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Asymmetric wakes in flows past circular
cylinders confined in channels
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In this paper, we investigate the flow past a circular cylinder confined in a channel at
a blockage ratio of § = 0.7 (the ratio of the cylinder diameter and the channel height)
for Reynolds numbers between Re = 300 and 3900 using direct numerical simulation
(DNS). We show for varying Reynolds numbers a wide range of wake dynamics occur
as the spanwise domain length is changed. At a lower Reynolds number of Re = 300,
a reverse von Kidrman wake alongside either a top- or bottom-biased asymmetry was
observed at different spanwise locations. The asymmetry was structurally similar the
two-dimensional asymmetry studied by prior investigators, and was found to be a result
of the confinement effect. Further, wake-jumping between the two intermittent states was
present. For larger Reynolds numbers, Re = 1000 and 3900, these asymmetric structures
were found to become dominant. We also examine the dependence of the asymmetries
on the spanwise domain. For small spanwise domains the asymmetries were uniformly
orientated across the span. In contrast, for sufficiently large spanwise domains, the
asymmetry flips its orientation at different spanwise locations. Comparisons of flow
statistics demonstrate good agreement between the different spanwise domains, which
suggests the same mechanism maintains the asymmetry in both cases. Further analysis at
Re = 1000 found the number of times the wake flips is dependent on the initial conditions,
with a wake that flips zero (purely asymmetric), two and four times being observed. These
structures were also determined to remain stable over time scales of 1000D/U.

Key words: wakes

1. Introduction

Although problems involving symmetric geometries do exhibit symmetric properties at
lower Reynolds numbers, for sufficiently large Reynolds numbers it has been shown
that such flows can transition to an asymmetric state. These types of flow transitions
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have been observed for flows in symmetric expanding channels (Durst, Melling &
Whitelaw 1974; Cherdron, Durst & Whitelaw 1978), dual parallel jets in a channel
(Goodwin & Schowalter 1996; Soong, Tzeng & Hsieh 1998), channels with sudden
contractions (Chiang, Sau & Hwang 2011) and flows in constricted channels (Pitt,
Sherwin & Theofilis 2005). To investigate the nature of these flow transitions, studies
conducted by Fearn, Mullin & Cliffe (1990) and Shapira, Degani & Weihs (1990) for the
symmetric channel expansion, Goodwin & Schowalter (1996) for the dual parallel jets in
a channel, and Chiang et al. (2011) for the channel constriction, have shown that these
transitions to asymmetric states are the results of symmetry-breaking bifurcations in the
Navier—Stokes equations. As the Reynolds number is further increased, three-dimensional
effects become increasingly important. Chiang ez al. (2001) were able to show that for
channels with sufficiently large spanwise extents, there is a breaking of the translational
symmetry along the span, resulting in different orientations of the asymmetric flow on
each side of the domain. It was also determined this mode coexisted with a purely
asymmetric mode. With even further increases to the Reynolds number, the flow eventually
becomes turbulent, and within this regime, investigations have been conducted for
the symmetric expanding channel (Escudier, Oliveira & Poole 2002; Duwig, Salewski
& Fuchs 2008; Casarsa & Giannattasio 2008) and the flow through an obstructed
channel (El Khoury et al. 2010), which have also reported asymmetries in the mean
flow.

A similar flow configuration that has garnered interest recently is the flow past a bluff
body confined in a channel, due to its relevance in flows past heat exchangers and flows
past buildings within cities. For sufficiently small blockages, the flow has been shown to
retain its symmetry (Rehimi et al. 2008; Kanaris, Grigoriadis & Kassinos 2011). However,
as the confining walls are brought closer to the cylinder, Sahin & Owens (2004), Ooi
et al. (2020) and Aljubaili et al. (2022) found that the two-dimensional flows past circular
cylinders and flat plates, normal to the flow direction, exhibit asymmetric properties. For
both cases, linear stability analyses showed that the emergence of these asymmetric flow
regimes was the result of a pitchfork bifurcation from a symmetric state. For the case of
the circular cylinder, Ooi et al. (2020) performed additional two-dimensional simulations
for a blockage ratio of 8 = 0.7, where the blockage ratio is defined as the ratio between
the cylinder diameter to the channel height and found that the resulting asymmetric wake
remained steady up to a Reynolds number of Re = 500. Extending the analysis of a
confined circular cylinder to Reynolds numbers of Re = 3900, Ooi et al. (2022) performed
three-dimensional direct numerical simulations (DNS) for various blockage ratios up to
B = 0.7. It was found that for a blockage ratio of § = 0.7 the wake was asymmetric in the
mean sense for at least 500 dimensionless time units, with no preference for either side of
the channel.

The results of previous investigators have shown that under large enough blockage and
Reynolds numbers, the mean flow past a confined bluff body is asymmetric. However,
based on the observations of Chiang et al. (2001), it appears the asymmetries in confined
flows can flip their orientation along the span for sufficiently large spanwise domains. To
the best of the authors’ knowledge, such a flipping phenomena has not been observed
previously in the flow past a confined bluff body. In this study, our primary aim is to
investigate whether such a spanwise flipping phenomena occurs for flows past confined
circular cylinders. If such a phenomena occurs, how does it modify the flow compared with
the smaller spanwise domains considered by previous investigators. To do so, we conduct
three-dimensional simulations for a range of Reynolds numbers for spanwise domains up
to 20 times the cylinder diameter.
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Figure 1. Schematic diagram of the geometry considered, where L; is the inlet length, L, is the outlet length,
D is the cylinder diameter and H is the channel height.

