
SZEGÔ POLYNOMIALS ON A COMPACT GROUP 
WITH ORDERED DUAL 

I. I. HIRSCHMAN, JR. 

1. Introduction. The Szegô polynomials are defined on T, the real numbers 
modulo 1. In this paper and in its sequel we give a generalization of Szegô 
polynomials in which T is replaced by an arbitrary locally compact abelian 
group 9 on whose dual H there has been distinguished a measurable order 
relation compatible with the group structure. The present paper is devoted to 
the case where 9 is compact and S therefore discrete. The general case will 
be taken up in the sequel mentioned above. It is desirable to proceed in this 
way because the case 9 compact is much simpler and much more like the classi­
cal situation than is the general case, in which various measure-theoretic 
difficulties obtrude. Moreover, as it happens, it is possible to develop the 
theory in this way with relatively little repetition. 

Let v(n) be a real function defined for n £ / , the integers, and satisfying 

v(0) = 1, v(n) > 1, n £ I; v(n + m) < v(n)v(m), my n £ I. 

If & is the set of those functions/(0), 6 Ç T, of the form 

oo 

/(0) = X f(n)exp(2wind)J 
n=—co 

for which 1|/| | is finite where 

11/11 = £ If(n)\v(n), 

then ^ is a Banach algebra of functions on T. We denote the class of all such 
Beurling-Gelfand algebras by @. F o r / 6 & let 

E+(n)f- (0) = X f O)exp(27r^0), E~(»)/(0) = X f(k)exp(2irik6), 

for n Ç / . Obviously E+(n) and E~(n) are linear operators on Ŝ  (considered 
as a Banach space) and | | JE + (V) | | = | |£_(w)| | = 1. Let c £ ^ ; we associate 
with c two Wiener-Hopf operators acting on £+ (0) Ŝ  and JS~(0) 2^ respectively : 

We+f- (0) = E+(0)c(fi)f(fi) fo r / 6 £+ (0) ^ , 

Wc-f- (0) = E-(0)c(0)f(d) fo r / 6 E"(0) &. 
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We say that c(S) Ç WH(&) if both Wc
+ and Wc~ have bounded inverses. For 

each w > 0 w e also define the finite-section Wiener-Hopf operators : 

W+(n)f- (6) = E-(n)E+(0)c(6)f(6) for / G £ - ( » ) £ + ( 0 ) ^ , 
and 

We-(n)f- (6) = E+(-n)E-(0)c(d)f(6) for / G E+(-n)Er(0) <3. 

The following basic result, due to Baxter (3), asserts that if the infinite-
section Wiener-Hopf operators Wc

+ and Wc~ both have bounded inverses, 
then so do Wc

+(n) and Wc~(n) if n is large enough. 

THEOREM 1(a). If c £ WH(&), then there exists an integer N and a constant 
A both depending only upon c with the following property. If n > N and if 
f e E~(n)E+(0) ^,then 

\\f\\ < A\\W+(n)f\\. 

There is also a parallel result for Wc~(n). 
Using this powerful tool and exploiting various special properties of the 

Beurling-Gelfand algebras ©, Baxter created an extensive and detailed theory 
of generalized Szego polynomials on T(see 1; 2; and also 5). 

Let 0 be a compact abelian topological group with dual E on which there 
is a linear order relation " < " compatible with the group structure. For 
£ £ E and 6 £ 9 we denote by (£, 6) the value of the character £ at 6. dd denotes 
Haar measure on 6 so normalized that 9 has measure 1. <8̂ o is the class of 
those functions f{6) of the form 

f(e) = E«f(f)(M) 
for which ||/||0 is finite where 

ll/llo = Edftt)l-
Note that 

ftt) = Je/(*)(-*.*)<**• 
DEFINITION 1(b). A Banach algebra s/ of complex functions on 9 is said to 

be of type © if: 

1. J / C ^ o , and H/Ho < \\f\\forallf£s/\ 
2. (£, 0) G s/ for every £ £ E, and finite linear combinations of (£, d)'s are 

dense in se ; 
3. f£s/,g £s/o,and\è(Ç)\ < \î(Ç)\forain implies g ^s/and\\g\\ < ||/| |. 

Henceforth every algebra se considered will be of type ©. 
Let us introduce the following families of operators : 

£+Oj)/-(0)=Zf(S)(ê,0), 

i r („)/•(*)= E f (MM). 
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It is apparent, using Property 3 of Definition 1 (b), that for all 77 G H, E+(rj) 
and E~(rj) are linear operators on se (considered as a Banach space) of norm 1. 

Let c Ç sé. We define a linear operator Wc
+ on E+(0)&/ by 

W+f = £+(0)c/f / G £ + ( 0 ) J / . 

Similarly 

W7-/ = £-(0)c/, / € E-(fiW. 

Wc
+ and Wc~ are the Wiener-Hopf operators associated with c. We shall say 

that c G W.ff(j^) if both Wc
+ and Wc~ have bounded inverses. We next 

introduce finite-section Wiener-Hopf operators. For 77 > 0 let 

W+(v)f = fr(rj)E+(0)cf, f e E-(v)E+(0W, 

and 

Wrfo ) / = £ + ( - , ) £ - ( 0 ) c / , / € E+(-ri)&-(0)s/. 

Wc
+(rj) and T ĉ"" (77) are bounded linear operators on the Banach spaces 

£-(77)£+(0)j/ and E+(—n)R-(0)j/ respectively. 
We require some additional notation. For/(0) 6 s/< 

m = Et f ({)«.«), 
let 

/ '(*) = E* If (fll («.fl­

i t follows from 3 of Definition 1 (b) that/* G J / , and ||/#|| = ||/||. We shall write 

f-<g* 
if/, g e sz? and if 

| f (£) l< |g(É) | for all { 6 S-

A basic result of the present paper is the following generalization of 
Theorem 1(a). 

