Cyclic Vectors in Some Weighted L^{p} Spaces of Entire Functions

Kou Hei Izuchi

Abstract. In this paper, we generalize a result recently obtained by the author. We characterize the cyclic vectors in $L_{a}^{p}(\mathbb{C}, \phi)$. Let $f \in L_{a}^{p}(\mathbb{C}, \phi)$ and $f \mathcal{C}$ be contained in the space. We show that f is non-vanishing if and only if f is cyclic.

1 Introduction

Let \mathbb{D}) be the open unit disk of the complex plane $(\mathbb{C}$ and \mathbb{T} be the unit circle. We denote the polynomial ring by \mathcal{C}, and the space of all entire functions by $\operatorname{Hol}(\mathbb{C})$. Let X be a complete semi-normed space of holomorphic functions on a domain Ω in C. For a subset E of X, let \bar{E} be the closure of E in X. A function f is said to be cyclic in X if $f \mathcal{C} \subset X$ and $\overline{f \mathcal{C}}=X$. In the Hardy spaces $H^{p}(\mathbb{D})$), it is well known that a function is cyclic if and only if it is $\left.H^{p}(\mathbb{D})\right)$-outer [Gar]. Also in the Bergman spaces $\left.L_{a}^{p}(\mathbb{D})\right)(0<p<\infty)$, it is known that a function is cyclic if and only if it is $\left.L_{a}^{p}(\mathbb{D})\right)$-outer [HKZ]. The classical Fock space $L_{a}^{2}(\mathbb{C})$ is the space of all μ-square integrable entire functions on \mathbb{C}, where

$$
d \mu(z)=e^{-\frac{|z|^{2}}{2}} d A(z) / 2 \pi
$$

is the Gaussian measure on \mathbb{C} and $d A$ is the ordinary Lebesgue measure. See [CG] for the study of the Fock space $L_{a}^{2}(\mathbb{C})$. We have previously proved the following [Izu].

Theorem Let $h \in \operatorname{Hol}(\mathbb{C})$. Then the following are equivalent:
(i) f is a nonvanishing function in $L_{a}^{2}(\mathbb{C})$.
(ii) $f=e^{h}$ where $h=\alpha z^{2}+\beta z+\gamma$ for $\alpha, \beta, \gamma \in \mathbb{C}$ with $|\alpha|<\frac{1}{4}$.
(iii) f is cyclic in $L_{a}^{2}(\mathbb{C})$.

It is known that there are non-vanishing functions in $\left.H^{p}(\mathbb{D})\right)$ and $\left.L_{a}^{p}(\mathbb{D})\right)$ which are not cyclic in the respective spaces [Gar, HKZ]. On the other hand, the situation is quite different in $L_{a}^{2}(\mathbb{C})$. Brown and Shields [BS] posed the following question.

Question Let Ω be a bounded region in (C. Does there exist a polynomially dense Banach space of analytic functions in which a function f is cyclic if and only if $f(z) \neq$ 0 for all $z \in \Omega$?

[^0]The above theorem is not the direct answer of this question, but it says that if $\Omega=\mathbb{C}$, then there exists a Banach space in which every non-vanishing function f is cyclic.

In this paper, we consider the cyclic vectors in more generalized spaces, some weighted L^{p} spaces of entire functions.

Let $0<p<\infty, s>0$ and $\alpha>0$. Throughout this paper, we put $\phi(z)=\frac{\alpha}{p}|z|^{s}$. The space $L_{a}^{p}(\mathbb{C}, \phi)$ consists of those entire functions whose semi-norm

$$
\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)}=\left\{\frac{1}{2 \pi} \int_{\mathbb{C}}|f(z)|^{p} e^{-p \phi(z)} d A(z)\right\}^{1 / p}
$$

is finite. We study the cyclic vectors in $L_{a}^{p}(\mathbb{C}, \phi)$. The following is our main result.
Theorem 1.1 Let f be a function in $L_{a}^{p}(\mathbb{C}, \phi)$ satisfying $f \mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$. Then the following are equivalent:
(i) f is a non-vanishing function.
(ii) $f=e^{h}$ where $h(z)=\sum_{k=0}^{[s]} a_{k} z^{k}$ for $a_{k} \in \mathbb{C}$, and in addition $\left|a_{s}\right|<\frac{\alpha}{p}$ ifs is an integer.
(iii) f is cyclic in $L_{a}^{p}(\mathbb{C}, \phi)$.

