Note on rational approximations of the exponential function at rational points

Alain Durand

Let p, q, u, and v be any four positive integers, and let δ be a number in the interval $0<\delta \leq 2$. In one of his papers, Kurt Mahler, Bull. Austral. Math. Soc. 10 (1974), 325-335, proved that if q satisfies the inequalities

$$
\begin{gathered}
q \geq e^{\{64(u+v)\}^{10 / \delta}}, \quad q \geq e^{8 u / \delta v}, \\
q \geq e^{\left(e^{2} u / v\right)^{24 / \delta}}, \text { and } q \geq e^{e^{(e \delta)^{-2}}},
\end{gathered}
$$

then

$$
\left|e^{u / v}-\frac{p}{q}\right|>q^{-(2+\delta)} .
$$

In this note, by a slightly different treatment of some inequalities in Mahler's paper, we easily obtain the same result with q only restricted by the first condition.

1.

Denote by n, v, two positive integers and put

$$
P_{1}(x)=\sum_{k=n-1}^{2 n-1} \frac{n k!v^{k-n+1}}{(k-n+1)!(2 n-k-1)!}(-x)^{2 n-k-1}
$$

Received 3 March 1976.
and

$$
P_{2}(x)=\sum_{k=n}^{2 n-1} \frac{k!v^{k-n+1}}{(k-n)!(2 n-k-1)!}(-x)^{2 n-k-1} .
$$

Furthermore put

$$
f_{1}(x, z)=\frac{x^{n-1}}{(n-1)!}(v x-z)^{n} \text { and } f_{2}(x, z)=\frac{v x^{n}}{(n-1)!}(v x-z)^{n-1} .
$$

It follows from the definition of $P_{1}(x), P_{2}(x)$ that

$$
\left.\sum_{k \geq 0} \frac{\partial^{k}}{\partial x^{k}} f_{i}(x, z)\right|_{x=0}=P_{i}(z) \quad(i=1,2)
$$

and

$$
\left.\sum_{k \geq 0} \frac{\partial^{k}}{\partial x^{k}} f_{1}(x, z)\right|_{x=z / v}=P_{2}(-z),\left.\sum_{k \geq 0} \frac{\partial^{k}}{\partial x^{k}} f_{2}(x, z)\right|_{x=z / v}=P_{1}(-z) .
$$

Then, by Hermite's identity,

$$
\begin{aligned}
& e^{z / v} P_{1}(z)-P_{2}(-z)=e^{z / v} \int_{0}^{z / v} e^{-t} f_{1}(t, z) d t= \\
&=z^{2 n} e^{z / v} \int_{0}^{1 / v} \frac{x^{n-1}}{(n-1)!}(v x-1)^{n} e^{-z x} d x
\end{aligned}
$$

and

$$
\begin{aligned}
e^{z / v} P_{2}(z)-P_{1}(-z)=e^{z / v} \int_{0}^{z / v} e^{-t} f_{2}(t, z) d t & = \\
& =z^{2 n} e^{z / v} \int_{0}^{1 / v} \frac{x^{n}}{(n-1)!}(v x-1)^{n-1} e^{-z x} d x
\end{aligned}
$$

Therefore, the determinant

$$
\Delta(z)=P_{1}(z) P_{1}(-z)-P_{2}(z) P_{2}(-z)
$$

is a polynomial in z of the exact degree $2 n$ which has at $z=0$ a zero of order $2 n$. Then

$$
\Delta(z) \neq 0 \text { if } z \neq 0 .
$$

2.