THEOREM 1(C). Let c(6) G WH(s/)\ there exists f 1 > 0 in E, and C+ = C+ 
in S$, such that if y\ > f i aw^ i/*/ £ E~(T]) E+(0) se, then 

a. / - < [^c+M/]#C+# 

awrf if rj > f i, //ze rangé 0/ Wc
+0?) ^ E~(rj) E+(0) s/. This implies in particular 

that Wc
+{ri)~l exists and 

b. \\W+{ri)~l\\ < ||C+'||. 

There is a similar result associated with Wc~(r)). 
Using Theorem 1 (c) we can extend Baxter's theory to the groups and Banach 

algebra described above. 

2. Introduction—Szegô polynomials. In this section we shall give briefly 
and in outline the definition and some of the principal properties of the Szegô 
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polynomials. We assume throughout that c £ WH(s/). For 77 > f 1 we set 

u(rj,e) = w+w-n, v(yi,o) = wc-(rj)-n. 

By Theorem 1(c) u(?), 6) and 2/(77, 6) are well defined. Let 

«(M) = E «(1?, €)(€,^), 

A simple argument shows that 11(77, 0) = V(T7, 0). For each 77 > f 1 define 
d(rj) by 

dfo)2 = U(77,0) = V(77,0). 

It follows from a second application of Theorem 1 (c) that if 

u(s) = (w+)-n, v(e) = (we-)-n, 
then 

lim \\U(d) - u(ri,6)\\ = lim \\V(6) - v(rj,d)\\ = 0. 

This implies in particular that if f 2 > f 1 is sufficiently large, then 

d(v) 5* 0, 77 > f2. 

We now define the Szegô polynomials 0(77, 6) and (̂77, 6) for all 77 > f 2 by the 
formulas 

« 6 7 , 0 ) =d( i? ) - 1 ( i7 ,0)»( i7 ,0) , 

^(77,0) ^dirù-^-r,, 6)11(1, 6). 

Note that except in the case % — I the </>'s and \^'s are not finite sums of 
characters. It follows almost immediately from the definition that if 771, 
772 > f 2, t h e n 

Îef(m,e)<i>(ri2,e)c(e)d6 = 

so that the 0's and ^'s are biorthonormal. (If c(B) is real, then 

^(77,0) = 0(77,0).) 

Any attempt to represent functions in E+(0)^/ as series of <£'s, or functions 
in E~(0)s/ as series of ^ 's, must take into account the fact that the <£'s and 
T '̂S are defined only for f > f 2. This is reflected in the statement of the fol­
lowing expansion theorem. 

THEOREM 2(a). There exists f4 > f2 ^ S swc& £/za£ #*/(0) G E+(0)&f, and if 

jef(d)(-ï,6)c(d)dd = 0 

1 , VI = î?2, 

0 , 771 3 ^ 772, 
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for all £, 0 < £ < f4, then 

(1) f(»)=Eft)*(M), 
£>r4 

f~({)= Je/(0)*(MM0)^ 

Here the series (1) is defined as the limit in s/ of the net of sums over the 
finite subsets of {£|£ > f4}. 

There is, of course, a parallel result associated with the ^ 's . 
Using Theorem 2(a) we can derive several interesting structural relations 

involving the uJs and v's. Let a(£) and g(£) D e defined by 

md(ty = v(f, - j ) , * > f2-

Then for y\i > 771 > f4 we have 

m «O»i,0) -u(r,h6) = £ a(É)w(É,0)(M), 
Vz,l » i < K i 2 

»(u»,»)-»(ui,«)= Z ff(£)«& *)(-*, »). 
J?1<£<1?2 

If H = / and if 772 = n, 771 = w — 1, these reduce to the recursion relations 

,9,v u(n, 6) — u(n — 1,0) = a(n)z;(«, 6)exp(2irind), 
v(n, 0) — v{n — 1, 0) = §(n)u(n, d)exp( — 2irind), 

obtained in (1). It is rather curious that whereas in the case 3 = 1 (2') follows 
immediately from the definition of u(n, 0) and v(n, 0), in the general case (2) 
can be derived only after a great deal of previous work. As a final result we 
mention that starting from (2) it is possible to prove that 

,os \u(vi,d)~\ u I" l -«(É)(M)T«(ut,0)l 

The formulas (2) and (3) show that the u's and v's (and therefore the <£'s and 
yf/'s) are essentially determined by the a(£)'s and (3(£),s-

In conclusion it is a pleasure to express my indebtedness to Professor 
Baxter's very interesting work. 

3. Wiener-Hopf equations. We assume henceforth that s/ Ç ©. Let 
c G j ^ . We recall that the operator Wc

+ on E+(0)&f is defined by 

W+f = £+(0)cjf for/ G £ + ( 0 ) J / 

and that the operator W~ on £~(0)^4 is defined by 

Wrf = E~(0)cf for/ e Er(fi)s/. 
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Clearly \\W+\\, || WVil < Ikll- As before we write c 6 WH(s/) if both Wc
+ 

and Wc~ have bounded inverses. 

THEOREM 3(a). c G WHÇs/) if and only if 

de) = d2u(eyiv(e)-\ 
where d 9e 0 and where 

u(o), uçe)-1 e £ + (O)J / , v(o), v(e)-* e E-(OW. 

Proof. Necessity. By assumption there are functions U(0) Ç E+(0)&/ and 
V(6) e £ - ( 0 ) j / s u c h that 

W+U = 1, ^ C " F = 1. 

For future use we introduce the notation 

tf(«)=Eutt)G,*), 

KO 
Let 

7iW = c(e)U(fi), Ui{e) = c(e)v(e). 

