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Discriminants of Complex Multiplication
Fields of Elliptic Curves over Finite Fields

Florian Luca and Igor E. Shparlinski

Abstract. We show that, for most of the elliptic curves E over a prime finite field Fp of p elements, the

discriminant D(E) of the quadratic number field containing the endomorphism ring of E over Fp is

sufficiently large. We also obtain an asymptotic formula for the number of distinct quadratic number

fields generated by the endomorphism rings of all elliptic curves over Fp .

1 Introduction

Let p > 3 be prime and let Fp be the field of p elements.

Throughout this paper, the implied constants in the symbols ‘O’, ‘≪’ and ‘≫’ are
absolute. We recall that A ≪ B and B ≫ A are both equivalent to A = O(B).

Let E be an elliptic curve over Fp given by an affine Weierstrass equation of the
form

(1) y2
= x3 + ax + b,

with coefficients a, b ∈ Fp, such that 4a3 + 27b2 6= 0. In particular, there are W p =

p2 + O(p) distinct elliptic curves over Fp.

We recall that the set E(Fp) of Fp-rational points on any elliptic curve E forms
an Abelian group (with a point at infinity as the identity element). Moreover, if we
define the trace of E as t(E) = p + 1−#E(Fp), then the Hasse–Weil bound asserts that

(2) |t(E)| ≤ 2p1/2,

(see [11] for this and some other general properties of elliptic curves).

We recall that the polynomial X2 − t(E)X + p is called the characteristic polynomial

of E and plays an important role in the description of various properties of E. For
example, it is also the characteristic polynomial of the Frobenius automorphism on
E, that is, the p-th power automorphism. Adjoining its roots to Q we get a quadratic

field KE containing the ring of endomorphisms of E over Fp, which is called the com-

plex multiplication field of E. Furthermore, writing t(E)2 − 4p = −d(E)2D(E) with
some integers d(E) and D(E), where D(E) is square-free, we see that one of −D(E)
or −4D(E) is the discriminant of KE = Q

(√
−D(E)

)

(see [11]), and as such is a

natural object to study. It is clear from (2) that D(E) is non-negative. We shall also
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assume that d(E) is non-negative. In the situation when the curve E is defined over Q

and one considers the reductions of E modulo a prime p which varies, the parameter

d(E) has been studied in [2], while the complex quadratic field KE has been studied
in [3].

Here, we look at the dual situation of studying D(E) when p is fixed, but the curve
E varies. Understanding the size of D(E) is of intrinsic interest and has also turned
out to have some cryptographic applications. For example, it appears in some bounds

of [9], and thus affects in a significant way the complexity of the algorithm for analyz-
ing the discrete logarithm problem in the group of points of isogenous elliptic curves
over a prime field described there. Our current results show that unfortunately this
parameter tends to be large. It is also well known that given p and t , the complexity of

constructing a curve E over Fp with a given value of t(E) = t depends exponentially
on the size of D(E) (see [1, §18.1]).

It follows immediately from (2) that d(E) < 2p1/2.

For a positive real number δ > 0, we denote by Np(δ) the number of elliptic curves
E over Fp having d(E) > δ and let

ηp(δ) =
Np(δ)

W p

be the density of such curves in the set of all such curves over Fp. In this paper, we
obtain an upper bound on ηp(δ) which is nontrivial for δ ≥ (log p)2.

2 Main Results

Theorem 1 For any positive δ ≪ p1/6(log p)1/3(log log p)−2/3, the bound

ηp(δ) ≪ (log p)2

δ

holds.

The arguments from [10, §1] used in the analysis of the Kronecker class numbers

and in counting isomorphisms and automorphisms of elliptic curves, immediately
show that for any positive integer t , the number W p(t) of elliptic curves E given by (1)
with a, b ∈ Fp such that t(E) = t is

(3) W p(t) ≪
(

d

ϕ(d)

)2

p3/2 log p,

where d is the largest positive integer with d2|t2 − 4p.

