Py {total time spent in Dx before leavingB> t}^ Qc" c ' ' ; y e A. (1.2)

Next define

Ox = total time spent in Dx before hitting D2, starting from x e D ,

„ _ fO if Xx(t) does not hit A before BB,
* ~ U if Xx{i) hits A at time /i say before hitting dB.

Then QX^RX. 0X(M), where X(/n) e A By the strong Markov property, (1.1) and (1.2) we
obtain the lower bound of
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Lemma 1.1. There exist positive constants c, C, Co, C\ such that Coe~c'' = PX {total
time spent in D{ before hitting D2> f} = C'e~cl, for all u D , .

For the upper bound let Ci = inf {PX(X(1) e D2):x e D,}. Then Ci>0. Define
recursively

TO = 0, Tn = first hitting time of D, after Tn_! + 1.

Then for any positive integer n and x e Du Px {total time spent in D, before hitting
D2>n}gP,{X(Ty.+ l ) ^ D 2 , y = O,..., n - l } ^ ( l - C , ) " < l .

.-. Px{total time spent in D, before hitting D2> t}

^ Px{total time spent in D\ before hitting D2>[t]}

^(1-C1f°<l.
Therefore for suitable constants C", c,

Px {total time spent in D, before hitting D2> t}^C'e~cl, for all x e D,.

This completes the proof of Lemma 1.1.
Let a1(a)) = o-Dl(a>), /3i(w) = a,(&)) + (7D2(w ,̂) and for n g 2 ,

an{w) = /3n-i(w) + ai(<opn_,), j3n(cu) = an(

where w, = X(t, <u) is standard separable Brownian motion, and a)+
s is the shifted Brownian

motion &>t: t—*X(t+s, w). Using our notation we may rewrite, for x e D\,

XDI(XX(I, a)) (if as I XD,(X*U «))
Jo i= l Ja,

rand (1.3)

where, for

Xo2(Xx(t, a))) dt;

for

If x ̂  Du there will be an extra initial term in (1.3) which will make no difference to
our results. Let

Ui = j Xo,(Xx(t, «)) dt, V,= j . XDz(Xx{t, &))) dt.

Then PX{U,> t}^ Coe~c'' for all x e D, by Lemma 1.1. Therefore for every fixed \ no
matter how large,

Px{Ui<k}<8<l forall x e D,.

By the strong Markov property and the fact that the bounds in Lemma 1.1 are uniform in
x e D , , w e have
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Hence for any fixed X, there is zero probability that all the U, are less than X . Since

/ ( 7 » = m ( D 2 ) ( f Uj + KS.) - m ( D , ) ( l V.+J?^),

it is easy to see that, with probability one, f(T, w)> A infinitely-often as n—»°°. Now
consider a sequence Xn( = n)f°° as n—»<» and define the event En = {w. f(T, co) > Kn( = n)

infinitely-often}. Then P{En} = 1 and since En is monotone in n, P{n En} = 1. Therefore for
n

a) e fl£n, f(T, a)) is unbounded as n-»°°. Hence with probability one, f(T, to) is
n

unbounded as T—»°°. For proof of the second part of Theorem 1.2 we require the
machinery of stationary Markov chains. First we state a useful result.

Lemma 1.2. Given X(0) = x, let X(at) = a,. TTien {a,} is a strictly stationary Markov
chain on D\. Moreover there exists, for S C Du the unique stationary distribution p(S), forthe
Markov chain {aj, such that

\pi(x,S)-p(S)\<cP
i,x e Du

for constants c > 0 , 0 < p < l ; wherep'(x, S) is the i-step transition probability for the Markov
chain.
For the proof of Lemma 1.2 see Proposition 4.1 in (8) and §5 in Chapter V of (4).

Precise determination of the stationary distribution for generalised sets D\, D2 is
difficult. We did obtain p(S) in two special cases (stated below as Remarks 1 and 2) using
standard potential theory arguments. Note that similar arguments yield the stationary
distribution on any two bounded circles in R2.

Remark 1. Consider two unit discs A and B in R2 such that the distance between
their centres is s > 2 units. Then

p(ip) = stationary probability that Brownian motion enters B through dip C dB
and

p(<f>) = stationary P{Brownian motion enters A through d<j> C dA} are given by

1-u2 ... I - " 2

. . ..2X. P(4>) =2-n-(l-2uCos<£+u2)

where tfi, <j> are the angles between the line joining the centres of the circles and dip, d<f>
respectively and u = \s — (5s2 — 1)1/2.