Then Uh Vx^stf and 

^ ) = Z V i ( i ) ( M ) , Vi(o) = l, 
KO 

tfiW-EUxttx*,*), Ui(o) = i. 
S>o 

We have 
v(6)v1(e) = c(e)u{e)v{d) = u(o)Ui(e). 

Now V(6)Vi(6) involves only (f, 0)'s with £ < 0 and U(6)Ui(6) only (£, 0)'s 
with £ > 0. By the uniqueness of Fourier expansions, there exists a constant 
d such that 

(1) V(6)Vi(6) =d>= U(0)U1(d). 

We have c{6)U{d)ÏMë) = VMThJJ). Since 

Je7i(0)ÏM*)dtf = 1, 
it follows that Fi(0) Ui(0) & 0 and hence that U(6)Ui(d) & 0. Consequently, 
U(0)Ui(6) & 0 and d ^ 0. Since ^(fl)"1 = dr2Ui(6), we have 

?7(^)-i Ç £ + ( 0 ) J / , 

and similarly F(^)-1 € £~ (0 ) j / . 

Sufficiency. We define operators X c
+ and Xc~, on E+(0)s/ and E~(0)s/ 

respectively, by the formulas 
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X+f- (0) = d^U(6)E+(0) f(0) V(6), f € E+(OW, 

Xc~f- (6) = d-* V(6)E-(0) f(fi) U(8), f € Er (0)s/. 

We claim that Xc
+ is the inverse of Wc

+ and Xc~ is the inverse of Wc~; that is 

w+x + = x+w+ = /, we-xr = xc-wc- = i. 

In addition to E+(i?) and E~{rj) defined in §1 we shall require the (related) 
projection operators 

and 

E-(v-)f-(d) = j:m&d). 

Consider for / 6 E+{Q)3?, 

x+w+f = d-*u(e)E+(o)[V(e)w+f- (0)] 
= d-*U(d)E+(0) [V(6)E+(0)c(9)f(d)} 
= u(d)E+(o)[V(e)E+(o)u(eyiv(eyy(e)) 
= u(e)E+(o)[v(e)u(e)-lv(d)-1f(e)] 

- u(e)E+(o)[V(d)E-(o-)u(e)-1v(d)-1f(e)] 
= /(«)• 

The remaining relations can be verified similarly. It follows from (1) that 

(2) U(0) = V(0) = d\ 
a fact we shall need later. 

4. A fundamental identity. Throughout the present section it will be 
convenient to regard Wc

+(rj) and Wc~(rj) as operators defined on all of S$ by 
the formulas 

W+(r,)f = E+(0)E-(v)cE+(0)E-(r,)f, 

Wc~(v)f = E-(0)E+(-r,)cE-(0)E+(-r,)f. 

The following identity was obtained by M. Shinbrot (8); see also (4). For 
the reader's convenience the proof is repeated here. 

THEOREM 4(a). Let c(6) = u(6)~1v(6)~1 where 

u{6) £ £+(0)£-(rX</, uid)-1 £ E+(0W, 

v(e) e E-{fS)E+(-f)s/, v(e)~l e E-(O)S/. 

We set 
Yc

+W = vE-{C)uv-iE+{0)vf, 

Y-{i)f = uE+(-a)vu-iE-(0)uf. 
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Then for £ > f > 0 we have 

(1) Fc+fôPFc+fâ = Wc+fâFc+fô = E+(0)E-(f), 
Frtt)Wr(f) = ^ r f â F r ( f ) = £-(0)£+(-|). 

Proof. We first assert that 

(2) ^ [ F c + a ) ] C £ + ( 0 ) £ - f ô ^ , 

where &[¥+(£)} is the range of Y+(Ç). Since &[vE-(£)] C E~ (£)$/, we see 
that ,<%[Y+(ë)] C E~(£)s/. We have 

Fc+(|) = »[/ - £+(£+)]w-i£+(0)z> 
= M£+(0)I> - Î )£+^+)MZ;- 1 £+(0)Z; . 

It is evident that 3?[uE+(0)} C E+(0)s/, and since | > f 

^ [»£+({+) ] C £+(0 + ) j / C E+(0W. 

Thus <#[Fe+(f)] C E+(0W, and (2) holds. 
We have 

Yc+(t)We+(Ç) = vE-fôirhiE+WvE+WE-fâu-iv-iE+WE-ti) 

= vE-fàv-iuE+iOMI - £-(0-)]£-(^)w-Iz;-1
JE+(0)JE-(?) 

= vE-{Z)v-luE+(Q)vE-(Ç)irh-i-E+(Q)E-{Ç), 

since £+(0) = 0 on <%[vE~(0-)]. Similarly 

Ye+(S)We+(t) = vE-{C)v-luE+(0)vlI - £+( |+)] M -V' 1 £+(0)£-(£) . 

Now 
z/£-(?)^-1

M£+(0)z;£+(?+)M-1z;-1£+(0)£-(|) 

= Z / £ - ( ? ) M £ + ( J + ) M - 1 Z ) - 1 £ + ( 0 ) £ - ( { ) = 0, 

where we have used £+(0) = / o n ^ [?/£+(£+)] and £~(£) = 0 on^ [w£+(£+) ] . 
Thus 

Y+(Z)W+{Ç) = vE-(Ç)v-luE+{0)vu-lv-lE+(0)E-(iï) 

= vE-(ï)v-luE+(0)u-lE+(0)E-(Ç) 

= t;£-(£)zr-iMM-i£+(0)£-(£) 
= Î ; £ - ( ? ) Z ; - 1 £ + ( 0 ) £ - ( ? ) , 

since £+(0) = I on .^[u^E+iO)]. Continuing 

*%+({)IFe+tt) = »[/ - £+(?+)K 1 £+(0)£- (? ) 
= OT-»£+(0)^({) - Î ; £ + ( ? + ) Z » - 1 £ - ( ? ) £ + ( 0 ) 