Since, by (3), we clearly have d(E)2D(E) = 4p − t(E)2
= p1+o(1) for all but o(p2)

elliptic curves (1) over Fp, we conclude from Theorem 1 that D(E) = p1+o(1) for all
but o(p2) curves over Fp.

We also obtain an asymptotic formula for the number Gp of all possible complex
multiplication fields generated by all possible elliptic curves over Fp.
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By the classical results of Deuring [5], for each t with |t| ≤ 2p1/2 there is an elliptic
curve over Fp with t(E) = t . Therefore Gp is equal to the number of distinct fields of

the form Q
(
√

t2 − 4p
)

for some integer t with 0 ≤ t ≤ 2p1/2.
The question of estimating the number F f (T) of distinct fields of the form

Q
(√

f (t)
)

, t = 0, . . . , T − 1, for a given quadratic polynomial f (X) ∈ Z[X], has
been considered in [4]. In fact, under the ABC-conjecture, the case of arbitrary poly-
nomials has also been studied in [4]. However, the results of [4] cannot be applied
directly to estimating Gp since they are not uniform in terms of the coefficients of f .

Here, in the case of quadratic polynomials, we extend and improve the correspond-
ing result of [4]. Namely, we make it uniform and also improve the error term of the
asymptotic formula for F f (T) [4, Theorem 1B] from O(T/ log T) to T2/3+o(1). Our
result is the following.

Theorem 2 Let f (X) = aX2 + bX + c ∈ Z[X], a 6= 0, be a quadratic polynomial

without multiple roots. Let d f = gcd(a, b, c). For an integer T ≥ 1 we define

M f (T) = max
t=0,...,T−1

| f (t)|

and

U f (T) = #{(t1, t2) : 0 ≤ t1 < t2 ≤ T − 1, f (t1) = f (t2)}.
Then the bound

F f (T) = T + O((d
2/3

f T2/3 + d
1/3

f M f (T)1/3)M f (T)o(1) + U f (T))

holds as T → ∞.

In principle, for the proof of Theorem 2 we follow the same approach as in [4]
together with some new arguments.

Clearly, if the polynomial f is fixed, then M f (T) = O(T2), U f (T) = O(1) and

d f = O(1), and the error term in Theorem 2 becomes T2/3+o(1), which improves the

error term O(T/ log T) given in [4, Theorem 1B].
Obviously, using Theorem 2 for f (X) = X2−4p and T =

⌈

2p1/2
⌉

(thus, M f (T) =

O(p), U f (T) = 0 and d f = 1 in this case), we derive the following.

Corollary 3 The bound Gp = 2p1/2 + O(p1/3+o(1)) holds as p → ∞.

It is clear that U f (T) can be estimated directly. For example, if f (t1) = f (t2) and

0 ≤ t1 < t2, then a(t1 + t2) = −b. In particular, U f (T) = 0 if a 6 | b, or b/a ≥ 0.
Otherwise, for each positive divisor d of b/a, there are at most d pairs (t1, t2). Thus,
U f (T) ≤ σ(|b/a|) where, as usual, σ(k) is the sum of positive divisors of the integer
k ≥ 1. We recall that σ(k) = O(k log log(k+1)) (see [6, Theorem 323]). In particular,

denoting H f = max{|a|, |b|, |c|}, and estimating

d f = O(H f ), M f (T) = O(H f T2), U f (T) ≤ H1+o(1)

f ,

we derive from Theorem 2 that the bound

F f (T) = T + O(H
2/3

f T2/3+o(1) + H f (T)1+o(1))

holds as T → ∞.
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3 Proof of Theorem 1

As usual, we use ϕ(k) to denote the Euler function of k.
We see from (3) that the inequality

(4) Np(δ) ≪ p3/2Tp(δ) log p

holds, where

Tp(δ) =

∑

δ<d

∑

|t|<2p1/2

t2≡4p (mod d2)

d2

ϕ(d)2
.