2. Methodology
2.1. Problem set-up

We consider the problem of a circular cylinder with diameter D placed symmetrically in
a channel of height H as shown in figure 1. Upstream of the cylinder, it was assumed the
flow to be laminar and fully developed, with a streamwise velocity profile given by

(=U|1- Q>2 2.1)
u(y) = (H , (2.

where U is the centreline velocity at the inlet and y is the wall-normal coordinate. We
also define the blockage ratio as the ratio of the cylinder diameter and the channel g =
D/H, which we have fixed at 8 = 0.7, and the Reynolds number as Re = UD/v, v is
the kinematic viscosity of the fluid. The non-dimensionalisation arises from viewing the
problem as a confined wake flow and therefore following the scaling typical to unconfined
bluff body flows (Dong et al. 2006; Parnaudeau et al. 2008). The problem may also be
viewed as a blocked channel flow, where one would consider the channel height H as
a length scale. Ooi et al. (2022) showed that under such scaling, the channel centreline
Reynolds number Re,; = UH/(2v) is related to Re by a constant 1/(28).

2.2. Numerical method

DNS of the three-dimensional incompressible Navier—Stokes equations were carried out
using the CPU-based spectral element solver Nek5000 (Fischer, Lottes & Kerkemeier
2008) and its GPU equivalent NekRS (Fischer et al. 2022). The method involves the
discretisation of the domain into £ hexahedral macro-elements, where the solution is
expanded using a tensor product of Nth-order polynomials defined by the values at the
Gauss—Lobatto-Legendre (GLL) nodes of the same order.

To discretise our domain, we consider a variety of meshes with a similar topology to
that shown in figure 2, with descriptive statistics given in table 1. Here, E,y;, Eyy, E, and
Eeclem are the number of macro-elements along the azimuthal direction, in the xy-plane,
along the spanwise direction, and in total. As for the boundaries, a Dirichlet boundary
condition given by (2.1) was applied for the inlet, no-slip boundary conditions were
applied to the channel walls and the cylinder surface, periodicity was assumed along the
spanwise boundaries and the stabilised outlet boundary condition by Dong, Karniadakis
& Chryssostomidis (2014) was applied to the outlet.
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Figure 2. Topology of the macro-element mesh used in the S5 case.

Mesh B Re Li/D L,/D L;/D E. Eyy E, Eolem N Unique nodes
Vi 0.0 3900 10 30 T 64 7706 20 161 826 9 118.3 x 10°
S1 0.7 300 10 30 20 32 1392 40 55680 7 19.31 x 10°
S2 0.7 1000 10 30 4.5 40 3012 16 48192 7 16.66 x 10°
S3 0.7 1000 10 30 12 40 3012 45 135540 7 46.85 x 100
S4 0.7 1000 10 30 20 40 3012 72 216864 7 74.96 x 10°
S5 0.7 3900 10 30 20 40 2292 100 229200 9 168.2 x 10°

Table 1. Summary of cases considered in this study with mesh statistics.

To ensure that the meshes are accurately resolving the flow, we compute the ratio
of the length scale of each micro-element A = V,},/ 3, where V,, is the volume of the

micro-element, to the Kolmogorov length scale = (v3/¢)!/4. Here ¢ is computed based
on the instantaneous dissipation
ou; u
e=v|——), (2.2)

0x;j x;

where the primed quantities denote the fluctuating fields u; = u; — i;, with the overbar
indicating a time-averaged field. We believe this gives a more conservative result than
the mean dissipation commonly used in the literature as it is capable of capturing
highly turbulent bursts that may be smoothed out in an averaging process. Instantaneous
snapshots of the dissipation and, hence, Kolmogorov length scale were computed using the
time-averaged flow for u; and instantaneous realisations of the flow at different times for u;.
We plot in figure 3 representative slices of A /5 for the cases S1, S4 and S5. For Re = 300
(S1), we find A/n to be relatively small across the near-wake region x/D < 10. In this
case, the maximal value did not exceed 4 during the simulation. At Reynolds number,
Re = 1000 (84), the range of A/n observed fell between 0 < A/n < 7.5. These results
satisfy the criteria set forth by Moin & Mahesh (1998), which for DNS, finds grid spacing
of O(n) sufficient. Finally, for the highest-Reynolds-number case considered Re = 3900,
figure 3(c) shows that A /i is predominantly less than 7.5 for the majority of the near-wake
region, with small turbulent bursts resulting in A /5 locally increasing to approximately 17.
It is of note S5 is based on the same two-dimensional mesh as used by Ooi et al. (2022)
for the same Re, where it was found sufficient for DNS. To also ensure that the near-wall
dynamics are well resolved, it is typical in wall-bounded flows to compare the height of
the first grid point Ay; with the viscous length scale v/u;, where u, = \/t,,/p is the
friction velocity, with 7, being the shear stress at the wall, and p the fluid density (Zahtila
et al. 2023). We therefore plot in figure 4 the distribution of y* = Ayju; /v values along
the cylinder surface along with the channel walls for different Reynolds numbers. We see
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Figure 3. Contours of the ratio A/n for (a) Re = 300, (b) Re = 1000 and (c¢) Re = 3900.
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Figure 4. Distribution of y* values of the first grid point for (@) the cylinder surface and (b) the channel walls.
The blue, grey and red lines denote the y™ values for Re = 300, 1000 and 3900, respectively. In (b), dotted and
dashed lines denote the top and bottom walls, respectively.

in all cases that y* is less than unity along the cylinder surface and the channel walls,
indicating that the computational meshes are capable of resolving the boundary layers.