= £ + ( 0 ) £ - ( a 

since £+(£+) = 0 on 0t[v~lE-{i)]. 
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On the other hand we find using (2) that 

W+(£)Y+(£) = £+(0)£-(f)M-1ir1£+(0)£-(f)i;E-(f)«ir1£+(0)i; 

= E+ME-fôur^vE-fàuvriE+Mv 

= E+ME-fàu-iE-fôuiriE+Mv 

= E+(Q)E-{Ç)u-l[I - E+{Z+)]uv-lE+(Q)v 

= E+®)Er(l)u-xu<irlE+Q!i)v 

= E+(G)Er(Z)v-lE+($)v, 

since £-({) = 0 on ^ [ w ^ E + t t + ) ] . Thus 

T^c+ t t)F+tt) = £-({)£+(0) t r i [ / _ £-(()-)]*, 

= E+tOE-CQir1» = £+(0)£-(f) , 

since £+(0) = 0 on 0£[v~lE-{$-)]. 
The second formula in (1) can be proved similarly. 

5. Finite-section Wiener-Hopf equations. We shall need the following 
simple result. 

LEMMA 5(a). Let Se be a not necessarily commutative Banach algebra with 
unit. If S, T G 38 and if 

(i) 5 _ 1 exists, 

(ii) | | r -s | |<è| |s- i | | - \ 
then T~l exists and 

Hr-1 - s-'\\ < 2\\S-I\\*\\T - s\\. 

Proof. See Hille and Phillips, Functional analysis and semi-groups (New 
York, 1957), p. 118. 

We recall from §1 that for/(e) £s/, 

f(e) = E t f (£)(*, »), 
we define 

/(*)' = Et|f(Ôl(f.o). 
Then/* É j / and | | / ' | | = ||/| |. We write 

if 
| f ( l ) |< |g (£ ) l for all I Ç S . 

LEMMA 5(b). Letf, a,b £s/. If 
{[) f-<atf + bt, 

(ii) M\ < 1, 
then 

ff-<{t(a*y}b*. 

https://doi.org/10.4153/CJM-1966-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-053-1


SZEGÔ POLYNOMIALS ON A COMPACT GROUP 547 

Proof. Iterating (i) we find successively that 

f~< (a*)Y + a,bt + bt, 
/—< (a*)zf* + {a*)%* + aV + b*, 

/ - < (a')"/' + {|:V)'}&#. 
If we now let n •—> œ we obtain our desired result. 

THEOREM 5(C). Let c(6) £ W 7 7 ( J / ) . rfew there exists fi > 0, C+ = C+# m 
J ^ and C_ = CJ in s/ such that if' 77 > f 1 /few 

(1) /# - < [We+(i7)/]'C+ / o r / G &-(r,)E+(0W, 

(2) /# - < [tTr(i?)/]'C- forf e E+(-r,)R-(P)s/t 

and if rj > f 1 Jfte range 0/ Wc
+(rç) w E-(?i)E+{0)s/, and the range of Wc~(ri) is 

E+(-r))E-(0W. 

Proof. Choose M so that 

M > max{d-i\\U\\, d-i\\V\\, dllU^l], dllV-^ll}. 

It follows from Lemma 5(a) that we can choose fi so large that if 

u = d-'E-^U, v = d-'E+i-^V, 

then u-1 e E+(0) j / , fl"1 G E+(0) j / , and 

M > m a x { | H | , | H | l | | « - i | | > | | i r i | | } l 

and so large that if 

£i(0) = u(d)-iv(6)-\ 
then 

l k - c i | | < ± M - 4 . 

Let us now regard Wc
+(rj) once again as an operator with domain 

E+(0)E-(ri)j/. 

For Tj > f 1 we know from Theorem 4(a) that ^ ^ ( r j ) - 1 exists and that 

llw^fo)-1!! < ^ . 
Since 

\\W+(r,) - Wc+(v)\\ < ||c - a\\< \M-\ 

it follows from a second application of Lemma 5(a) that We
+(ri)~1 exists (and 

that HWV-fo)-1!! < 2M4). F o r / G E+(0)E~(v)s/ let g = WV(ij)/. We have 

Wc+(v)f = [Wei+(ij) - ^ c + « l f + *, 
/ = 1V(„)[WVM - W+(v)]f+ Yc+(v)g, 
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which implies that 

where 

Since ||a#|| < | , it follows from Lemma 5(b) that 

f-<{Èyy}b*, 
which we can rewrite as 

f-< C+[W+(r,)f}#, 
where 

j v~^ # • v # —l # # # 

c+ = \ 2^ (a ) (v (y ) u v . 
We have thus proved all of our assertions concerning Wc

+(r]). The same argu­
ments suffice for Wc~~(rj). 

In an earlier version of this paper a somewhat different proof was given for 
Theorem 5(c). It is interesting to note that using Lemma 5(b) and (with 
slight variations) the argument given by Baxter in (3), it is possible to estab­
lish (1) and (2). However, since the dimension of E+{fS)E~{r\)S^ is infinite 
(except when H = I), it does not follow that the range of Wc

+(r)) is all of 
E+(0)E~(r))&/, and further arguments are needed to take care of this point. 

From this point on fi will always be the constant of Theorem 5(c). 

COROLLARY 5(d). Let c(6) G WRisé) and let g (6) 6 E+(0)s/. For each 
7} > f i let 

f(r,,0) = {W+(r,)}-iE-(r,)g(e), f(6) = {W+}^g(6); 
then 

(3) Hv,e)-<c+(fiyg(fi)t, 

(4) lim ||/(0) -/(„,*) 11 =0 . 

There is also a parallel result for Wc~~ (77). 

