A SECOND NOTE ON INGHAM'S SUMMATION METHOD

BY
S. L. SEGAL

A series $\sum a_{n}$ is said to be summable (I) to the limit A if

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \sum_{d \mid n} d a_{d}=A . \tag{*}
\end{equation*}
$$

Clearly the limit is the same whether $x \rightarrow \infty$ through all real values or only positive integer values, and the expression whose limit is being taken can also be expressed in the two equivalent forms

$$
\frac{1}{x} \sum_{d \leq x} d a_{d}\left[\frac{x}{d}\right] \text { and } \frac{1}{x} \sum_{d \leq x} \sum_{m \leq x / d} m a_{m}
$$

where $[x]$ is the greatest integer $\leq x$. The method called (I) was introduced by Ingham [4] in connection with a novel proof of the prime number theorem and independently by Wintner [8]. The denomination (I) for it was coined by Hardy [2, Appendix IV]. Despite the fact that the method (I) is not regular, it has a certain number-theoretic interest as the definition $\left(^{*}\right)$ would suggest. Such number theoretic connections are discussed in [4], [2, Appendix IV], [6]. Two limitation theorems are known for (I). If $\sum_{a_{n}}$ is summable (I), then
(i) $a_{n}=o(\log \log n)$ as $n \rightarrow \infty \quad$ [2, Appendix IV]
and
(ii) $\sum_{n \leq x} a_{n}=0(\log x)$ as $x \rightarrow \infty \quad$ [7]

Clearly neither (i) nor (ii) includes the other and it had been an open question for sometime whether these were best possible. In [1], the author and P. Erdös show that (i) is best possible by actual construction of an appropriate series. I have recently realized that (ii) can also be shown to be best possible, but the proof is non-constructive. The purpose of this brief note is to give that proof. Throughout, all variables other than x indicate positive integers, $\mu(n)$ is the Möbius function, $N(x)=\sum_{n \leq x}(\mu(n) /(n)$, and $[x]$ is the greatest integer $\leq x$.

Received by the editors April 25, 1978 and, in revised form, June 13, 1978.

Theorem. Let $\varepsilon(x)$ be any positive function decreasing to 0 monotonically but arbitrarily slowly as $x \rightarrow \infty$. Then there exists a series $\sum a_{n}$ which is (I)-summable and such that

$$
\sum_{n \leq x} a_{n} \neq \mathrm{o}(\varepsilon(x) \log x) \quad \text { as } \quad x \rightarrow \infty
$$

Proof. Let $K(n)$ be any sequence indexed by the positive integers tending to 0 as $n \rightarrow \infty$. (Define, for convenience, $K(0)=0$.) Define b_{n} by

$$
\begin{equation*}
b_{n}=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right)(d K(d)-(d-1) K(d-1)) . \tag{1}
\end{equation*}
$$

Then for positive integers t,

$$
\frac{1}{t} \sum_{n \leq t} \sum_{d \mid n} d b_{d}=K(t),
$$

And so $\sum b_{n}$ is (I)-summable to 0 .
Furthermore

$$
\begin{align*}
\sum_{n \leq r} b_{n} & =\sum_{d \leq r} \frac{d K(d)-(d-1) K(d-1)}{d} \sum_{m \leq r / d} \frac{\mu(m)}{m} \\
& =\sum_{d \leq r}(K(d)-K(d-1)) N\left(\frac{r}{d}\right)+\sum_{d \leq r} \frac{K(d-1)}{d} N\left(\frac{r}{d}\right) . \tag{2}
\end{align*}
$$

For the second sum on the right, we have, since $K(d)$ is bounded,

$$
\begin{equation*}
\left|\sum_{d \leq r} \frac{K(d-1)}{d} N\left(\frac{r}{d}\right)\right|=0\left(\sum_{d \leq r} \frac{1}{d}\left|N\left(\frac{r}{d}\right)\right|\right)=0(1) \quad \text { as } \quad r \rightarrow \infty \tag{3}
\end{equation*}
$$

by a remark of Rubel [5, Correction].
For the first sum on the right,

$$
\begin{equation*}
\sum_{d \leq r}(K(d)-K(d-1)) N\left(\frac{r}{d}\right)=\sum_{d \leq r} K(d)\left(N\left(\frac{r}{d}\right)-N\left(\frac{r}{d+1}\right)\right) \tag{4}
\end{equation*}
$$

since $N(X)=0$ for $X<1$.
Substituting (4) and (3) into (2) gives

$$
\begin{equation*}
\sum_{d \leq r} K(d)\left(N\left(\frac{r}{d}\right)-N\left(\frac{r}{d+1}\right)\right)=\sum_{n \leq r} b_{n}+0(1) \quad \text { as } \quad r \rightarrow \infty . \tag{5}
\end{equation*}
$$