Nonetheless, the aim of this work being observation of large-scale features in confined
cylinder flows, we believe that although case S5 is marginally or slightly under resolved, it
does capture and highlight the presence of these large structures.

2.3. Code validation

To validate the performance of NekRS, we consider the case of uniform flow past an
unconfined circular cylinder at Reynolds number of Re = 3900, which has been studied
extensively both numerically and experimentally. A recent review is given in the work of
Jiang & Cheng (2021). To approximate such a flow configuration, we consider a mesh with
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Figure 5. Time- and spanwise-averaged profiles of the (a) streamwise and (b) crossflow velocity fluctuations
at the streamwise locations x/D = 1.06, 1.54 and 2.02 for the unconfined case at Re = 3900. ( ) Present
DNS, (e) experimental data of Parnaudeau et al. (2008), (——-) large eddy simulation data of Jiang & Cheng
(2021) (Case 6).

blockage ratio of 8 = 0.025, which amounts to the crossflow domain of y/D € [—20, 20]
as well as inlet and outlet lengths of L;/D = 10 and L,/D = 30. For this case, we
used a uniform Dirichlet inlet boundary condition of (u, v, w) = (U, 0, 0) and symmetry
boundary conditions for the domain top and bottom.

For this simulation, we solve the Navier—Stokes equations with an initial condition of
zero fluid velocity throughout the entire domain. The simulations were then run for some
period #y until the flow reached a statistically stationary state, which in this case takes
approximately #oU/D = 250. From this point, statistics were collected over an additional
500D/ U. Results of the velocity fluctuations at different streamwise locations are shown
in figure 5. We find that the data agrees well with the experimental results of Parnaudeau
et al. (2008) and the large eddy simulations of Jiang & Cheng (2021), providing confidence
the code is capable of accurately simulating bluff body flows.

3. Results
3.1. Instantaneous flow structures

To understand the spanwise effects on the flow, we first present visualisations of
the instantaneous flow for the largest domain size of L,/D = 20 using the A, vortex
identification criterion of Jeong & Hussain (1995). In this method we compute the
eigenvalues of symmetric tensor S” + 22, where S and £ are the symmetric and
antisymmetric components of the velocity gradient tensor. Isosurfaces of the second
eigenvalue A, are then plotted which may be used to identify vortical structures. For
the simulation at Re = 300, the flow was initialised with an initial condition of zero
velocity everywhere, whereas for Re = 1000 and 3900, the flow was restarted from a fully
developed flow at Re = 300. An indicative realisation of the flow was then taken after a
period of at least 100D/ U.

We begin by looking at a Reynolds number of Re = 300 in figure 6, wherein isosurfaces
are taken for Ap = —0.5. The primary observed feature evident in the cylinder wake
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Figure 6. Isosurfaces of 1 = —0.5 for Re = 300 colourised by the streamwise vorticity. Regions dominated
by packets of coherent: (i) streamwise vortices demarcated by the solid ellipse; and (ii) spanwise vortices by
the dotted ellipse.

is shedding of long spanwise vortices across the domain. We also observe that thin
streamwise vortices form at some locations along the span, and at other locations, we
primarily see the formation of spanwise rollers. To understand the behaviour along these
locations, we plot in figure 7 visualisations of the instantaneous spanwise vorticity w;
along the spanwise planes z/D =2, 4, 8 and 14.5, and in figure 8 the same contours
overlain with isosurfaces of 1, = —0.5 colourised by the spanwise vorticity. We first take
a closer look at flow along the spanwise plane z/D = 4, where streamwise vortices are
present. Figure 7(b) shows that the separated cylinder shear layers (CSLs) roll up to form
spanwise vortices. As the vortex grows, it eventually gets cut off by the formation of a
spanwise vortex from the opposing CSL, resulting in vortices being shed in an alternating
manner. Such a pattern is characteristic of von Karman shedding (see, e.g., Williamson
1996). These vortices are then convected downstream and cross the centreplane y/D = 0,
where they merge with the shed vortices from the opposing wall, giving rise to a reverse
von Kérméan wake (Zovatto & Pedrizzetti 2001). The flow structures given in figure 8(b)
also show that along with the spanwise vortices, the streamwise vortices observed
previously in figure 6 are curved towards the centre of the channel due to the reverse von
Karméan wake (Camarri & Giannetti 2010). These fine-scale streamwise vortices have a
wavelength of approximately D, which is similar to that reported by Barkley & Henderson
(1996) and Camarri & Giannetti (2010) for a mode B instability at § = 0 and g = 0.2,
respectively. However, the linear stability results of Griffith er al. (2011) and Ooi et al.
(2020) only determine the existence of a mode which shared the same symmetries as mode
A for B = 0.5. In the present case, the chaotic nature of the flow makes it unclear whether
the flow shares the same symmetries as the mode B instability in the lower blockage cases.