Proof. Theorem 5(b) implies that for all 77 > f 1 

f(v,0)-< c+(e)*[E-(r,)g(ew -< c+(e)*g(o)*, 

which gives (3). We have 

W+(n)E-(v)f-(6) = E~(v)E+(0)[c(e)E-(r,)f(6)] 

= E-(v)i(e) - E-(v)E+(0)[c(6)E+(r1 + )f(d)}. 

Thus 
W+(v)[f(v,e) - E'(v)f(6)] = E-(r,)E+(0)[c(8)E+(r,+)f(d)]. 
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I t follows from Theorem 5(c) t ha t 

H/M) - E-(r,)f(d)\\ < \\C+*\\ \\c\\ \\E+(r,, +)/ | | 

and consequently 

(5) ||/(„, o) - f(o)\\ < \\f(n, e) - E-(v)f(e)\\ + \\E+(n+)f(d)\\ 
< { l + ||C+*||||c||}||£+(„+)/||, 

from which (4) follows. 

6. Szegô p o l y n o m i a l s . Henceforth we shall always assume t h a t c € WH(s/) 
where s/ is an algebra of type ©. Let f i, C+, and C_ be as in Theorem 5(c) . 
For r] > f i we define 

(1) u(ri,6) = W+M-n, 

(2) v(n, 6) = We-(ri)-n. 

We have 

u(rj,e) = Z ufo, £)&«), 

( 3 ) v(yi9e) = E • ( * , « & * ) . 

L E M M A 6(a) . If rj > fi , /Z^n 

J e « ( ^ * M ^ *)*(*) <W = "(*?> 0) = ^(77, 0). 

Proof. Let us write (a, £] for any function g £ *$/ for which o-(g) C (#, Z>], 
etc. This notat ion is convenient in t ha t it makes it unnecessary to name 
irrelevant terms. By assumption 

v(r}J6)c(d) = ( - c o , -rj) + 1 + (0, oo) 
and thus 

u(v,d)v(Vj0)c(d) = ( - œ , 0 ) + u f o , 0 ) + (0, « ) . 

This implies t h a t 
fQu(V,d)v(r1,d)c(d)dd = U(r?,0), 

etc. 
I t follows from Corollary 5(d) applied to g (6) = 1 t h a t 

|U(0) - u(ly, 0) | < \\U(0) -u(r,,d)\\-*0 as r7-> oo, 

|V(0) - v f o , 0) | < 11 7(0) -v(n, 0)\\ - > 0 a s ^ œ . 

For 17 > f 1 we define d(r)) by d(v)Y = 11(77, 0) = v(rç, 0) . We may suppose t h a t 

(4) limd(»7) = d 

where d2 = U(0) = V(0) . We choose f2 > fi so t h a t 

(4') ^ ( 7 7 ) ^ 0 f o r i 7 > r 2 . 
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We can now define the (generalized) Szegô polynomials associated with c. 
For 7] > f 2 let 

(5) *(ij,0) =d(r,)-l(r,,0)v(ri,6), 

(6) *(i/ ,0) =d(r,)-l(-r,,6)u(ri,e). 

Note that despite their name, <j>{r},d) and (̂77, 0) are not (except in the case 
9 = 7 " and S = I) polynomials, that is finite linear combinations of characters. 
In general they are infinite linear combinations of characters. 

It is apparent that 

0fo,0) G E-(rj)E+{<d)3? and i/,(v,0) € E+(-rj)Er(0)s/. 

The basic property of the polynomials (5) and (6) is that they are biortho-
normal. 

THEOREM 6(b). / / 771, 772 > ?2 and if 5(771,772) w 1 or 0 as 771 = 772 or 771 9e 772, 

(7) Je *(ui, W f o , 0)c(0) ^ = 5(771,772). 

Proof. The case 771 = 772 follows from Lemma 6(a). Suppose next that 
771 < 772. We have 

yp{^e)c{e) = d(7l2)-
1(-n2,e)c(e)u(r}2jd) 

= ^(772)-1(-^2,0)[(-œ,O) + 1 + (772, » ) ] 

= ( - « , -172]+ (0, œ), 

and thus 
<t>(vi,6)t(v2,6)c(6) = ( - 0 0 , 7 7 ! - 772] + (0 , 00) 

so that (7) holds in this case. The case 771 > 772 is similar. 

We now proceed to the discussion of the expansion of functions 

f(e) e E+(O)S/ 

in terms of the $'s. This will occupy §§ 6-8. For £ > f2 set 

f~(É) =Je/(W(MM*)<». 

For "large" 77 we would /i&e to define an operator R+(r}) by the formula 

(8) * f ( i » ) / - ( 0 ) = £ f ~ ( S ) * ( M ) . 

However, we must first discuss infinite series of the sort appearing on the 
right-hand side of this relation. 

Let S be a complete separated linear topological space over the complex 
numbers. For M any abstract set consider the (formal) series 

(9) Z «GO, 
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where co(ju) G S for each JU G M. Let F (M) be the family of all finite subsets 
m of M ordered by inclusion. The definition of (9) is that it is the limit in 
S of the net 

2>(M), m G F(M), 
fiem 

if this limit exists. 

LEMMA 6(C). Let s/ be of type ©. If for each p G M, w(/x, 6) G s/, and if 
there exists w = w$ in J3^ swc/z that for every m G F (M) 

(10) 

Z «0*. ») 
fi(M 

is convergent. 

Proof. Let b (M) be a complex number for each /z G M. If the sums 

23 |6(M)| 
/xera 

have a finite upper bound independent of m, then since the complex numbers 
are complete, ^ M J ( / i ) is a well-defined complex number. By (10) for each 
£ G S we have 

£ i o G * , * ) i < w ' ( a 
/new 

and therefore for each £ G E the series of complex numbers 

(11) I > ( M ) 

is convergent. Given e > 0, let E' be a finite subset of E such that if 

Vf — V — V 

then 

(12) HEW* (£)(£,») 

By definition 

Z «G».*) - Z »G*,0) 

< ie. 