We know that every non-vanishing function in the classical Fock space $L_{a}^{2}(\mathbb{C})$ is cyclic. In our case, we notice that it is not valid for some positive numbers, that is, if s is not an integer or $s=1,2,3,4$, then $L_{a}^{p}(\mathbb{C}, \phi)$ has the same property as the one in $L_{a}^{2}(\mathbb{C})$, but if $s=5,6,7, \cdots$, the situation is different. For example, although $f=e^{\frac{\alpha}{p} z^{s}}$ is a non-vanishing function in $L_{a}^{p}(\mathbb{C}, \phi)$, the function f does not satisfy $f \mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$. Clearly, this function f is not cyclic. But if we consider the nonvanishing functions just satisfying $f \mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$, then the situation is similar.

We prove the theorem in Section 2.

2 Proof of the Main Theorem

Guo and Zheng [GZ] proved that if $f \in L_{a}^{p}(\mathbb{C}, \phi)$ satisfies $f L_{a}^{p}(\mathbb{C}, \phi) \subset L_{a}^{p}(\mathbb{C}, \phi)$, then f is a constant. So first we consider which non-vanishing function $f \in L_{a}^{p}(\mathbb{C}, \phi)$ satisfies $f \mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$. To do this, we deal with another space \mathcal{F}_{ϕ}^{p} which is studied in [MMO]. The space is

$$
\mathcal{F}_{\phi}^{p}=\left\{f \in \operatorname{Hol}(\mathbb{C}):\|f\|_{\mathcal{F}_{\phi}^{p}}^{p}=\int_{\mathbb{C}}|f(z)|^{p} e^{-p \phi(z)} \rho^{-1} \Delta \phi d A(z)<\infty\right\}
$$

where $\Delta \phi$ is the Laplacian of ϕ and $\rho^{-1} \Delta \phi$ is a regular version of $\Delta \phi$. If $p=2$, then \mathcal{F}_{ϕ}^{2} is a Hilbert space with inner product

$$
\langle f, g\rangle_{\mathcal{F}_{\phi}^{2}}=\int_{\mathbb{C}} f(z) \overline{g(z)} e^{-2 \phi(z)} \rho^{-1} \Delta \phi d A(z)
$$

We denote the reproducing kernel of \mathcal{F}_{ϕ}^{2} by K_{λ}. The following lemma was proved by Marco, Massaneda and Ortega-Cerdà [MMO, Lemma 21].

Lemma 2.1 There exists a positive number C such that for any $\lambda \in \mathbb{C}$

$$
C^{-1} e^{2 \phi(\lambda)} \leq\left\|K_{\lambda}\right\|_{\mathcal{F}_{\phi}^{2}}^{2} \leq C e^{2 \phi(\lambda)}
$$

Chen, Guo and Hou [CGH] proved the following.
Lemma 2.2

$$
\lim _{|\lambda| \rightarrow \infty} \frac{\left\langle f, K_{\lambda}\right\rangle_{\mathcal{F}_{\phi}^{2}}}{\left\|K_{\lambda}\right\|_{\mathcal{F}_{\phi}^{2}}}=0
$$

for any $f \in \mathcal{F}_{\phi}^{2}$.
By Lemma 2.1 and Lemma 2.2, we get the following.
Lemma 2.3 The following are equivalent:
(i) $f \in L_{a}^{p}(\mathbb{C}, \phi)$ is a non-vanishing function satisfying $f \mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$.
(ii) $f(z)=e^{h(z)}$, where $h(z)=\sum_{k=0}^{[s]} a_{k} z^{k}$ and in addition $\left|a_{s}\right|<\frac{\alpha}{p}$ ifs is an integer.

