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EXISTENCE OF SOLUTIONS OF A N ILL-POSED 
PROBLEM FOR THE VIBRATING STRING 

BY 

L. L. C A M P B E L L 

ABSTRACT. The Dirichlet problem is examined for the vibrating 
string equation on a rectangle with commensurable sides. As is 
well-known, a solution, if it exists, is not unique. A necessary and 
sufficient condition is obtained on the boundary values for existence 
of solutions. A simple formula for the solution is obtained. 

1. Introduction. In 1939 Bourgin and Duffin [2] examined the Dirichlet 
problem for the vibrating string equation 

(i) ^ - ^ = 0 ' ix>t)eD 

where D is the rectangle {(x, t) : 0<x < L, 0 < t < T}. They showed that if TIL is 
irrational and u vanishes on the boundary of D, then u vanishes throughout D. 
On the other hand, if TIL = k/l where k and I are integers, then 
sin ITTX/L sin lirt/L is a solution of (1) which vanishes on the boundary of D. 
Thus the uniqueness of solutions of the Dirichlet problem (and similarly of 
many other boundary value problems with data given on all four sides of the 
rectangle) for (1) depends on the commensurability or otherwise of the lengths 
of the sides. 

This result is often "explained" by saying that the Dirichlet problem for (1) 
is ill-posed. Physically it is more appropriate to assign the initial position and 
velocity of the points of the string; i.e. to give Cauchy data at t = 0, and to 
leave u unrestricted on the side t = T. However there are some inverse 
problems where one might observe u(x, T) for 0 < x < L and attempt to infer 
from this the values of ^(x, 0). Or, equivalently, one might consider a very 
simple control problem in which one wishes to choose Uj(x, 0) in order to 
achieve a target displacement u(x, T). The variety of applications which lead to 
ill-posed problems [4,7] suggest that a more complete understanding of the 
Dirichlet problem for (1) might be useful. 
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In fact [2] has inspired a number of extensions to other hyperbolic and 
ultrahyperbolic equations, to more general boundary conditions, and to differ­
ent methods of proof. See, for example, [1, 5, 9] where some recent results 
and references to earlier work appear. 

Much of the work to date has dealt with uniqueness questions. Bourgin and 
Duffin [2] give one condition for existence when T/L is irrational and Travis [8] 
deals with existence of a solution of the non-homogeneous version of (1) with 
zero boundary conditions. Fox and Pucci [6] deal with uniqueness, existence, 
and continuous dependence on the data for solutions of (1) which vanish on the 
sides x = 0 and x = L of the rectangle D and which assume given values on the 
sides t = 0 and t = T. 

In the present paper we extend some of Fox and Pucci's results [6]. For T/L 
rational, we extend their criterion for existence of a solution to include the case 
where u assumes arbitrary values on all four sides of the rectangle. We also 
obtain a more explicit representation of the solution when it exists (see (8), 
(12), (13)). Our existence condition (14), with g(

n
l) = 0, is equivalent to (32) in 

[6], while our condition Lf= Tg, together with (12), reduces to (25) in [6] when 
g = 0. 

Since the derivation of our main result depends rather heavily on the explicit 
form of (1), we indicate in Section 4, two alternative approaches to the 
problem which offer more prospect of generalization. One of these alternatives 
is to use an integral representation of the solutions of (1) to convert the 
problem to a Fredholm integral equation of the first kind. The condition for 
existence of a solution of the Dirichlet problem in this approach becomes the 
condition for existence of a solution of the integral equation in the case of 
non-uniqueness. The particular integral equation which arises is closely related 
to one arising in a Wiener filtering problem which was studied by Brown [3]. 

2. Preliminary definitions and results. Let / be an odd periodic function 
with period 2L. Let T/L = k/l where fc and / are relatively prime integers. 
Define two functions / and / by 

(2) /(x) = y ! £ / ( x + (2m + l)T) 
* m=0 

and 

(3) f(x) = \ Z ( m - ^ W + (2m + l)T). 
I m=o ^ ^ ' 

Fairly straightforward calculations using the oddness and periodicity of / 
amd the relative primeness of k and / show the following: 

(i) / is an odd function 
(ii) / has period 2L/1 = 2T/k 
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(iii) / is an even function 
(iv) / has period 2L 
(v) f(x + T)-f(x-T) = f(x)-f(x-T) for all x. 

Moreover, if / is integrable and has associated Fourier series 

(4) f(x)- £ /nsi sm-
mrx 

then / and / have the associated Fourier series 

(5) /(*) ~ £ /„ sin ^ (x + T) = t (-1)'% sin ^ 

and 

fr. 2( \ 1 r ' / : nirT nirx 
(6) / ( X ) ~ - " 2 . /n CSC — — COS —— , 

where X' denotes a sum over terms for which sin mrT/L^O. Thus the series for 
/ and / involve, respectively, those terms from (4) for which n = 0 (mod I) and 
n ^ O (modi). 