Z(£>0){ Z « * (M ,« - Z *»G*,É)} 

< Z ( M ) { . . . } + Z (£ .«){••• ) 
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Using (11) we see that 

while by (10) and (12) 
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lim 
mi ,m2 

EMM- = 0, 

E (*,*){.-•] < te + h = e 

independently of ni\ and m2, etc. 
Note that 

(13) [E^,e)]t-<wt(d) 

is also valid. 
Let us choose f3 > f 2 so large that for some constant D, 0 < D < 00 , 

(14) inf \d(v)\ >D~l> 0. 

THEOREM 6(d). Letf € E+($)$/. If v > fs, ^«« ^ 

Z f ~fâ <*>($, 0)=i?+M/-(0) 

w convergent, and \\R+(v)\\ < £>2 | |CV|| ||C_#|| | |c | | . 

Proof. We have 

f~(£) = îef(0)Mè,0)c(0)de, 

f~(É) = ditr'hfiOMl;, <?)(-£, 0)C(0) d0. 

By Corollary 5(d) applied to the function 1 

(150 u(r,,0)*—< C+(0)', 

and 

(15") Z;(T7, 6>)# —< C-(0)'. 

Using (15') we see that 

|f~(É)l < F( | ) 

where F = F* = DfldC+t. Again 

<*>(£, 0) = <2(I)-Ml,0)fe0), 

and using (15") we find that 

fe(M)]'^<PC_(0)'(M). 

Combining these results we find that if m is any finite subset of {£|£ > rj), then 

We can now apply Lemma 6(c). 

https://doi.org/10.4153/CJM-1966-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-053-1


SZEGÔ POLYNOMIALS ON A COMPACT GROUP 553 

In what follows we are going to show that in some sense functions 

f(8) € E+(0W 

can be expanded in terms of the </>(£, 0)'s. However, our theory must take a 
somewhat oblique form since the </>(£, 0)'s cannot be assumed to exist for small 
£. Suppose we did have 

this would imply that 

E+(v+)f> (d) = £+(r,+ ) E f~ft)*(M), 

(16) E+(r7 + ) / = £ + ( r 7 + )i^+(r7)/, 

where this formula has the advantage that the right-hand side is denned for 
£ > f 3. In the next section we shall show that if rj > f 4, where f 4 > f 3 depends 
only on c, then (16) does in fact hold. 

7. The expansion theorem. We proceed to carry out the programme 
described at the end of §6. 

LEMMA 7(a). If £ > £1 > 0, £ > f2, /*«» 

Je ("fc» *)*&*)*(*)<» = 0. 

Proof. The integrand of the first integral above is equal to 

d^)-1(^d)(-^6)u^d)c(d) = & - { , * ) [ ( - c o , 0 ) + d ( £ ) - i + (f, » ) ] , 

etc. 

LEMMA 7(b). Ifv> £3, then 

E+(v + )R+(v)E+(r1+) = £+(n+)ie+(i|). 

Proof. It is enough to show that if £ > 77, then 

J e / ( » ) * & *)c(«)<W = J e [£+(u+)/- (»)]*(*, 0)c(0)<*0, 

or equivalently 

This, however, follows from Lemma 7a. 

LEMMA 7(C) . If 77 > f3, /Atfw 

E+(r1 + )R+(r1)E^(r} + )R+(r,) = JE+(„ + )*+( i*) . 

Proof. By Lemma 7(b) we have 

£+(,+ )i?+«£+(,+ )i?+(,) = £*(„+)2î+(„)2?+(„). 
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L e t / € £+(0)e^, and let 

g = R+(„)f = Z *(f, W~ ({) 

where the series on the right converges in <$/, and therefore a fortiori converges 
uniformly. It follows from Theorem 6(b) that if £ > 77 > f 3, then 

g~(?) = f~(*). 

Our assertion is an immediate consequence of this. 

Let T be a directed set with elements 7, 7', etc. 

LEMMA 7(d). If 

(i) r(6) € s/, r(7, 0) € J * > r 7 6 r , 
(ii) r(7, 6) —< s* for all 7 Ç T where s = s* G J / , 

(hi) lim7 r(7, 0) = r(0) i w i , 
then given e > 0 £/^re exwfo y' Ç T awd / = /# i» J ^ S^C/Ê ^a / ||/|| < € awd 

K*) -r(y,d)Y-<t#(d) for y > y'. 

Proof. We can choose a finite subset E' of E such that if E" = E — E', then 

I I E S " 8 ( É ) ( M ) | | < € / 4 . 
Let 

and set 
N= &(M)II. 

t({) = 1 
28(f), ? € E". 

Then t = t*tstf and ||l|| < e since 

| E S ' ( M ) | | + 2 | 5 > 8 ( É ) ( M ) | | , 
€ 

2ÎV 

Choose 7' so large that 

\\r(d)-r(y,e)\\<e/2N for 7 > 7'. 

If 7 > 7' and if £ Ç S', we have 

|r({) - r ( T , f) | < ||r(0) - r ( 7 , 0)|| < e/2N = t(É), 

while if £ € E", we have 

|r(?) - r ( T , É ) | <2s (£ ) = t(£). 

THEOREM 7(e). There exists f4 > h such that if f{6) € E+(0)s/, then 

(1) £+(„+) / (0) = E+(v+)R+(v)f- (6) for r, > f4, 

andif g(6) Ç. E~(0)£f, 

(2) £ - ( _ , _ ) g . ( 0 ) = £ - ( - „ -)R_(r,)g-(0) forv>Çi. 
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Here R-(y) is defined in the obvious way with the roles of the #'s and ^'s 
interchanged. 