Suppose now the theorem were false; that is suppose there is a positive function $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$, such that for every I-summable series $\sum a_{n}$, $\sum_{n \leq x} a_{n}=\mathrm{o}(\varepsilon(x) \log x)$ as $x \rightarrow \infty$. Then by the above construction, (5) says that for every sequence $K(n) \rightarrow 0$ as $n \rightarrow \infty$,

$$
\begin{equation*}
\sum_{d \leq r} K(d)\left(N\left(\frac{r}{d}\right)-N\left(\frac{r}{d+1}\right)\right)=0(\varepsilon(r) \log r) \tag{6}
\end{equation*}
$$

Define $C_{r, d}$ by

$$
C_{\mathrm{r}, d}=\frac{1}{\varepsilon(r) \log r}\left(N\left(\frac{r}{d}\right)-N\left(\frac{r}{d+1}\right)\right)
$$

Then (6) says that the matrix $\left\|C_{r, d}\right\|$ transforms all sequences tending to 0 into sequences tending to 0 . The conditions for an infinite matrix to have this property are well-known (e.g. [2, p. 49]) and so, in particular, we must have

$$
\begin{equation*}
\frac{1}{\varepsilon(r) \log r} \sum_{d \leq r}\left|N\left(\frac{r}{d}\right)-N\left(\frac{r}{d+1}\right)\right|<C \tag{7}
\end{equation*}
$$

for all r, where C is a constant independent of r.
On the other hand,

$$
\begin{align*}
\sum_{d \leq r}|N(r / d)-N(r / d+1)| & =\sum_{d \leq r}\left|\sum_{(r / d+1)<m \leq r / d} \frac{\mu(m)}{m}\right| \tag{8}\\
& \geq \sum_{r^{1 / 2}<d \leq r}\left|\sum_{(r / d+1)<m \leq r / d} \frac{\mu(m)}{m}\right|
\end{align*}
$$

Now for $r^{1 / 2}<d \leq r, r / d(d+1)<1$, and hence the inner sum contains at most one term. As is well-known [e.g. [3], Theorem 343 and partial summation],

$$
\sum_{m \leq y} \frac{|\mu(m)|}{m}=\frac{6}{\pi 2} \log y+0(1) \quad \text { as } \quad y \rightarrow \infty .
$$

Hence, we have from (8),

$$
\begin{align*}
\sum_{d \leq r} & \left|N\left(\frac{r}{d}\right)-N\left(\frac{r}{d+1}\right)\right| \geq \sum_{r^{1 / 2}<d \leq r}\left|\sum_{(r / d+1)<m \leq r / d} \frac{\mu(m)}{m}\right| \\
& =\sum_{r^{1 / 2}<d \leq r / d+1<m \leq r / d} \frac{|\mu(m)|}{m} \\
& =\sum_{1 \leq d<\left(r /\left[r^{1 / 2}\right]+1\right)} \frac{|\mu(m)|}{m} \tag{9}\\
& =\left(3 / \pi^{2}\right) \log r+0(1) \text { as } \quad r \rightarrow \infty .
\end{align*}
$$

But (9) contradicts (7) since $\varepsilon(r) \rightarrow 0$ as $r \rightarrow \infty$, which proves the theorem.
Acknowledgement. I wish to thank Prof. K. Ramachandra for a remark which indicated that (ii) was in fact best possible.

References

1. Erdös, P. and S. L. Segal, A note on Ingham's Summation Method, Jour. Number Theory, 10, (1978), 95-98.
2. Hardy, G. H. Divergent Series, Oxford, 1949.
3. Hardy, G. H. and E. M. Wright, An Introduction to the Theory of Numbers, Oxford (4th edition, 1965).
[^0]
[^0]: 4. Ingham, A. E., Some Tauberian Theorems connected with the Prime Number Theorem, J. London Math. Soc. 20, (1945), 171-180.
 5. Rubel, L. A., An Abelian Theorem for Number-Theoretic Sums, Acta Arithmetica 6, (1960), 175-177, Correction Acta Arithmetica 6, (1961), 523.
 6. Segal, S. L., Ingham's Summation Method and the Riemann Hypothesis, Proc. Lond. Math. Soc. (3) 30, (1975), 129-142, Carrijendum 34 (1977), 438.
 7. Segal, S. L., On Ingham's Summation Method, Canadian Journal Math., 18, (1966), 97-105.
 8. Wintner, A., Eratosthenian Averages, Baltimore, 1943.

 ## Department of Mathematics
 The University of Rochester
 Rochester, New York 14627