Proof (i) \Rightarrow (ii): Suppose s is an integer. First, we consider when $p=2$. Let $e^{h} \in \mathcal{F}_{\phi}^{2}$. By Lemma 2.1,

$$
\frac{\left|\left\langle e^{h}, K_{\lambda}\right\rangle_{\mathcal{F}_{\phi}^{2}}\right|}{\left\|K_{\lambda}\right\|_{\mathcal{F}_{\phi}^{2}}} \geq \frac{1}{\sqrt{C}} e^{-\frac{\alpha}{2}|\lambda|^{s}}\left|e^{h(\lambda)}\right|
$$

By Lemma 2.2, we get

$$
\lim _{|\lambda| \rightarrow \infty} e^{-\frac{\alpha}{2}|\lambda|^{s}} e^{h(\lambda)}=0
$$

Since $\left|e^{h(\lambda)}\right| \leq e^{\frac{\alpha}{2}|\lambda|^{s}}$ for sufficient large $|\lambda|$, we have $\Re h(\lambda) \leq \frac{\alpha}{2}|\lambda|^{s}$ for large $|\lambda|$, so that the order σ of e^{h} is

$$
\sigma=\limsup _{r \rightarrow \infty} \frac{\log \left(\max _{|\lambda|=r} \Re h(\lambda)\right)}{\log r} \leq \limsup _{r \rightarrow \infty} \frac{\log \frac{\alpha}{2} r^{s}}{\log r}=s
$$

By [BG, Corollary 4.5.11], we get $h \in \mathcal{C}$ and $\operatorname{deg} h \leq s$. Now we show that $e^{h} \notin \mathcal{F}_{\phi}^{2}$ for $h(z)=\sum_{n=0}^{s} a_{n} z^{n}$ with $\left|a_{s}\right| \geq \frac{\alpha}{2}$. By Lemma 2.2, we have that $\lim _{|\lambda| \rightarrow \infty} e^{-\frac{\alpha}{2}|\lambda|^{s}} f(\lambda)=0$ for $f \in \mathcal{F}_{\phi}^{2}$. Then it is easy to show that $e^{h} \notin \mathcal{F}_{\phi}^{2}$.

If $p \neq 2$, then since

$$
\left\|e^{h}\right\|_{\mathcal{F}_{\phi}^{2}}^{2}=\left\|e^{\frac{2}{p}}\right\|_{\mathcal{F}_{\phi}^{p}}^{p}
$$

we get $e^{h} \notin \mathcal{F}_{\phi}^{p}$ for $h(z)=\sum_{n=0}^{s} a_{n} z^{n}$ with $\left|a_{s}\right| \geq \frac{\alpha}{p}$. By the norms for two spaces, \mathcal{F}_{ϕ}^{p} and $L_{a}^{p}(\mathbb{C}, \phi),(\mathrm{i}) \Rightarrow(\mathrm{ii})$ is obvious.

If s is not an integer, we can also prove it similarly to the above.
(ii) \Rightarrow (i): If s is an integer, it is enough to show that $e^{h} \mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$ for $h(z)=$ $\sum_{n=0}^{s} a_{n} z^{n}$ with $\left|a_{s}\right|<\frac{\alpha}{p}$. Let $q \in \mathcal{C}$ and ε be a number satisfying

$$
\begin{equation*}
0<\varepsilon<\frac{1}{2}\left(\frac{\alpha}{p}-\left|a_{s}\right|\right) \tag{2.1}
\end{equation*}
$$