Looking now at the flow along the spanwise plane z/D = 2, where streamwise rib-like
vortex structures are no longer evident in figure 6, figure 7(a) shows a very different
structure at the tail of the wake. Unlike with the previous case at z/D = 4, there is a
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Figure 7. Contours of the spanwise vorticity along several spanwise planes (a) z/D =2, (b) z/D =4,
(c) z/D = 8 and (d) z/D = 14.5 for Re = 300. The orange dots indicate the locations of the probes used to
construct the spectra and spacetime diagram for this flow configuration.

distinct lack of any roll up of the CSL, resulting in a local suppression of the formation of
von Karman vortices. Although for the sake of brevity, we refer to this phenomena as wake
suppression hereinafter. In this case, the shear layers off the top and bottom of the cylinder
combine near the centreline, which we refer to herein as the tail of the wake. Downstream
of this point, we see that the separated wall shear layer (WSL) becomes unstable
via a Kelvin—-Helmholtz-type instability resulting in the spanwise vortices observed in
figure 8. Comparison of the tail of the wake with the two-dimensional simulations by
Sahin & Owens (2004) and Ooi et al. (2020) show that the attachment of the CSLs is
remarkably similar. Therefore, the local suppression of von Kdrman shedding appears to
be caused by the same confinement effect as the two-dimensional case. It is surprising
that three-dimensionality of the flow permits both effects to occur simultaneously along
different points along the span. Turning attention to additional spanwise planes z/D = 8
and 14.5 in figure 7(c,d), where von Kdrman shedding is suppressed, we find that the tail
of the wake is deflected towards the top and bottom of the channel, respectively. We refer
to this instantaneous behaviour in the wake as a bias of the flow. Qualitative comparison of
the flow with the two-dimensional case presented in Ooi et al. (2020) shows that the wake
has a similar structure. Downstream of the tail, the flow again becomes unstable forming
strong spanwise vortices which may be observed in figure 8(c,d). Figures 6 and 8(c,d) also
show that the formation of streamwise vortices between the spanwise rollers as the flow
becomes three-dimensional.

Moving up to a higher Reynolds number of Re = 1000, we plot isosurfaces of 1o = —10
colourised by the streamwise vorticity in figure 9. We find that much like the previous case,
there are strong spanwise vortices which appear to exist across the entire domain, along
with many fine-scale streamwise vortices. To further look into the flow structures, figure 10
shows slices of the spanwise vorticity along the spanwise planes z/D = 13, 15.5 and 18.
Similar to the Re = 300 case, we find in figure 10(a,c) that dependent on the spanwise
coordinate, the wake can bias itself towards either the channel top or bottom. There appears
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Figure 8. Contours of the spanwise vorticity for Re = 300 as in figure 7. Overlain are isosurfaces of 1, =
—0.5 between (a) 2 < z/D < 3,(b)4 <z/D <5,(c)8 <z/D <9and (d) 14.5 < z/D < 15.5. Isosurfaces are
colourised by the spanwise vorticity.

to be little roll up of the CSL in the wake, with the CSLs from either side of the channel
combining in a similar manner to the flow at Re = 300. Hence, it becomes apparent there
is local suppression of von Karmén shedding. The higher Reynolds number also results in
unsteadiness within the near-wake region, through formation of spanwise vortices in the
WSL. The formation of the spanwise vortices in the deflected WSL is also much stronger
than in the undeflected WSL. The different orientations of the wake imply there exists a
point in between where the wake flips, which for the given instant appears to be z/D = 15.5
as indicated by the apparent lack of bias in figure 10(). Along this plane, we see that the
CSL rolls up towards the centre of the channel unlike the biased wakes. The vortices also
appear to shed in a von Karman-like manner, with vortices cutting off the formation of
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Figure 9. Isosurfaces of 1o = —10 for Re = 1000 colourised by the streamwise vorticity.

additional vortices in the opposing CSL. Although the interactions with the WSL attenuate
the effect quite drastically. The CSL and WSL also roll up simultaneously as observed
previously by Nguyen & Lei (2021) at § = 0.6 and is caused by the coupling of the two
shear layers due to their proximity. Visualisation of the flow structures in figure 11(b)
does show that the spanwise vortex formed within the CSL has a much lower coherency
compared with that in the WSL. The effect has also previously been observed by Ooi
et al. (2022) at = 0.5 and 0.7 and is a result of the interactions with streamwise vortices
formed at the tail of the wake.

Increasing the Reynolds number to Re = 3900, we plot in figure 12 slices of the
spanwise vorticity along three different spanwise planes, z/D = 9.5, 12 and 14.5. Here
we find that the flow strongly resembles that of the Re = 1000 case, with a wake that
is biased towards either the top or bottom of the channel depending on the spanwise
location, with the wake flipping its bias at z/D = 12. Figure 13 also shows the formation
of spanwise vortices due to a Kelvin—Helmholtz-type instability in the CSL and the WSL,
which was also observed by Ooi et al. (2022) for a smaller spanwise domain of L,/D = m.
Such a phenomenon has also been observed in unconfined bluff body flows at similar
Reynolds number (Williamson 1996; Dong et al. 2006). We also find that the breakdown
of the shear layers again appears to be strongly coupled to their interaction, with the
formation of opposite signed vortices in a pairwise manner. In figure 13, compared with
the Re = 1000 case, the vortex within the CSL appears to be much more distinct, possibly
due to the earlier breakdown of the shear layers. We also see that the length of the wake
decreases from approximately 4D to 2D. Decreases in the wake length have previously
been documented for unconfined cylinder flows and is associated with the formation of
Kelvin—Helmholtz vortices in the shear layer (e.g. Unal & Rockwell 1988; Williamson
1996). A similar effect is responsible for the decrease in the wake length in this case
as well. Further, the asymmetric wake appears to be slightly shorter than that found in
Ooi et al. (2022) at approximately 2D compared with their result of 2.5D. As we move
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Figure 10. Contours of the spanwise vorticity along the spanwise planes (a) z/D = 13, (b) z/D = 15.5 and
(c) z/D = 18 for Re = 1000. The orange dots indicate the locations of the probes used to construct the spectra
and spacetime diagram for this flow configuration.
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Figure 11. Contours of the spanwise vorticity for Re = 1000 as in figure 10. Overlain are isosurfaces of A1, =
—10 between (a) 13 < z/D < 14, (b) 15.5 < z/D < 16.5 and (c) 18 < z/D < 19. Isosurfaces are colourised by
the spanwise vorticity.
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Figure 12. Contours of the spanwise vorticity along spanwise planes (a) z/D =9.5, (b) z/D =12 and
(¢) z/D = 14.5 for Re = 3900. The orange dots indicate the locations of the probes used to construct the
spectra and spacetime diagram for this flow configuration.