Denote by p, q, u, and v four positive integers, and let

$$
\theta=\left|q e^{u / v}-p\right|
$$

By putting $z=u$ in the preceding formulae, we obtain

$$
\left|q P_{2}(-u)-p P_{1}(u)\right| \leq \theta\left|P_{1}(u)\right|+q\left(e^{u / v}-1\right) \sup _{0 \leq t \leq u / v}\left|f_{1}(t, u)\right|
$$

and

$$
\left|q P_{1}(-u)-p P_{2}(u)\right| \leq \theta\left|P_{2}(u)\right|+q\left(e^{u / v}-1\right) \sup _{0 \leq t \leq u / v}\left|f_{2}(t, u)\right|
$$

Since

$$
P_{1}(u) P_{1}(-u)-P_{2}(u) P_{2}(-u) \neq 0,
$$

at least one of the integers

$$
q P_{2}(-u)-p P_{1}(u) \text { and } q P_{1}(-u)-p P_{2}(u)
$$

is distinct from zero. It follows that
(1)

$$
1 \leq \theta\left|P_{i}(u)\right|+q e^{u / v} \sup _{0 \leq t \leq u / v}\left|f_{i}(t, u)\right|
$$

where $i=1$ or $i=2$.
We have

$$
\left|P_{1}(u)\right| \leq \sum_{k=n-1}^{2 n-1} \frac{n k!v^{k-n+1} u^{2 n-k-1}}{(k-n+1)!(2 n-k-1)!}=\sum_{j=0}^{n} \frac{n(n+j-1)!}{j!(n-j)!} v^{j} u^{n-j} \leq \frac{(2 n-1)!}{(n-1)!}(u+v)^{n}
$$

and

$$
\left|P_{2}(u)\right| \leq v \sum_{j=0}^{n-1} \frac{(n+j)!v^{j} u^{n-1-j}}{j!(n-1-j)!} \leq v \frac{(2 n-1)!}{(n-1)!}(u+v)^{n-1}
$$

Next, when t lies in the interval $0 \leq t \leq u / v$,
$\max \left\{\left|f_{1}(t, u)\right|,\left|f_{2}(t, u)\right|\right\} \leq \frac{u^{2 n-1}}{(n-1)!v^{n-1}} \sup _{0 \leq t \leq 1}(t(1-t))^{n-1} \leq$

$$
\leq \frac{u^{2 n-1}}{(n-1)!(4 v)^{n-1}} \leq \frac{u^{2 n-1}}{(n-1)!4^{n-1}}
$$

Then, by (1), we can write

$$
\begin{equation*}
1 \leq \frac{(2 n-1)!}{(n-1)!}(u+v)^{n} \theta+q \frac{e^{u / v} u^{2 n-1}}{(n-1)!4^{n-1}} \tag{2}
\end{equation*}
$$

3.

Denote by m_{0} the smallest integer which satisfies

$$
\begin{equation*}
2 q e^{u_{u}}{ }^{2 m_{0}+1} \leq m_{0}!4^{m_{0}} . \tag{3}
\end{equation*}
$$

From the definition of m_{0}, it follows that

$$
\begin{equation*}
\left(m_{0}-1\right)!4^{m_{0}-1}<2 q e^{u^{2}} u^{2 m_{0}-1} . \tag{4}
\end{equation*}
$$

Since

$$
\frac{\left(2 m_{0}+1\right)!}{m_{0}!}=\binom{2 m_{0}+1}{m_{0}} \cdot\left(m_{0}+1\right)!<2^{2 m_{0}+1}\left(m_{0}+1\right)!
$$

we have, by (2), (3), and (4), with $n=m_{0}+1$,

$$
1 \leq 2.2^{2 m_{0}+1}(u+v)^{m_{0}+1} \theta .2 q e^{u^{2 m_{0}-1}}{m_{0}\left(m_{0}+1\right) 4^{1-m_{0}} .}
$$

Note that

$$
m_{0}\left(m_{0}+1\right) \leq 2^{2 m_{0}-1}, u+v>u, \text { and } m_{0} \geq 1
$$

then

$$
\begin{equation*}
l \leq \theta q e^{u}(4(u+v))^{3 m_{0}} \tag{5}
\end{equation*}
$$

4.