Proof. We shall prove only (1) since the proof of (2) is exactly the same. 
Let us set 

I(„) = EHv+)\E+(ti+)^, <?(„) = E+(v+)R(v+)\B+(ri+)^; 

that is, I(rj) is the restriction of E+(TJ + ) to E+(ri + )s/, etc. 7 (77) is the identity 
operator on E+(r)-\-)$/ and Q(77) is an indempotent operator. We shall show 
that if f 4 is large enough, then 

\\IM -QWW < 1 for r ? >f 4 . 
Since 

[/(*) - Q(v)]n = IM - QM, 
it follows that 

\\I(v)-Q(v)\\<\\Kv)-Q(v)\\n, 
and since n can be taken arbitrarily large this implies that I(rj) = Q(rj), which 
is what we want to show. 

Using c = d2/UV we see that I(rj) can be written in the form 

i(v)f = E+(V+) Z d-2v{e)(i e) f /(*)(-*, *)£/(*)*(*)<**, 

where/G E+(r)+)s/. Let 

for / e £+0? + ) J / . Consider 

By Corollary 5(d) and by (4) of §6 we see that 

lim \\d-1V(6)-d^r1v^d)\\ = 0, 

and also that if £ > f 3 

^ - T ( ^ ) - d(f)-Mf, 0) —< 2DC-H6). 

By Lemma 7(d), given e Ç 0 there exists co > f 3 and / = /# in ja/ such that 
||/|| < eand 

d~lV(e) - d(£)-lv(£, 0) —< / if ? > co. 

Using the estimate for f~(f) given in the proof of Theorem 6(d), we see that 
if 7] > CO 

[C2(u) - ^ M l / ^ Dc*C+ffHf, 

\\[Q(r,)-P(v)]f\\<e\\Dc*C+*\\\\f\\. 
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Since e is arbitrary, this implies that 

lim | | Q O , ) - P ( i , ) | | = 0 . 

Similarly consider 

[p(v) - Hv)]f = £+o?+) z d-'vms, o) f mr'ua, *> 
- (T^C^K-J, *)f{*)c{4>)d*. 

By estimates altogether similar to those used above we can show that 

lim \\P(V) - 7(„)|| = 0. 
i?-»+oo 

Choose f 4 so large that if 77 > f 4 

| | < 2 « - P « l l < è , llPd») - id») 11 < * ; 
then 

l|/(u) - eOOII < 1 fo r 1 J >f 4 . 

But this implies that Q(rj) = I(rj) and our proof is complete. 

8. The Christoffel-Darboux formula. In this section we shall show that 
if we define the operator £+(77) on E+(fd)s>/ by the formula 

(1) S+in) = I-R+(v), 

then 5+(17) can be given a simple explicit closed form. For rj > f2 let us set, 
fo r / e E+(0)s/, 

(2) S'+(„)/(0) = d(u)-'[«(u, e)E+(o){f(e)c(e)v(v, o)} 
- v(V,d)E+(r, + ){c(d)u(V,6)f(d)}]. 

We shall show that S+(i?) = S'+Oï) if »? > fo. We remind the reader that we 
are assuming throughout that s/ is of type © and that c £ Wff(<B^). 

THEOREM 8(a). Ze£ 57 > f2. 7/ 0 < £ < rç, JAe» 

(3) 5'+(u)(f,«) = ( M ) , 

and if % > 77, /Aew 

(4) S'+0?)*(M) = 0 . 

Proo/. Note that (3) implies that S'+0?)<K£> 6) = 0(f, (9) for any £ < 77 for 
which <£(£, 0) is defined. Since 

C(0)V(T,,6) = ( - « , -77) + 1 + (0, » ) , 

if 0 < £ < 77, we have 

E+(0){(t,e)c(d)v(v,e)} = (M)E+(O){C(0M„,0)}, 
and 

«(i,,ff)£+(0){c(fl)»(i,,0)} = £+(O){c(0)w(i,,0Mij,0)}. 
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Thus 

d(v)-2u(v, e)E+(0){& e)c(e)v(v, $)} = & e)E+(0){d(ri)-*u(ri, oMi, e)c(e)}. 

Similarly, since c(d)u(rj, 0) = (— °°, 0) + 1 + (17, °o), w e have 

E+(v + ){&0)c(0)u(v,0)} = &0)E+(0){c(e)u(r,,6) - 1} 

and 

v(v, e)E+(o){c(o)u(r,, e) - 1} = E+(0){c(d)u(Vi e)v(Vt o) - v(v, $)}. 

It follows that 

d(V)~*v(rj, 0)E+(v + ){ ({, 0)c(e)u(V, 0)} 

= (à «£+(0)d(i?)-2{cW«(i7, «)»(iî, 0) - »0?, 0}. 

Combining these results, we find that 

S'+foKM) = (f.WS+WTO-M,,*)} = (M). 
and we have proved (3). 

Suppose that £ > r?. Since 0(£, 0)c(0) = (— °°, 0) + [J, 00), w e find that 

£+(O){0(f, e)c(B)v(Vt 0)} = Z;(T7, 0)£+(O){0(£, 0)C(0)}, 

so that 

^ « ' M * ? , 0)£+(O){tf>(£, 0)c(6)v(r,, 0)} = dM-tuin, 6)v(r,, 0)E+(O){0({, 0)c(0)}. 

Again 

£+( i?+){*(MW*Mi?,0)} = u(v,d)E+(0){<l>&d)c(d)}, 

and hence 

d{ri)-h{ri, 6)E+(r, + ){<l>fo 6)c(e)u(r,9 0)} = d(rj)^u(Vj 6)v(r,, 0)£+(O){tf>(£, 0)c($)}. 

From these computations (4) follows immediately. 

THEOREM 8(b). If rj > ÇA,then S+(rj) = S'+(rç). 