If g is odd and periodic with period 2T, we define similarly 

(2)' g(*)=4 ^ g(* + (2m + l)L) 
fc m=0 

and 

(3)' g(x) = £ Y ( m - ^ ) g ( x + (2m + l)L). 

These functions have analogous properties to those of / and /. In particular, we 
remark that / and g both have the same period 2L/1 = 2T/fc. 

3. Existence of solutions. Throughout this paper we shall use the term 
"solution" of (1) to mean any function 

u (x, t) = <l>1(x — t) + cj>2(x +1) 

where 4>x and c£>2 are integrable functions. We consider first the boundary 
values 

fu(x,0) = 0, u(x, T) = /(x) for 0 < x < L 
( ) U(0 , t ) = 0, u(L,t) = g(i) for 0 < f < T , 

where / and g are integrable functons. A "solution" of the Dirichlet problem 
(1), (7) will mean a solution of (1) which satisfies (7) almost everywhere. Let 
the boundary functions / and g be extended to the real line so that they are 
odd and periodic with period TL and 2T respectiviely. Let /, /, g, g be defined 
by (2), (3), (2)', (3)'. 

https://doi.org/10.4153/CMB-1982-003-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-003-6


32 L. L. CAMPBELL [March 

THEOREM. Let T/L = k/l where k and I are relatively prime integers. The 
Dirichlet problem (1), (7) has a solution if and only if Lf=Tg almost 
everywhere. When this condition is satisfied, one solution is 

u0(x,t) = f(t + x)-f(t-x) + g(t + x)-g(t-x) 

+ (2L)-1[(f + x)g(f + x ) - ( f - x ) g ( f - x ) ] . 

Proof. We show the necessity of the condition Lf=Tg by showing that 
L( - l ) r k / H = T(-l)rlgrk for r = 1, 2 , . . . is a necessary condition for the existence 
of a solution, where fn and gm are the Fourier coefficients of / and g. Let u be 
any solution of (1), (7) of the form described above. Then 

L(-lYkfrl - T(-l)r igrfc = 2(-l) r kJ[ [<Mx - T) + 4>2(x + T)]sin — dx 

fT rkirt 
- 2 ( - l ) r i [4>t(L - 0 + <t>2(L + t)]sin — at. 

Make the substitution k/T= l/L and some obvious changes of variables in the 
integrals. The result, after a little simplification, is 

L(- l ) r k / r i - T(-l)"g r fc = 2J <^1(x)sin — dx + 2^ <f>2(x)sin — dx 

[*i(x) + <fr2(x)]sin—- dx 
o L 

[*i(-r) + <^2(t)]sin — dt. 

But 4>i(x) + </>2(x) = u(x, 0) - 0 for 0 < x < L and c^^-r) + cf>2(t) = u(0, t) = 0 for 
0 < f < T . Hence the expression on the left in (9) vanishes. Since (-l) rk/ r{ and 
(-l)Hg rk are the Fourier coefficients of / and g respectively, it follows that 
L / = Tg almost everywhere. 

To prove the sufficiency, we assume that Lf = Tg and show that (8) gives a 
solution of (1), (7). By our definition, u0 is a solution of (1). Obviously 
u0(0, t) = 0, and the property u0(x, 0) = 0 follows from the evenness of / and g 
and the oddness of g. Next, 

w0U,T) = / ( x 4 - T ) - / ( T - x ) + g(T + x ) - g ( T - x ) 

+ (2L)-1[(T + x ) g ( T + x ) - ( T - x ) g ( T - x ) ] . 

But g is even and has period 2T so that 

g(T + x ) - g ( T - x ) = g(T + x ) - g ( x - T ) = 0. 

Similarly g is odd and has period 2T/k, where k is an integer, so that 
—g(T-x) = g(T + x) = g(x — T). Finally, by the evenness of / and by property 
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(v) of Section 2, 

(10) f(x + T)-f(T-x) = f(x)-f(x-T). 

Making these substitutions, we get 

u0(x, T) = f(x)-f(x - T) + (T/L)g(x - T). 

Since Tg = Lf almost everywhere, u0(x, T) = f(x) almost everywhere. The 
property u0(L, t) = g(t) follows from a similar calculation which uses the 
periodicity of g and / and the identity analogous to (10) for g. This completes 
the proof. 

Note that the solution u0 given by (8) is not unique, since we can add to it 
any convergent series of the form 

Z , . rlirx . rkirt 
&r sin — s i n — 

and obtain another solution. 
The extension of the Theorem to more general Dirichlet conditions is now 

straightforward. Let the boundary conditions be 

u(x,0) = f1(x), u(x,T) = f2(x) for 0 < x < L 

"(0,t) = g1(0, u(L,t) = g2(t) for 0 < t < T . 

Extend fl9 f2, gi, g2 to odd periodic functions with periods 2L and 2T. If we put 

u(x,t) = u ( x , t ) - è [ / i U - 0 + / i ( x + 0 ] - è [ g i ( t - x ) + g1(t + x)] 

then v is a solution of (1) whenever u is a solution. Moreover, v satisfies the 
conditions (7) with 

(12) /(x) = / 2 ( x ) - | [ / 1 ( x - T ) + /1(x + T)] 

and 

(13) g(0 = g 2 ( 0 - a g i ( r - L ) + g l ( t+L) ] . 