downstream of the tail, figure 13 also shows the Kelvin—Helmholtz vortices rapidly break
down into much finer-scale structures.

3.2. Near-wake spectra

To determine time scales of the phenomena featured in the previous section, we plot the
spectra of the streamwise velocity for Re = 300, 1000 and 3900 cases in figure 14. For
each of these cases, the probe was chosen to be at a point near the tail of the wake and
projected onto the centreline as shown by the orange dot in figures 7, 10 and 12, and are the
same as those used in the spacetime diagrams discussed in the subsequent section. This
amounted to streamwise locations of x/D = 3, 4 and 2 for the Re = 300, 1000 and 3900
cases, respectively. Although we found there was little difference in the peak locations
when moving the probe slightly upstream and downstream of the point chosen. The spectra
have also been averaged in the homogeneous direction as there was no significant spanwise
dependence in the results.

For the lowest-Reynolds-number case studied, Re = 300, there is a prominent peak at a
frequency of fD/U = 0.5, which is indicative of the von Kdrman shedding frequency fyx.
There are additional peaks at integer multiples of fyx that are associated with harmonics
of the von Karman shedding frequency. Moving up to Re = 1000, two separate peaks at
fD/U =~ 0.65 and 0.9 are present. Visualisations of the instantaneous flow in figure 10
show that one of these peaks corresponds to the formation of the spanwise vortex in
the WSL, which is then convected past the probe location. The second is related to the
von Kédrmdn-like shedding along the plane with flipping bias. Finally, in figure 14(c),
we see for the Re = 3900 case that there are two distinct peaks at fD/U ~ 1.1 and 2.3,
matching the peaks observed by Ooi et al. (2022) for a smaller spanwise domain of
L,/D = 7. The smaller peak at fs;D/U = 2.3 was found by Ooi et al. (2022) to be from
the formation of Kelvin—Helmholtz vortices in the shear layer, whereas for fD/U ~ 1.1,
due to the absence of von Kdrmdn shedding, it was found the peak corresponds to the
merging of vortices as the peak was close to the subharmonic frequency fs;,/2. Similar
findings were also made by Nguyen & Lei (2021) for a slightly lower blockage of 8 = 0.6.
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Figure 13. Contours of the spanwise vorticity for the case of Re = 3900 as in figure 12. Overlain are
isosurfaces of A, = —15 between (a) 9.5 <z/D < 10.5, (b) 12 <z/D <13 and (c¢) 14.5 <z/D < 15.5.
Isosurfaces are colourised by the spanwise vorticity.
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Figure 14. Streamwise velocity spectra for (a) Re =300 at (x/D,y/D) = (3,0), (b) Re = 1000 at
(x/D,y/D) = (4,0) and (c) Re = 3900 at (x/D, y/D) = (2, 0). The dashed line depicts the cutoff frequency
used in the filtering process.

958 A8-13


https://doi.org/10.1017/jfm.2023.79

https://doi.org/10.1017/jfm.2023.79 Published online by Cambridge University Press

W. Lu, D. Aljubaili, T. Zahtila, L. Chan and A. Ooi

As von Karman shedding is absent in this case as well, we argue that much like the smaller
domain case of Ooi et al. (2022), the lower-frequency peak is indicative of vortex merging.

3.3. Long-term behaviour

In §3.1, the basic observation was the existence of a flow with an instantaneous
bias towards one side of the channel modulated along the span, but we now focus
on the temporal effects on these flow structures. To begin with, we consider the
lowest-Reynolds-number case of Re = 300, which was shown in figures 7 and 8 to locally
exhibit a von Karmédn wake or a suppressed wake that may be biased towards one side
of the channel at different points along the span. To be able to characterise the temporal
behaviour of the wake, we consider the placement of a probe near the tail of the wake
where the two CSLs meet. To explain how the method will be used to capture the wake
behaviour, we plot in figure 15(a) a time series of the crossflow velocity at the point
(x/D,y/D, z/D) = (3,0, 10.0). The grey line here represents the raw signal, composed
of time-varying low and high fluctuation states. In the intervals of low fluctuations, we
do note that the signal does begin to deviate from v/U = 0, which does correspond to
the flow beginning to wall bias. Overlain in figure 15(a) are contours of the instantaneous
spanwise vorticity at (t — to)U/D = 200. We see that the deflection of the bottom shear
layer towards the top of the channel results in a net positive crossflow velocity at the probe
location, provided it is placed within the appropriate shear layer. We also see that the
local suppression of von Karmdn shedding, as observed by the lack of shear layer roll
up, results in minimal movement of the shear layers, hence the low fluctuations in the
crossflow velocity. Moving to the periods of high fluctuations, we plot an example of the
instantaneous spanwise vorticity at (+ — to)U/D = 700 in figure 15(a). Within this flow
regime, we see the formation of distinct von Kdrman vortices. These vortices will induce
strong alternating regions of positive and negative crossflow velocity, and when convected
downstream will result in the large-amplitude fluctuations in the crossflow velocity as they
cross the probe location. Moreover, due to the symmetry of the shedding process, the mean
velocity within this regime is relatively close to zero.