For large $|z|$, we have $|q(z)| \leq e^{\varepsilon|z|^{s}}$ and $\left|\sum_{n=0}^{s-1} a_{n} z^{n}\right| \leq \varepsilon|z|^{s}$. Thus

$$
\left|q(z) e^{h(z)}\right|^{p}=|q(z)|^{p} e^{p \Re h(z)} \leq e^{p \varepsilon|z|^{s}} e^{p\left(\left|a_{s}\right|+\varepsilon\right)|z|^{s}}=e^{p\left(2 \varepsilon+\left|a_{s}\right|\right)|z|^{s}} .
$$

Then

$$
\left|q(z) e^{h(z)}\right|^{p} e^{-\alpha|z|^{s}} \leq e^{-\delta|z|^{s}}
$$

for large $|z|$, where $\delta=\alpha-p\left(2 \varepsilon+\left|a_{s}\right|\right)$. By (2.1), we have $\delta>0$. Therefore there exists a positive constant C such that

$$
\int_{\mathbb{C}}\left|q(z) e^{h(z)}\right|^{p} e^{-\alpha|z|^{s}} d A(z) \leq C \int_{\mathbb{C}} e^{-\delta|z|^{s}} d A(z)
$$

Since the last integral is finite, we get $e^{h} \mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$.
If s is not an integer, since $h(z)=\sum_{n=0}^{[s]} a_{n} z^{n}$ and $[s]<s$, the conclusion is trivial.

By Lemma (2.3), we have proved (i) \Leftrightarrow (ii) in Theorem 1.1.
Now we shall prove that the polynomial ring \mathcal{C} is dense in $L_{a}^{p}(\mathbb{C}, \phi)$. The following two lemmas are the generalizations of the results proved by Garling and Wojtaszczyk [GW, Lemma 1, Proposition 5].

Lemma 2.4 Let $f \in L_{a}^{p}(\mathbb{C}, \phi)$ with $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. Then we have the following:
(i) There exists a constant $C_{1}>0$, which depends on f, satisfying

$$
\left|c_{n}\right| \leq C_{1} e^{\frac{2-s}{p s}}\left(\frac{s \alpha e}{p n+2-s}\right)^{\frac{n}{s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)}
$$

(ii) For large n,

$$
\begin{aligned}
\left\|z^{n}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)}^{p} & =\frac{\alpha^{-\frac{p n+2}{s}}}{s} \Gamma\left(\frac{p n+2}{s}\right) \\
& \sim \frac{1}{s \alpha}\left(2 \pi \frac{p n+2-s}{s}\right)^{\frac{1}{2}}\left(\frac{p n+2-s}{s \alpha e}\right)^{\frac{p n+2-s}{s}}
\end{aligned}
$$

where Γ denotes the gamma function.
(iii) There is a constant $C_{2}>0$, which depends on f, satisfying

$$
\left\|c_{n} z^{n}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)} \leq C_{2}\left(\frac{p n+2-s}{s}\right)^{\frac{1}{2 p}}\left(\frac{p n+2-s}{s \alpha}\right)^{\frac{2-s}{p s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)}
$$

Proof (i) We know that for any $R>0$

$$
c_{n}=\frac{1}{2 \pi} \int_{\mathbb{T}} \frac{f\left(R e^{i \theta}\right)}{\left(R e^{i \theta}\right)^{n}} d \theta
$$

Since

$$
|f(R z)| \leq C_{1} e^{\frac{\alpha}{p}|R z|^{s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)}
$$

for some $C_{1}>0$ (see [OS, Lemma 1]), if we set $R^{s}=\frac{p n+2-s}{s \alpha}$, we get

$$
\begin{aligned}
\left|c_{n}\right| & \leq C_{1} \frac{e^{\frac{\alpha}{p} R^{s}}}{R^{n}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)} \leq C_{1} \frac{e^{\frac{p n+2-s}{p s}}}{\left(\frac{p n+2-s}{s \alpha}\right)^{\frac{n}{s}}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)} \\
& =C_{1} e^{\frac{2-s}{p s}}\left(\frac{s \alpha e}{p n+2-s}\right)^{\frac{n}{s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)} .
\end{aligned}
$$