It is clear that the inner sum is void for d > 2p1/2. We now fix some µ ≥ 2 to be

determined later, and we split Tp(δ) into sums Tp,1(δ) and Tp,2(δ) over the range

d ≤ 2p1/2/µ, and over the range d > 2p1/2/µ, respectively.
Let ρ(n) denote the number of solutions to the congruence t2 ≡ 4p (mod n),

where 0 ≤ t < n. This function ρ(n) can be studied directly, but we simply use the

famous Nagell–Ore theorem (see [7] for its strongest known form). It immediately
implies that ρ(n) ≪ 2ω(n), where ω(n) is the number of distinct prime divisors of n.

Hence, for the first sums, we have

Tp,1(δ) =

∑

δ<d≤2p1/2/µ

∑

|t|<2p1/2

t2≡4p (mod d2)

d2

ϕ(d)2

≤
∑

δ<d≤2p1/2/µ

(

4p1/2

d2
+ 1

)

d2ρ(d2)

ϕ(d)2
(5)

≪
∑

δ<d≤2p1/2/µ

(

p1/2

d2
+ 1

)

d22ω(d)

ϕ(d)2

= p1/2
∑

δ<d≤2p1/2/µ

2ω(d)

ϕ(d)2
+

∑

δ<d≤2p1/2/µ

d22ω(d)

ϕ(d)2
.(6)

We now recall the Wirsing theorem [12], which can be formulated as follows.
Assume that a real-valued multiplicative function f (d) satisfies the following condi-
tions:

• For every positive integer d we have f (d) ≥ 0.
• There exist positive constants c1 and c2 with c2 < 2 such that for every prime ℓ we

have f (ℓν) ≤ c1cν
2 , ν = 2, 3, . . . .

• There exists a constant τ > 0 such that

∑

ℓ≤x

f (ℓ) = (τ + o(1))
x

log x
,

where the sum is taken over primes ℓ ≤ x.
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Then the estimate

∑

d≤x

f (d) =

( 1

eγτΓ(τ )
+ o(1)

) x

log x

∏

ℓ≤x

∞
∑

ν=0

f (ℓν)

ℓν

holds as x → ∞, where γ is the Euler constant, and the Γ-function is defined by
Γ(s) =

∫ ∞

0
e−tt s−1 dt.

It is clear that

f (d) =
d22ω(d)

ϕ(d)2

is a multiplicative function and also that

∑

ℓ≤x

f (ℓ) = 2
∑

ℓ≤x

ℓ2

(ℓ − 1)2
= (2 + o(1))

x

log x
.

Thus, f (d) satisfies the conditions of the Wirsing theorem with τ = 2, and we derive

∑

d≤x

f (d) =

( 1

e2γΓ(2)
+ o(1)

) x

log x

∏

ℓ≤x

(

1 + 2

∞
∑

ν=1

ℓ2ν

ℓ3ν−2(ℓ − 1)2

)

=

( 1

e2γΓ(2)
+ o(1)

) x

log x

∏

ℓ≤x

(

1 + 2
ℓ2

(ℓ − 1)2

∞
∑

ν=1

1

ℓν

)

=

( 1

e2γΓ(2)
+ o(1)

) x

log x

∏

ℓ≤x

(

1 + 2
ℓ2

(ℓ − 1)3

)

.

By the Mertens theorem,

∑

ℓ≤x

log
(

1 + 2
ℓ2

(ℓ − 1)3

)

= 2
∑

ℓ≤x

( ℓ2

(ℓ − 1)3
+ O

( ℓ4

(ℓ − 1)6

))

=

∑

ℓ≤x

1

ℓ
+ O

(

∑

ℓ≤x

ℓ−2)
)

= 2 log log x + O(1),

therefore

(7)
∑

d≤x

d22ω(d)

ϕ(d)2
=

∑

d≤x

f (d) ≪ x log x.

By partial summation, it also implies that

(8)
∑

y≤d≤x

2ω(d)

ϕ(d)2
=

∑

y≤d≤x

f (d)

d2
≪ log x

y
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for all real numbers 1 < y < x. Therefore, applying estimate (7) with x = 2p1/2/µ,
estimate (8) with x = 2p1/2/µ and y = δ, and using (5), we get

(9) Tp,1(δ) ≪ p1/2
(

δ−1 + µ−1
)

log p.