In order to further examine the flow, we therefore need to isolate the two wake regimes,
which may be done using the following decomposition. To do so, we make the following
assumption based on the observations in figure 15(a). When the wake is of von Karmén
type, the periodic shedding of alternating vortices yields a relatively short time scale
given by fyxD/U = 0.5, whereas the time scale when shedding is suppressed and the
wake is biased appears to be much longer. Therefore, this separation of the time scales
allows us to apply a filtering process to isolate the two different wake behaviours. We
therefore apply a low-pass filter with a non-dimensional cut-off frequency f.D/U, which
we choose to be 0.2. Applying this to the crossflow velocity, which we denote v, at the
point (x/D, y/D, z/D) = (3, 0, 10.0) gives the black line in figure 15(a). We see here that
the filter does not effect the signal whilst shedding is locally suppressed, as expected.
However, in the von Kiarman shedding regime, the oscillations have been significantly
damped out, with the resulting signal slightly oscillating about v/U = 0. Finally, for the
von Kdrman shedding regime, we plot the remainder of the signal, or, equivalently, that
obtained using a high-pass filter, as the dark grey line in figure 15(b). As the shedding is
characterised by large-amplitude fluctuations in the crossflow velocity, it therefore suffices
to consider only the signal’s amplitude profile. To do this, we apply a Hilbert transform
to the data v(r), denoted H(¢), which may be used to obtain the associated analytic
signal Z(t),

Z(t) = v(t) + iH (1) = va (e (3.1)
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Figure 15. Time-series of (@) the (light grey solid line) raw and (black solid line) low-pass filtered crossflow
velocity signals and (b) (solid line) high-pass filtered crossflow velocity signal and its (dashed line) envelope
for Re = 300. The probe is placed at the streamwise location x/D = 3 along the spanwise plane z/D = 10.
Overlain in (a) are contours of the spanwise vorticity at (¢ — 7o) U/D = 200 and 700 along with an orange dot
to indicate the location of the probe.

where vy4 is the instantaneous modulus and ¢ (¢) is the instantaneous phase. Then v4 can
be shown to represent the amplitude profile of the original signal, which is plotted as the
dashed line in figure 15(b) (for additional information on the Hilbert transform, we refer
the reader to Mathis, Hutchins & Marusic 2009).

Looking now at the spanwise effect on the flow, we plot contours of the low-pass
filtered signal as well as the amplitude profile in figures 16(a) and 16(b), respectively.
We observe in figure 16(a) that there exist long horizontal streaks where the filtered
crossflow signal is primarily red or blue and, hence, single signed over time scales of
100D/ U. Figure 16(b) shows these regions of single-signed filtered velocity correspond to
low fluctuations in the wake, which is the result of wake suppression due to wake bias. It
is also evident that both blue and red streaks exist at different points along the spanwise
extent of the cylinder, thus showing that the spanwise flipping observed in figures 7 and
8 persists over long time scales. At other points of the domain, where there are small
blobs of positive and negative v in figure 16(a), fluctuation amplitudes in figure 16(b)
are relatively large, which indicates vortex shedding. Multiple wake configurations occur
at different spanwise locations and times. Intermittent switching in wake behaviour has
previously been observed in the flow past side-by-side circular cylinders, where the flow
is bi-stable and the wake jumps between two asymmetric states (Afgan et al. 2011). For
the side-by-side cylinders, flipping is related to the gap vortices. Bi-stability has also been
observed in the flow past an Ahmed body (Grandemange, Gohlke & Cadot 2013a,b; He
et al. 2021), with Dalla Longa, Evstafyeva & Morgans (2019) proposing the switch is
caused by the formation of sufficiently large hairpin vortices. In the present case, the
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Figure 16. Spacetime diagram of the (a) the low-pass filtered crossflow velocity, and (b) the envelope at the
location (x/D, y/D) = (3, 0) over the time interval 0 < (t — t9) U/D < 1000 for Re = 300. The dotted lines
indicate the locations and time interval where local flow statistics are taken.

wake demonstrates multi-stable behaviour, in which the wake locally jumps between von
Kérman shedding and suppression states, which may feature bias.

Moving up to Reynolds numbers of Re = 1000 and 3900, the instantaneous
snapshots in figures 10—13 show an attenuation of von Kéarman shedding in the
higher-Reynolds-number cases. To look at the temporal behaviour of the wake, we again
plot the crossflow velocity at some point along the centreline of the channel, y/D = 0. This
point was chosen because it intersects the deflected shear layer as shown in figure 17 and
captures the vertical movement of the fluid in the deflected shear layer, located at x/D = 4
and 2 for Re = 1000 and 3900, respectively, due to wake length dependency on Re. We
also note that in figure 17 large fluctuations in the crossflow velocity for both cases, due to
formation of vortices within the shear layer. Nonetheless, the raw crossflow signals show
that generally the signal is single signed due to the deflection of the shear layer. Therefore,
to isolate this, we again apply a low-pass filter with non-dimensional cutoff frequencies of
f:D/U = 0.5 and 0.8 for Re = 1000 and 3900, respectively, based on the spectral peaks in
figure 14.