Proof. By Theorem 7(e) if f] > U and iff£ £+(0)<c/, 

where g(0) G E~(r))E+(0)&/. Applying S'+(rj) and using Theorem 8(a) we 
find that 

S'+(v)f- (e) = g(o) = [I - R+(v)]f- (8) = S+(v)f- (e). 

Note. It is easy to show directly from the definition that 

lim, S' + fo)/- (0) = /(0) for every / € £+(0) j^ ; 

see (5). However, we do not need this fact in the present situation. 
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9. Recursion formulas. For 17 > f 3 we define a(r?) and §(rj) by the formulas 

a(u)d(i») = Uumui, e)c(e)de, 
MnMv) =f*V(d)<i>(v,e)c(6)dd. 

LEMMA 9(a). If r\ > f4, /Ae» 

S+(T,)U(0)=u(n,0), 

S-(v)V(d) =v(v, d). 

Proof. By Theorem 8 (b) 

-<i( ,)-M^)£+(H)| t /(cW«)«((^)! . 

Using U(d)c(6) = ( - » , 0) + 1, we see that 

E^(O){U(0)c(e)v(v, «)} = v(„, 0) = rf(„)2, 

£+(u+){ U(0)c(e)u(n, d)\ =0, 
from which the first formula of (2) follows, etc. 

The following result is the basic recursion formula for the W(TJ, 0)'S and 
v(v, d)'s. 

THEOREM 9(b). / / T?2 > VI> ?4, ^ew 

(3') u(v2,e) -u(Vl,e) = Z «(€MM)(M) 

and 

(3") v(r,2,6)-v(m,0)= Z 8 ( S ) M ( £ , ^ ) ( - £ ^ ) . 
1Î1<Ç<1?2 

Proof. By Theorem 7(e) we have 

u(e) = u'(e)+ Z «(«)<*(*)*&*) 

= f/'W+ Z « ( « ( M M M ) 
£>f4 

where ï/'(0) G E + ( 0 ) £ - ( f 4 ) ^ . Applying 5+(171) and S+(ij2) to both sides and 
using Theorem 8(a) and Lemma 9(a), we obtain our desired result. 

COROLLARY 9(C) . If T}2 > 771 > f4, then 

(4) u f e 0 ) - u ( i i i , 0 ) = Z «(£)?(£)u&0). 
171<£<172 

Proof. If in (3") we compare coefficients of ( — 172, 0), we obtain (writing £ 
for 772) 

v(£, - f ) = &(Ôu(£,0), £ > f 4 . 
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If now, using this result, we compare constant coefficients in (3'), we obtain 
(4). 

COROLLARY 9(d). a(rj)§(rj) ^ I for rj > ft. 

Proof. Suppose that for some rj2 > ft, a (172)5(172) = 1. In this case (4) can 
be rewritten in the form 

-ufoi,0) = Z «tt)ffft)utt,0)f 
1?1<£<1?2 

which implies that 

lim 11(771, 0) = 0. 
»71->172— 

Since 

|u(171, 0)| >D->>0 

for 771 > ft, this is a contradiction. 
It is evident from Theorems 9(b) and 9(c) that the u(rj, 0)'s and V(TJ, 0)'S 

are in some sense built from the <*(!•)'s and 5(£)'s- It is therefore of importance 
to know how large these constants are. 

THEOREM 9(e). We have 

£ «(*)(M) es/f E 5ft)(-M) e ^ . 

Proof. This is a special case of a more general result. 
We have 

<*«)«(*) =feum&e)c(d)dd, 

««) = d(f)^/eC/W«(f, 0)(-£, 0)c(0) (M. 

Since 

[ « ( M ) ] ' - < C+(fl), 

it follows that 

l«tt)| < F({), 

where F(6) = D2C+(eyU(e)tc(d)f Ç J / , etc. 

In the sequel to the present paper we shall show that Theorem 9(b) implies 
the product formula (3) of §2 and that Corollary 9(c) implies the formula 

u0n.O) = ( n [l-*(E)fftt)])u(n*,0). 

10. Concluding remarks. In (5), I obtained for 9 = T and S = / a 
theory for a class 93 of Banach algebras which is largely parallel to the theory 
of the present paper specialized to this case. 
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DEFINITION 10(a). Let s/ be a Banach algebra of complex functions f(0) on 
T with norm || • ||. j / will be said to be of type 33 if the following conditions are 
satisfied: 

oo 

(i) J / 0 D ^ , I |f(fe)| < WfWforallf G s/; 
—co 

(ii) exp(2irik$) G s/for k = 0, dbl, ± 2 , . . .; 
(iii) E+(n), E~(n) are bounded operators on se for each n = 0, ± 1 , ± 2 , . . . ; 

(iv) for every f Ç se, 

lim E+(n)f- (0) = 0 and lim £"(n)/- (0) = 0; 
tt->co W->—oo 

(v) for every f £ S#, 

lim exp(-2>irin6)E+(n)f' (0) = 0 and lim exp(-2irind)E~(n)f' (6) = 0. 
n^+oo w->—oo 

We shall now show by an example that 33 is not a subset of ©. For / in J^0 let 

^i[/] = E|f(*)l. ^ [ / ] = i.u.b. £ f(fe)* 
A;=ni 

Let j / be the set of a l l / € J^0 for which jV\\f] and ^4[f] are finite and for which 
in addition 

lim J ] M(fc) = 0, lim £ *f (*) = 0-
n\ ,W2->+oo ifc—ni wi >w2->—oo &=«i 

For / G J / , we set 
ll/ll = ./fi[/] + ^L f ] . 

We assert, leaving the verification to the reader, that se is of type 33. To see 
that it is not of type ©, let 

oo 

/(*) = Z (-1)*(1 + kY1exp(2Tikd). 
—oo 

T h e n / G J / , but H/'ll = oo ! 
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