For the second sum, using the well-known bound

(10)
d

φ(d)
≪ log log d ≪ log log p

(see [6, Theorem 328]), we deduce

Tp,2(δ) ≪ (log log p)2
∑

2p1/2/µ<d≤2p1/2

∑

|t|<2p1/2

t2≡4p (mod d2)

1

≪ (log log p)2
∑

0<m<µ2

R(m),

where R(m) is the number of solutions in positive integers t and d to the norm form

equation t2 + md2
= 4p. The above equation can be rewritten as

( t + ι
√

md

2

)( t − ι
√

md

2

)

= p,

where ι =
√
−1. Because p is prime, we conclude R(m) is at most the number of

units of the quadratic order Z[ι
√

m]. This order has always two units ±1 except

when m = 1 when it has four units ±1,±ι. In fact, R(m) > 0 if and only if −m is
a quadratic residue modulo p and one of the (hence, both) prime ideals in the ring
of integers OKm

of the quadratic field Km = Q[
√
−m] sitting above p is principal

and belongs to the order Z[(1 + ι
√

m)/2]. The last condition above, namely that the

prime ideal dividing p belongs to the order Z[(1 + ι
√

m)/2], is not needed when m

is squarefree as in this case the above order is the full ring of integers OKm
. Thus,

(11) Tp,2(δ) ≤ 4(µ2 + 3)(log log p)2.

We now choose µ = p1/6(log p)1/3(log log p)−2/3 to balance the estimates (9) and
(11), and finish the proof.

4 Proof of Theorem 2

Our next proof is the proof of Theorem 2 which improves the error term in the

asymptotic formula of Theorem 1B of [4]. It also makes it uniform, which we need
for applications to the polynomial f (X) = X2 − 4p.

We assume that T is sufficiently large and let

y = (d f T)2/3 and z =
(

M f (T)/d f

)1/3
.
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Let L f (y, T) be the number of t ∈ {0, . . . , T − 1}, such that m2| f (t) for some
integer m ≥ y. Since f does not have multiple roots, for every m there are at

most gcd(d f , m2)mo(1) ≤ d f mo(1) roots to the congruence f (t) ≡ 0 (mod m2),
t = 0, . . . , m2 − 1 (see [7]). Therefore the contribution to L f (y, T) coming from
m ∈ [y, z] is at most

(12) d f

∑

y≤m≤z

mo(1)
( T

m2
+ 1

)

≤ d f (Ty−1+o(1) + z1+o(1)).

We now estimate the contribution to L f (y, T) from m > z. We note that for each
such m, we have

(13) f (t) = m2k

with some integer k such that |k| ≤ M f (T)z−2.
From (13), we derive

(14) (2at + b)2 − ∆ = m2ak,

where ∆ = b2 − 4ac 6= 0. For each integer k, we denote the number of integer

solutions (t, m) of (14) by Q f (k).
If −ak < 0, we then rewrite (14) as

(15)
(

2at + b − m
√
−ak

)(

2at + b + m
√
−ak

)

= ∆.

For every fixed k, the above equation has Q f (k) = |∆|o(1) integer solutions
(t, m) (corresponding to integer ideal divisors of ∆ in the complex quadratic order
Z[ι

√
ak]).

If −ak > 0 and a perfect square, then (15) has again at most Q f (k) = |∆|o(1)

solutions (t, m) corresponding to integral divisors of ∆.
Finally, if −ak > 0 is not a perfect square, then the equation (15) is a Pell equation.