(ii) We have

$$
\begin{aligned}
\left\|z^{n}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)}^{p} & =\frac{1}{2 \pi} \int_{\mathbb{C}}\left|z^{n}\right|^{p} e^{-\alpha|z|^{s}} d A(z)=\int_{0}^{\infty} r^{p n+1} e^{-\alpha r^{s}} d r \\
& =\frac{\alpha^{-\frac{p n+2}{s}}}{s} \int_{0}^{\infty} t^{\frac{p n+2}{s}-1} e^{-t} d t=\frac{\alpha^{-\frac{p n+2}{s}}}{s} \Gamma\left(\frac{p n+2}{s}\right)
\end{aligned}
$$

By Stirling's formula $\Gamma(x+1) \sim \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}$,

$$
\begin{aligned}
\frac{\alpha^{-\frac{p n+2}{s}}}{s} \Gamma\left(\frac{p n+2}{s}\right) & \sim \frac{\alpha^{-\frac{p n+2}{s}}}{s}\left(2 \pi \frac{p n+2-s}{s}\right)^{\frac{1}{2}}\left(\frac{p n+2-s}{s e}\right)^{\frac{p n+2-s}{s}} \\
& =\frac{1}{s \alpha}\left(2 \pi \frac{p n+2-s}{s}\right)^{\frac{1}{2}}\left(\frac{p n+2-s}{s \alpha e}\right)^{\frac{p n+2-s}{s}}
\end{aligned}
$$

(iii) By (i) and (ii),

$$
\begin{aligned}
\left\|c_{n} z^{n}\right\|_{L_{a}^{p}(\mathrm{C}, \phi)} \leq & C_{1} e^{\frac{2-s}{p^{s}}}\left(\frac{s \alpha e}{p n+2-s}\right)^{\frac{n}{s}}\left(\frac{1}{s \alpha}\right)^{\frac{1}{p}} \\
& \times\left(2 \pi \frac{p n+2-s}{s}\right)^{\frac{1}{2 p}}\left(\frac{p n+2-s}{s \alpha e}\right)^{\frac{p n+2-s}{p s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)} \\
= & C_{1}\left(\frac{1}{s \alpha}\right)^{\frac{1}{p}}\left(2 \pi \frac{p n+2-s}{s}\right)^{\frac{1}{2 p}}\left(\frac{p n+2-s}{s \alpha}\right)^{\frac{2-s}{p s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)}
\end{aligned}
$$

for some $C_{1}>0$.

Lemma 2.5 The polynomial ring \mathcal{C} is dense in $L_{a}^{p}(\mathbb{C}, \phi)$.

Proof It is clear that $\mathcal{C} \subset L_{a}^{p}(\mathbb{C}, \phi)$. Let $\varepsilon>0$ and $f \in L_{a}^{p}(\mathbb{C}, \phi)$ with $f(z)=$ $\sum_{n=0}^{\infty} c_{n} z^{n}$. Write $\gamma=\max \left\{1,2^{p-1}\right\}$. Then there exists a constant $R>0$ satisfying

$$
\frac{\gamma}{2 \pi} \int_{|z|>R}|f(z)|^{p} e^{-\alpha|z|^{s}} d A(z)<\frac{\varepsilon}{10}
$$

Put $f_{r}(z)=f(r z)$ for any r with $\frac{1}{2}<r<1$. Then

$$
\frac{\gamma}{2 \pi} \int_{|z|>2 R}\left|f_{r}(z)\right|^{p} e^{-\alpha|z|^{s}} d A(z)=\frac{\gamma}{2 \pi r^{2}} \int_{|z|>2 R r}|f(z)|^{p} e^{-\frac{\alpha}{r^{s}}|z|^{s}} d A(z)<\frac{2 \varepsilon}{5}
$$