Remark 2. Consider a unit disc A and a circle B with radius b > 1 unit in R2 such that
the distance between their centres s > 1 + b. Then

>, 1) = probability density of stationary distribution on BA, and
f(ip, b) = probability density of stationary distribution on dB

are given by
1 IT2 . b2-Ul

2irb(b2-2bUBCos^+U2
B)
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where
TT i + s

2-b2 n\ + s2-b2)2 \w TT s
2+b2-i /(s2+b2-i)2((l + S2-b2)2 \W _ S2+fe2-l /

I 452 V ' U B " 25 V25 \ 452 1 ' " 25 V 452

and </>, ip are as in Lemma 1.3.
Next define r,(r) = Px{ Ui g t}, ri(r) = Px{ Ut ^ f}. Then

H ( 0 = Pz{ L'. = '}= J r^COp'^'Cz, dx),

and since {t/;} inherits stationarity from {a,},

Y(t)= Tx(t)p(dx)= lim Tz(t) is the asymptotic distribution of Ut which does not

depend on i.

Definition. A strictly stationary sequence {L/,} is said to be uniformly mixing if for all
De ATk+n,

• <f>(n)|0 as n—»°o ;

where the a-algebra M°k+n describes the future of the sequence {U,} and is generated by
{Uk+n, L/fc+n+i, Uk+n+2,...} while the <r-algebra Mt» is generated by {Uu U2,..., Uk},
and <l>(n) is said to be the mixing coefficient.

Lemma 1.3. The sequence {l/Jis uniformly mixing.

Proof. Let X be a measure space and let /x, v be two measures on X such that
| /u.(S)- u(S)|<e for all SCZX. Let Og / (x )g l be a function measurable on X Then / i s
the limit of a monotone increasing sequence of non-negative simple functions, so that
application of Lebesgue's theorem (see page 121 of (6)) to this sequence gives (jfdfi —
ffdv)<e and -e<(J/<i/x-J/du) separately and hence the result \$fdfj.(x)-$fdv(x)\<e.
Now dDi is a measure space on which two measures p'(x, S), p(S) are such that
| pl(x, S)-p(S)\<cpi for all SOdD^ Therefore

'U dz)- \ rz(t)p(dz) <cp\

for constants c > 0 , 0 < p < l .
Define 6 as the shift function 0(Uu U2,...) = (U2, U3, ...)• Then for D e M°°k+m

d~n(D) depends on at most Uk, Uk+U Uk+i,..., and 6~"~k+1(D) depends on at most Uu

U2, By the Markov property of {aj,

Moreover

by strict stationarity and P{d~"~k+\D)\ ax = y} is a fixed function of y since it depends
neither on n nor k. Therefore P{D \ ak = z) depends on z but not on k. If we restart the

= z)= f P{6-~-h+\D)\ ax = y}p"(z, dy)
-"aD,
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sequence at afc+1 = zx say, D now depends on a sequence starting from Z\ and so depends
on Un+i, Un+2,. . ..Therefore replacing k by appropriate suffix corresponding to Z\ gives

| P{D \ML}~P(D)\ = |P21(D)-P(D)| = | PZ,(D)-PXM(D)\.

It is easy to show that | PZl(D) - PL(D)\ < c'p", 0 < p < 1, where

Pi(D)=limf Pyi(D)p"(z1,dyl)= f Pyi(D)p(dyi).

Similarly | PL(D) - Px(ai)(D)| < Cipn+k, 0 < p < 1. Therefore

| P{D | ML}-P(D)\<cpn,ioTconstants c > 0 , 0 < p < l ; (1.4)

which completes the proof of Lemma 1.3.

Corollary. The sequence { V} is uniformly mixing.

Now define Yt = m(D2) Ut - m(A) V,.
It is easy to see, using the ergodic theorem for stationary processes (see e.g. (6)) that

Also Lemma 1.1 immediately gives

P&Y&t^ce-0*' for all x e Dx. (1.5)

Applying the same method as for { [7J we arrive at

Lemma 1.4. The sequence {Y,—£X(Y;)} is strictly stationary and uniformly mixing,
with mixing coefficient given by (1.4).

Next we state two useful results.

Lemma 1.5. A strictly stationary sequence { Uj} with E( Uj) = 0, satisfying the uniform
mixing condition, obeys the law of the iterated logarithm if the following conditions are
fulfilled:

(i) E\Ui\
2+

00 Z {<f>(n)}m «*>, where <f>(n) is the mixing coefficient;
n = l

(iii) 0^(T2=£[[/?] + 2 I E[lAn Uj\. See (10).