For every fixed k, this equation has

Q f (k) ≤ |∆|o(1) log(max{T, |a|, |b|})

log |εk|
≪ |∆|o(1) log(max{T, |a|, |b|})

integer solutions (t, m) (corresponding to generators of principal ideal divisors of ∆

in the quadratic order Z[
√
−ak] multiplied by some power of the fundamental unit

εk in Q[
√
−ak] which satisfies |εk| ≥ log(1 +

√
5/2)). Expressing the coefficients a,

b and c via f (1), f (2), f (3), one concludes that

(16) max{|a|, |b|, |c|} ≪ max{| f (1)|, | f (2)|, | f (3)|} ≤ M f (T).

Therefore |∆| ≪ M f (T)2To(1). Thus the total contribution to L f (y, T) coming from
m > z is at most

(17)
∑

k≤M f (T)z−2

Q f (k) ≤ M f (T)1+o(1)To(1)z−2.
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Combining (12) and (17), we obtain

L f (y, T) ≤ d f Ty−1+o(1) + d f z1+o(1) + M f (T)1+o(1)To(1)z−2

= d f Ty−1+o(1) + M f (T)1/3+o(1)To(1)d
2/3+o(1)

f .

Let R f (y, T) be the number of pairs of integers (t1, t2) with 0 ≤ t1 < t2 < T − 1,
and such that

(18) f (t1)/m2
1 = f (t2)/m2

2

for some distinct positive integers m1, m2 ≤ y.
It is now easy to check that the arguments of [4, §5] together with (16) give the

uniform bound R f (y, T) ≤ y2M f (T)o(1). Indeed, as in [4], we let ∆ = 4ac − b2 and
note that if (t1, t2) is a solution to (18), then one can easily verify that

(m2r1 − m1r2)(m2r1 + m1r2) = ∆(m2
1 − m2

2),

where r1 = 2at1 + b, r2 = 2at2 + b. Thus, for every fixed y ≥ m1 > m2 > 0, there are
at most τ (∆(m2

1 − m2
2)) solutions, where τ (k) is the number of positive divisors of

the integer k ≥ 1. Recalling that τ (k) = ko(1) (see [6, Theorem 317]), and summing

up over all the possible choices of 0 < m2 < m1 ≤ y, we obtain the above bound on
R f (y, T).

Clearly, F f (T) = T + O(L f (y, T) + R f (y, T) + U f (y, T)). Since f (t) takes every
value at most twice and each of them is divisible by d f , it is obvious that M f (T) ≫
d f T. Therefore the terms with do(1)

f and To(1) can be replaced with M f (T)o(1). Thus,
recalling our choice of y, we finish the proof.

5 Remarks

It is easy to see that Theorem 1 is non-trivial starting from the values of δ of order
(log p)2. Using, the bound (10) in our treatment of Tp,1(δ) in the proof of Theo-

rem 1 together with (3), one can get a shorter proof of a slightly weaker version of
Theorem 1 with an extra factor of (log log p)2 on the right-hand side. Accordingly,
the non-triviality range would be slightly shorter.

On the other hand, for larger values of δ than those allowed in Theorem 1, one

can simply use the fact that ηp(δ) is monotonically increasing getting

ηp(δ) ≪ p−1/6(log p)5/3

for δ > p1/6(log p)1/3.

It is easy to see that ρ(n) 6= 0 only if p is a quadratic residue modulo ℓ for all
prime divisors ℓ|n. It appears that the results on the distribution of such primes ℓ
implied by the extended Riemann hypothesis (the unconditional results do not seem
to be enough), combined with the Brun sieve, can be used to improve our bounds.

Furthermore, using that the extended Riemann hypothesis implies the bound

L(1, χD) ≪ log log(D + 1)
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on L-functions L(s, χD), where χD is the quadratic character of conductor D ≥ 2 (see
[8, §22.6]), one can replace log p by log log p in (3). Both these improvements should

lead to the disappearance of log p from our bounds, at the cost of the appearance of
some power of log log p.

One can also consider this question “on average” over p, which should also allow
stronger bounds.

Finally, it is natural to expect that ηp(δ) → 0 as δ → ∞ as p → ∞. However,
neither the bound of Theorem 1 nor its possible improvements outlined above seem
to lead to such a statement, which we pose as an open question.
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