If we write {/i1}}, {/i2)}, {gi1}}, and {g^2)} for the Fourier series coefficients of 
/i> /2> gi?

 and g2 respectively, the condition for existence, L(-l) r k/ ri = T(-l) r Ig rk 

for r = 1, 2 , . . . , becomes 

(14) £,[/<,» - ( - l ) r k / ^ ] = T[g£ - ( - l ) r i g ^ ] (r = 1,2, 3 , . . . ) , 

where the subscripts rk and rl are ordinary products. That is, the solution 
condition (14) depends only on coefficients /£} for which n = 0 (mod I) and on 
coefficients g^° for which n = 0 (mod k). 

Although their principal interest was in the case that TIL is irrational, 
Bourgin and Duffin [2, p. 857] indicated that the vanishing of each side of 
equation (14) is a necessary condition for the existence of a solution of (1), 
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(11). While this is a sufficient condition, it is not quite a necessary condition, as 
the example 

ITT ITT 

U(x, t) = (x + f)sin —- (x +1) - (x - t)sin — (x — t) 

shows. This is a solution of (1), (7) with 

f(x) = 2T(-l)k s i n ^ , g(t) = 2L(-1)1 s i n ^ . 

Each side of (14) is equal to -2LT, for r = 1. 

4. Fourier series and Green's functions. Both to indicate possible directions 
for generalization and to provide the connections with a filtering problem [3], 
we outline alternative approaches to the Dirichlet problem. To simplify the 
discussion, we restrict ourselves in this section to the boundary conditions 

f u(0, t) = u(L, 0 - u(x, 0) = 0 

lu(x, T) = f(x). 

That is, we take g = 0 in (7). 
A more standard set of boundary conditions for (1) is obtained by replacing 

the condition u(x, T) = f(x) by ut(x, 0) = v(x), where the subscript denotes 
differentiation with respect to t. The well-known Fourier series solution of this 
problem is 

(16) u(x,t) = — 2, sin —— sin — , 
7T n = 1 n L L 

where 

v(x)~ 2- Un s i n — - . 
n = l ^ 

The Dirichlet problem (1), (15) is now equivalent to finding v so that (15) is 
satisfied. Substitution of (16) in (15) gives the equations 

(17) — - s in - -— = fn (rc = l , 2 , . . . ) . 
nrr L 

Since T/L = k/l, no solution is possible unless /n = 0 for n = 0 (mod /). This 
condition is equivalent, by (5), to the condition / = 0 almost everywhere. 
Moreover, if this condition is satisfied, and vn satisfies this equation, then (16) 
becomes 

, _ . / ^ v ' £ mvT . mrx . nrrt 
(18) u(x, 0 = 2- fn esc —— sin — sin — , 
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where, as before, Y! denotes a sum in which terms with n = 0 (mod 0 are 
omitted. This series can be summed (formally) with the aid of (6) to give 

(19) u(x,t) = f(t + x)-f(t-x). 

Another approach is to obtain the Riemann-Green function for the standard 
problem, with ut(x, 0) = v(x) replacing the condition u(x, T) = f(x). It is simpler 
in this case to restrict ourselves to rectangles with T<L. This causes no real 
loss of generality because it is easily established that u(x, t + 2L) = u(x, t) and 
u(x, 2L-t) = —u(x, f), so that the solution can be continued once it is known 
for 0 < f < L . Let pt be defined for 0 < f < L by 

pt(x) = 

and put 

1 for |x |<f 

0 for f < | x | < L 

lpt(x + 2L) for all x, 

Kt(x, y) = è [p t (x-y) -p t (x + y)]. 

Then we have the representation 

u(x,t)= Kt(x,y)v(y)dy 

for the solution of the standard problem. In order to choose v in such a way 
that u(x, T) = f(x) we must solve the Fredholm integral equation of the first 
kind 

(20) f LKT(x, y)t;(y) dy =/ (x) , 0 < x < L . 

The kernel of this equation is symmetric and a straightforward calculation 
shows that 

(L^ , N . niry , L . mrT . nrrx 
KT{x, y)sm —— ay = — sin —— sin —— . 

J0 L nir L L 

Since the right side vanishes for n = 0 (mod /), the usual necessary condition for 
the solubility of (20) is that fn = 0 for n = 0 (mod I). A comparison of (4) and 
(5) shows that f(x - T) is the orthogonal projection of f(x) on the null space of 
KT. Thus the function / ( x ) - / ( x - T) which appears in (10) is the projection of 
/ on the orthogonal complement of this null space. 

Finally, we remark that if u is assumed to have continuous second deriva­
tives in Section 3, then the necessity of (14) can also be established by a 
straightforward application of Green's theorem in the plane. 
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