Now, we require an upper estimate for m_{0}. By (4), we have

$$
m_{0}!4^{m_{0}-1}<2 q e^{u^{2 m_{0}-1}} m_{0}
$$

Since

$$
m_{0}: \geq m_{0}^{m_{0}+\frac{3}{2}} e^{-m_{0}} \sqrt{2 \pi}, \quad m_{0}^{\frac{1}{2}} \leq \frac{2^{m_{0} / 2}}{\sqrt{2}} \text {, and } \frac{\sqrt{2} e}{4}<1,
$$

it follows that

$$
m_{0}^{m_{0}}<q e_{u}^{u_{u}^{2 m_{0}-1}} \cdot \frac{2 e^{m_{0} m_{0}^{\frac{2}{2}}}}{4^{m_{0}-1} \sqrt{2 \pi}} \leq q e^{u_{u}^{2 m_{0}}} \frac{4}{\sqrt{\pi}}\left(\frac{\sqrt{2} e}{4}\right)^{m_{0}}<3 q e^{u_{u} m_{0}}
$$

Put
(6)

$$
b=\frac{1}{u^{2}} \log \left(3 q e^{u}\right) \quad \text { and } \quad x=\frac{m_{0}}{u^{2}}
$$

Hence

$$
\begin{equation*}
x^{x}<e^{b} \tag{7}
\end{equation*}
$$

Suppose that

$$
b \geq 27>e^{e}
$$

Then, the condition

$$
x \geq \frac{b}{\log (b / \log b)}
$$

implies

$$
x \log x \geq b+\frac{b \log \log \log b}{\log (b / \log b)} \geq b
$$

Hence, by (7),

$$
\begin{equation*}
x<\frac{b}{\log (b / \log b)} \text { and } m_{0}<\frac{b u^{2}}{\log (b / \log b)}, \tag{8}
\end{equation*}
$$

provided $b \geq 27$.

$$
5 .
$$

We can now prove the
THEOREM. Let δ be a constant in the interval $0<\delta \leq 2$, and let p, q, u, and v be four positive integers. Assume that

$$
q \geq e^{(4(u+v))^{10 / \delta}}
$$

Then

$$
\left|e^{u / v}-\frac{p}{q}\right| \geq q^{-(2+\delta)}
$$

Proof. We have

$$
\log . q \geq(4(u+v))^{10 / \delta}>u^{10 / \delta} \geq u^{5}
$$

Then

$$
b=\frac{1}{u^{2}} \log \left(3 q e^{u}\right)>\frac{\log q}{u^{2}} \geq(\log q)^{3 / 5}
$$

Since

$$
5 e^{y / 5} \geq 3 y \text { for } y \geq 5 \log 5, \text { and } \log q \geq 8^{10 / \delta} \geq 8^{5}
$$

it follows that

$$
\frac{b}{\log b}>\frac{5}{3} \frac{(\log q)^{3 / 5}}{\log \log q} \geq(\log q)^{2 / 5} \geq(4(u+v))^{4 / \delta}
$$

Since

$$
b>(\log q)^{3 / 5} \geq 8^{3}>27
$$

we deduce from (8),

$$
3 m_{0} \log (4(u+v))<\frac{3 b u^{2} \log (4(u+v))}{\log (b / \log b)} \leq \frac{3 \delta}{4} \log \left(3 q e^{u}\right)
$$

On substituting this upper estimate in (5), it follows that

$$
1<\theta q e^{u}\left(3 q e^{u}\right)^{3 \delta / 4}
$$

Finally, since

$$
e^{u}\left(3 e^{u}\right)^{3 \delta / 4} \leq e^{6 u} \leq e^{(\delta / 4)(4 u)^{10 / \delta}} \leq q^{\delta / 4}
$$

we find that

$$
\theta \geq q^{-1-\delta}
$$

This completes the proof.
6.

Note that the condition for q in this theorem can be easily replaced
by a weaker one, for example if we suppose $0<\delta \leq 1$.
Compare also related results by Bundschuh [1].

References

[1] Peter Bundschuh, "Irrationalitätsmaße für $e^{a}, a \neq 0$ rational oder Liouville-Zahl", Math. Ann. 192 (1971), 229-242.
[2] Kurt Mahler, "On rational approximations of the exponential function at rational points", Bull. Austral. Math. Soc. 10 (1974), 325-335.

Département de Mathématiques, U.E.R. des Sciences de Limoges, Limoges,

France.