There is a constant δ with $\frac{1}{2}<\delta<1$ such that

$$
\left|f_{r}(z)-f(z)\right|<\frac{s \alpha^{\frac{2}{s}}}{2 \Gamma\left(\frac{2}{s}\right)} \varepsilon
$$

on $|z| \leq 2 R$ for any r with $\delta<r<1$. By the proof of Lemma 2.4(ii),

$$
\frac{1}{2 \pi} \int_{\mathbb{C}} e^{-\alpha|z|^{s}} d A(z)=\frac{\Gamma\left(\frac{2}{s}\right)}{s \alpha^{\frac{2}{s}}}
$$

Hence

$$
\begin{aligned}
&\left\|f_{r}-f\right\|_{L_{a}^{p}(\mathbb{C}, \phi)}^{p}= \frac{1}{2 \pi} \int_{|z| \leq 2 R}\left|f_{r}(z)-f(z)\right|^{p} e^{-\alpha|z|^{s}} d A(z) \\
&+\frac{1}{2 \pi} \int_{|z|>2 R}\left|f_{r}(z)-f(z)\right|^{p} e^{-\alpha|z|^{s}} d A(z) \\
& \leq \frac{\varepsilon}{2 \pi} \frac{s \alpha^{\frac{2}{s}}}{2 \Gamma\left(\frac{2}{s}\right)} \int_{|z| \leq 2 R} e^{-\alpha|z|^{s}} d A(z) \\
&+\frac{\gamma}{2 \pi} \int_{|z|>2 R}\left|f_{r}(z)\right|^{p} e^{-\alpha|z|^{s}} d A(z) \\
&+\frac{\gamma}{2 \pi} \int_{|z|>2 R}|f(z)|^{p} e^{-\alpha|z|^{s}} d A(z) \\
&<\varepsilon
\end{aligned}
$$

for any r with $\delta<r<1$. Therefore it is enough to show that for each r with $\delta<r<1, f_{r}$ can be approximated by polynomials in the semi-norm. Let l be a non-negative integer. Put

$$
q_{l}(z)=\sum_{n=0}^{l} r^{n} c_{n} z^{n}
$$

Suppose $p<1$. By Lemma 2.4(iii),

$$
\begin{aligned}
\left\|f_{r}-q_{l}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)}^{p} & =\frac{1}{2 \pi} \int_{\mathbb{C}}\left|\sum_{n=l+1}^{\infty} r^{n} c_{n} z^{n}\right|^{p} e^{-\alpha|z|^{s}} d A(z) \\
& \leq \frac{1}{2 \pi} \int_{\mathbb{C}} \sum_{n=l+1}^{\infty}\left|r^{n} c_{n} z^{n}\right|^{p} e^{-\alpha|z|^{s}} d A(z) \\
& =\sum_{n=l+1}^{\infty} r^{p n}\left\|c_{n} z^{n}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)}^{p} \\
& \leq \sum_{n=l+1}^{\infty} r^{p n} C_{2}^{p}\left(\frac{p n+2-s}{s}\right)^{\frac{1}{2}}\left(\frac{p n+2-s}{s \alpha}\right)^{\frac{2-s}{s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)}^{p} \\
& <\infty
\end{aligned}
$$

Suppose $p \geq 1$. Also by Lemma 2.4(iii),

$$
\begin{aligned}
\left\|f_{r}-q_{l}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)} & =\left\|\sum_{n=l+1}^{\infty} r^{n} c_{n} z^{n}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)} \leq \sum_{n=l+1}^{\infty} r^{n}\left\|c_{n} z^{n}\right\|_{L_{a}^{p}(\mathbb{C}, \phi)} \\
& \leq \sum_{n=l+1}^{\infty} C_{2} r^{n}\left(\frac{p n+2-s}{s}\right)^{\frac{1}{2 p}}\left(\frac{p n+2-s}{s \alpha}\right)^{\frac{2-s}{p s}}\|f\|_{L_{a}^{p}(\mathbb{C}, \phi)} \\
& <\infty
\end{aligned}
$$