Lemma 1.6. Suppose the strictly stationary sequence { Uj} satisfies the uniform mixing
condition. If the random variables T, 17 are measurable with respect to M-m and M%+n

respectively, and if E(\ T \P) <00, E(\ 17 \q) < °° with p, q > 1 and 1/p+1/q = 1, then

where 4>{n) is the mixing coefficient for {Uj}. See (5).

That conditions (i) and (ii) of Lemma 1.5 are satisfied by { Yi—Ex{ Y }̂ follows from (1.5)
and (1.4) above respectively. Moreover, by the strong Markov property and the uniformity
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of the bounds in Lemma 1.1, Px{ Y>a}^ Q>e~ca(l- C'e'"2") for a > 0 , x e A - There-
fore for sufficiently hirge a, Px{Y,>a}se'>0 for all i, x e Dt. Similarly, Px{Yi<-a}^
ei>Oforall i, x e D^ Therefore there is an e( = a2(£' + £i)) such that for all integers i, the
variance az

x{ Yi) of Y, starting at x is at least e. Hence the limiting variance of Y, starting at
x, $o-2

xp(dx) >0. Conditions (i) and (ii) of Lemma 1.5 are clearly satisfied for the sequence
obtained by requiring that the initial point be random with distribution p, from (1.5) and
(1.4) above respectively. For condition (iii) we need Lemma 1.6. The conditions of Lemma
1.6 are satisfied by YrEx{Y), ; g 2 and Y^E^Y^ for p = q = 2. Therefore

7 = 2
=i4 y-Ex(Y,)]2)

A(rn\
m

1 - P 1/2 Ex([Yl-Ex(Yl)f);c>0,0<p<l.

Since $axp(dx) is positive, condition (iii) is satisfied if

<Ex([Yl-Ex(Y1)f),

so that (1.6) holds if
1/2)2;)2;c>0,0<p<l.

(1.6)

(1.7)

Since the exact values of c and p are unknown it is not possible to determine whether or not
(1.7) is satisfied. A way out of this difficulty is to consider the subsequences {Yki+I) —
Ex( Yfcl+/)}, i = 0, 1,2,...; for a FIXED integer k whose value will be determined later.
There are k such subsequences of { Yt—Ex{ Y^)} namely

{ Yj-Ex( Y)}, { Yk+i- Ex

such that

" 1

} , { Y2k+i - Ex( Y2k+i)},... for / = 1, 2 , . . . k;

= I (Y-

For a typical subsequence, condition (iii) of Lemma 1.5 is satisfied if

pf c<l/(l + 4c1/2)2. (1.8)

Because c, p are fixed for { Y,-JBX( Y|)} we can choose k such that k is the smallest integer
for which (1.8) holds. For this value of k, it is clear that all three conditions of Lemma 1.5
hold. Therefore the sequence { Yki+j - Ex( Yki+j)} for k given as above, obeys the law of the
iterated logarithm. The tail of the distribution of Yf starting at x has a negative exponential
upper bound (application of Lemma 1.1). Moreover EX{Y}—»0 as i—»°°. Theorem 1.1
therefore implies

Nz Yi =
nk

Y,
k

1 = 1

n—1

Z
i = 0

Y f c i + , < k(cNa2 loglog N)1/2 (1.9)

for sufficiently large N, where a2 = max {<r2; / = 1, 2,. . . , k} where <r2 is equivalent to a2 in
Lemma 1.5 for each subsequence {Yki+j — Ex(Yki+j)}. If

(a) pN^ = f Y-
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where (N— 1) is the number of new entries to Dx from D2 up to time T. Since the tail of the
distribution of m(D2) UN+1 has a negative exponential upper bound, there exists an No

such that m(D2) UN+i ^ AT1'2 for all JVg No. Then in both cases (a) and (b) above we have,
from (1.9), that

| f(T, a)\ = 0((Nloglog TV)1'2) a.s. as iV^°°. (1.10)
But

1 rT

h m 7r XD>(Xx(t, a)) dt = c' a.s.

(see e.g. (8)). Therefore with probability one,

f(T, o>)

j =

where (N— 1) is the number of new entries to Dt after hitting D2. The fact that TV—»°° as
T-»a> completes the proof of Theorem 1.2.

Remark 3. The same result in I?1 is substantially easier because the hitting point of
the interval is unique which implies that the sequence {Y} of random variables are
independent and identically distributed. This allows an application of the standard law of
iterated logarithm.

Acknowledgement. I would like to express my gratitude to Professor S. James Taylor
who suggested this problem.
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