Beginning with the flow at Re = 1000, we conducted simulations with spanwise
domains of L;/D = 4.5, 12 and 20. These were restarted from a fully developed flow
at Re = 300 and allowed to run for at least 250D /U before statistics were taken. The
spacetime diagram of the filtered crossflow velocity along the centreline at the streamwise
location x/D = 4 is given in figure 18. Here we see for the smallest spanwise domain of
L;/D = 4.5 the predominant structure in figure 18(a) shows negative velocity indicating
that the wake is biased towards the bottom of the domain. Interestingly, the spacetime
diagram does not depict a consistent negative velocity throughout the spanwise direction.
Visualisations of the instantaneous flow field show the length of the wake slightly varies
along the spanwise direction. As a result, turbulent structures within the corresponding
recirculation region make up the spotty structures highlighted by the dashed rectangle in
figure 18(a). For the larger spanwise domains of L;/D = 12 and 20, figure 18(b,c) shows
the existence of alternating horizontal bands of predominantly single-signed velocity,
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Figure 17. Time series of the (light grey solid line) raw and (black solid line) low-pass filtered velocity signal
for (@) Re = 1000 at the streamwise location x/D = 4 along the spanwise plane z/D = 2.9 and (b) Re = 3900
at the streamwise location x/D = 2 along the spanwise plane z/D = 17.96. Inset are contours of the spanwise
vorticity at (a) (t — to)U/D = 100 and 600 and (b) (t — t9)U/D = 75 and 400 along with an orange dot to
indicate the location of the probe.

indicating that the wake alternates between top and bottom bias along the spanwise
direction. Figure 18 suggests the wavelength of these structures is quite long. As there
are 2 and 4 streaks for L,/D = 12 and 20, respectively, the wavelengths of these structures
appears to be O(10D). Consistent with the L;/D = 4.5 case, these flow configurations
remain stable over long time intervals of at least 1000D/U, which agrees with the results
of Ooi et al. (2022). Although, there is a tendency for these structures to translate along
the spanwise direction, consistent with Re = 300.

Next, we extend the Reynolds number up to Re = 3900. A spanwise domain length
of L;/D = 20 was again used and the simulation procedure gradually increased the Re
number from Re = 300 to 3900, before being run for an additional 100D /U. The flow was
then run for S00D/U to collect statistics, and the spacetime diagram is given in figure 19.
Figure 19 shows that, consistent with the Re = 1000 results, there exists a flipping of the
bias in the wake along the spanwise direction, with the formation of two structures with
wavelengths A/D =~ 10. The results also show that the structures exist for time scales of
at least 500D/ U, with little movement along the spanwise direction but the structure size
changes over time. Over the interval 0 < (r — t9) U/D < 200, we find little change in the
size of large scale structures, whereas for 200 < (¢ — 7o) U/D < 500, the negatively signed
structure along the top periodic boundary shrinks in size.

The results at the higher Reynolds numbers of Re = 1000 and 3900 show the locally
suppressed wake mode has become dominant. However, as observed in figure 17 along a
constant spanwise plane, the bias in the wake can flip between the channel sides, with a
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Figure 18. Spacetime diagram of the low-pass filtered crossflow velocity for (a) L,/D = 4.5, (b) L,/D = 12
and (c¢) L,/D = 20 at the location (x/D, y/D) = (4, 0) over the time interval 0 < (t — tp) U/D < 1000 for Re =
1000. The dashed rectangle is indicative of regions of variations in wake length. The dotted lines indicate the
locations and time interval where local flow statistics are taken.

/U
[ —

. T — A‘I" s = T
0 100 200 300 400 500
(t—t1,)UID

p——— A XY -‘l 0 N - e iiatend

Figure 19. Spacetime diagram of the low-pass filtered crossflow velocity at the location (x/D, y/D) = (2, 0)
over the time interval 0 < (t — #9)U/D < 500 for Re = 3900. The dotted lines indicate the locations and time
interval where local flow statistics are taken.

time scale of O(100D/U). We relate this finding to the flip-flopping wakes observed in
flow past two side-by-side circular cylinders, where the bias flips between two orientations
with a time scale orders of magnitude larger than the vortex shedding period (Afgan
et al. 2011). Here though, figures 18 and 19 show alternating horizontal regions of
opposite signed v/U, indicating the bias flips along the spanwise direction. Therefore,
the meandering of these alternating horizontal streaks in figures 18 and 19 shows that the
bias in the wake moves along the span of the cylinder over time. As such, along a constant
spanwise plane, the observed flip-flopping is a consequence of the movement of these
large-scale structures.

The results presented in this section for Re = 1000 indicate the observed long-term
structures have a strong dependence on the spanwise domain length. With a flipping
in the bias only observed for spanwise domains greater than or equal to L,/D = 12.
Hence, we investigate whether this spanwise modulation has an intrinsic length scale.
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Figure 20. Spacetime diagram of the low-pass filtered crossflow velocity at (x/D, y/D) = (4,0) for Re =
1000 over the time interval 0 < (r — #p)U/D < 1000 with L,/D = 4.5, where t( is taken at the beginning of
the simulation. Here the initial condition is taken as a rescaled solution from simulations conducted with
L./D = 12.