Thus $\left\|f_{r}-q_{l}\right\| \rightarrow 0$ as $l \rightarrow \infty$.
Finally we show (ii) \Leftrightarrow (iii) in Theorem 1.1. Since every cyclic vector is nonvanishing, (iii) \Rightarrow (ii) is trivial.
Proof that $(\mathbf{i i}) \Rightarrow$ (iii) in Theorem 1.1 We show that $\mathcal{C} \subset \overline{e^{h} \mathcal{C}}$. Suppose s is an integer. Let N be a positive integer satisfying

$$
\begin{equation*}
\left(1+\frac{1}{N}\right)\left|a_{s}\right|<\frac{\alpha}{p} \tag{2.2}
\end{equation*}
$$

Put

$$
q_{n}(z)=\sum_{k=0}^{n} \frac{\left\{-\frac{1}{N} \sum_{m=0}^{s} a_{m} z^{m}\right\}^{k}}{k!}
$$

Let l be a non-negative integer. Since

$$
\left|q_{n}(z)\right| \leq \sum_{k=0}^{\infty} \frac{\left\{\frac{1}{N} \sum_{m=0}^{s}\left|a_{m}\right||z|^{m}\right\}^{k}}{k!}=e^{\frac{1}{N} \sum_{m=0}^{s}\left|a_{m}\right||z|^{m}}
$$

we have

$$
\begin{aligned}
& \left|z^{l} q_{n}(z) e^{\sum_{m=0}^{s} a_{m} z^{m}}-z^{l} e^{-\frac{1}{N} \sum_{m=0}^{s} a_{m} z^{m}} e^{\sum_{m=0}^{s} a_{m} z^{m}}\right| \\
& \quad \leq|z|^{l}\left(e^{\left(1+\frac{1}{N}\right) \sum_{m=0}^{s}\left|a_{m}\right||z|^{m}}+e^{\left(1-\frac{1}{N}\right) \sum_{m=0}^{s}\left|a_{m}\right||z|^{m}}\right) \\
& \quad \leq 2|z|^{l} e^{\left(1+\frac{1}{N}\right) \sum_{m=0}^{s}\left|a_{m}\right||z|^{m}}
\end{aligned}
$$

Hence

$$
\begin{gathered}
\left|z^{l} q_{n}(z) e^{\sum_{m=0}^{s} a_{m} z^{m}}-z^{l} e^{-\frac{1}{N} \sum_{m=0}^{s} a_{m} z^{m}} e^{\sum_{m=0}^{s} a_{m} z^{m}}\right|^{p} e^{-\alpha|z|^{s}} \\
\leq 2^{p}|z|^{p l} e^{\left\{p\left(1+\frac{1}{N}\right)\left|a_{s}\right|-\alpha\right\}|z|^{s}+p\left(1+\frac{1}{N}\right) \sum_{m=0}^{s-1}\left|a_{m}\right||z|^{m}} .
\end{gathered}
$$

By (2.2), we have $p\left(1+\frac{1}{N}\right)\left|a_{s}\right|-\alpha<0$, so that the last function is integrable with respect to $d A$. Since

$$
q_{n}(z) \rightarrow e^{-\frac{1}{N} \sum_{m=0}^{s} a_{m} z^{m}}
$$

pointwise on \mathbb{C} as $n \rightarrow \infty$, by the Lebesgue dominated convergence theorem,

$$
\begin{aligned}
\int_{\mathbb{C}}\left|z^{l} q_{n}(z) e^{\sum_{m=0}^{s} a_{m} z^{m}}-z^{l} e^{-\frac{1}{N} \sum_{m=0}^{s} a_{m} z^{m}} e^{\sum_{m=0}^{s} a_{m} z^{m}}\right|^{p} e^{-\alpha|z|^{s}} d A(z) & \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore

$$
e^{\left(1-\frac{1}{N}\right) \sum_{m=0}^{s} a_{m} z^{m}} \mathcal{C} \subset \overline{e^{\sum_{m=0}^{s} a_{m} z^{m}} \mathcal{C}}
$$

Applying this way again for $e^{\left(1-\frac{1}{N}\right) \sum_{m=0}^{s} a_{m} z^{m}}$, we have

$$
\begin{aligned}
& \int_{\mathbb{C}}\left|z^{l} q_{n}(z) e^{\left(1-\frac{1}{N}\right) \sum_{m=0}^{s} a_{m} z^{m}}-z^{l} e^{-\frac{1}{N} \sum_{m=0}^{s} a_{m} z^{m}} e^{\left(1-\frac{1}{N}\right) \sum_{m=0}^{s} a_{m} z^{m}}\right|^{p} e^{-\alpha|z|^{s}} d A(z) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus $e^{\left(1-\frac{2}{N}\right) \sum_{m=0}^{s} a_{m} z^{m}} \mathcal{C} \subset \overline{e^{\left(1-\frac{1}{N}\right) \sum_{m=0}^{s} a_{m} z^{m}} \mathcal{C}}$. Repeating this argument, we get

$$
\mathcal{C} \subset \overline{e^{\frac{1}{N} \sum_{m=0}^{s} a_{m} z^{m}} \mathcal{C}} \subset \cdots \subset \overline{e^{\left(1-\frac{1}{N}\right) \sum_{m=0}^{s} a_{m} z^{m}} \mathcal{C}} \subset \overline{e^{\sum_{m=0}^{s} a_{m} z^{m}} \mathcal{C}}
$$

If s is not an integer, then since $[s]<s$, we can choose $N=1$ in the above proof. In a similar way, we get the desired result.

This completes the proof of Theorem 1.1.

References

[BG] C. Berenstein and R. Gay, Complex Variables. Graduate Texts in Mathematics 125, Springer-Verlag, New York, 1991.
[BS] L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space. Trans. Amer. Math. Soc. 285(1984), no. 1, 269-303.
[CG] X. Chen and K. Guo, Analytic Hilbert Modules. CRC Research Notes in Mathematics 433, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[CGH] X. Chen, K. Guo, and S. Hou, Analytic Hilbert spaces over the complex plane. J. Math. Anal. Appl. 268(2002), no. 2, 684-700.
[Gar] J. B. Garnett, Bounded Analytic Functions. Pure and Applied Mathematics 96, Academic Press, New York, 1981.
[GW] D. J. H. Garling and P. Wojtaszczyk, Some Bargmann spaces of analytic functions. In: Function Spaces. Lecture Notes in Pure and Appl. Math. 172, Dekker, New York, 1995, pp. 123-138.
[GZ] K. Guo and D. Zheng, Invariant subspaces, quasi-invariant subspaces, and Hankel operators. J. Funct. Anal. 187(2001), no. 2, 308-342.
[HKZ] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces. Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000.
[Izu] K. H. Izuchi, Cyclic vectors in the Fock space over the complex plane. Proc. Amer. Math. Soc. 133(2005), no. 12, 3627-3630.
[MMO] N. Marco, X. Massaneda, and J. Ortega-Cerdà, Interpolating and sampling sequences for entire functions. Geom. Funct. Anal. 13(2003), no. 4, 862-914.
[OS] J. Ortega-Cerdà and K. Seip, Beurling-type density theorems for weighted L^{p} spaces of entire functions. J. Anal. Math. 75(1998), 247-266.

Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo, JAPAN 060-0810 e-mail: khizuchi@math.sci.hokudai.ac.jp

[^0]: Received by the editors February 22, 2006.
 AMS subject classification: Primary: 47A16; secondary: 46J15, 46 H 25.
 Keywords: weighted L^{p} spaces of entire functions, cyclic vectors.
 (C)Canadian Mathematical Society 2008.