For these simulations, we restrict ourselves to the case of Re = 1000. Figure 18
demonstrates significant variation between domains with L,/D = 4.5 and 12, which is
the minimal spanwise domain requirement for modulating structures to first appear.
To ensure there is no dependence on the initial conditions, we perform an additional
test where an instantaneous snapshot of the modulated flow taken from the L,/D = 12
simulation domain was spatially rescaled to L./D = 4.5 and used as an initial condition.
The spacetime diagram of filtered crossflow velocity is given in figure 20, and shows the
wake reverting to a purely bottom biased flow after 50D/U. Comparison of time- and
spanwise-averaged flow statistics in Appendix A also show that there is no difference with
the case presented in figure 18(a). Hence, the minimal spanwise domain to observe the
appearance of spanwise flipping lies between L,/D = 4.5 to 12. Further refinement of
L./D is outside of the scope of the study, but may be of interest to researchers in future
work. Moreover, based on the observations in figure 19 and the results of Ooi et al. (2022),
it is conceivable that similar results hold for higher Reynolds numbers as well.

The preceding domain analysis naturally stimulates questions on the sensitivity of wake
physics to initial conditions. Aljubaili ef al. (2022) and Ooi et al. (2022) found a flipped
the numerical solution (y — —y and v — —v) remained stable, attributed to reflectional
invariance of the problem. In this study, for domain size L./D = 4.5 simulations, different
initial conditions confirmed existence of two asymmetric states. However, our primary
focus remains in persistence of the biasing phenomena for larger spanwise domains where
the wake is modulated along the span. To investigate this, we conduct simulations with
L,/D = 20 and the following initial conditions:

(1) a flow with an initial condition of zero everywhere;
(i1) an artificially constructed asymmetric solution obtained by repeating a simulation
conducted with a spanwise domain of L,/D = 2.

Figure 21 presents the spacetime diagrams of the filtered crossflow velocity for both
sets of initial conditions. Immediately, for the solution with quiescent initial conditions,
we note a single red and blue band with widths that vary between 6D and 12D,
corresponding to positive and negative crossflow velocities, respectively. The situation
is remarkably different from the case in figure 18(c), where we see two alternating bands
of approximately the same width. As for the case initialised from a purely asymmetric
solution, the spacetime diagram shows that the crossflow velocity is predominantly
negative across the entire spanwise domain, which is expected given that the artificially
generated flow had a bias towards the bottom of the channel. From figure 21, we also see
that the structures do persist over long time intervals of 1000D/U.
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Figure 21. Spacetime diagram of the low-pass filtered crossflow velocity at Re = 1000 with f.D/U = 0.5 for
(a) case (i), quiescent initialisation and (b) case (ii), artificial repetition. The probe is placed at (x/D, y/D) =
4, 0).

3.4. Global asymmetries of the wake

The previous section highlighted the existence of solutions that displayed bias across the
entire domain, along with wakes of alternating bias along the spanwise direction of the
cylinder. As these biases in the wake persist over long time scales, we adopt a definition of
asymmetry in the ‘mean’ sense. Specifically, we define a flow as:

(i) globally asymmetric if the time- and spanwise-averaged flow displays an asymmetry;
and

(i1) locally asymmetric if there exists a spanwise location where the time-averaged flow
displays an asymmetry.

Therefore, we first consider in figure 22 the time and spanwise average of the flow.
Figure 22(a) shows that for Re = 300, the time- and spanwise-averaged flow is symmetric.
The global symmetry in the flow is caused by the intermittent wake switching between a
locally suppressed state and a von Kdrman shedding state, along with the meandering of
the flow along the spanwise direction of the cylinder. As we move up to Re = 1000, we plot
in figure 22(b) the time- and spanwise-averaged flows for each of the spanwise domains
considered. We see for L,/D = 4.5 a global asymmetry towards the channel bottom, which
is a result of the uniform orientation of the bias observed in figure 18(a), whereas for
L,/D = 12 and 20, the wakes are globally symmetric. The effect is due to the flipping in
the wake bias along the span of the cylinder, which cancels out while spanwise averaging.
Such a method is therefore not sensitive enough to capture the local asymmetries in the
wake. We also remark the dependence on the initial conditions for larger spanwise domains
does enable for both globally symmetric and asymmetric flows to exist, with analysis
of the time- and spanwise-averaged flow given in Appendix A. Finally, for Re = 3900,
figure 22(c) shows the flow is globally symmetric despite changes in size of the horizontal
streaks in figure 19. Comparisons of the flow profiles for different averaging intervals in
Appendix B show that the difference between the solutions for an averaging interval of
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Figure 22. Contours of the time- and spanwise-averaged streamwise velocity for (a) Re = 300, (b) Re = 1000
for spanwise domains of (bi) L;/D = 4.5, (bii) L;/D = 12 and (biii) L;/D = 20 and (c) Re = 3900.

200D/U and 500D/U are approximately 5 %. The differences are not accounted for by
averaging interval, rather slight variations in the size of modulated structures observed
in figure 19.

3.5. Local asymmetries in the wake

In the previous section, we observed the existence of wakes which demonstrate global
asymmetries, resulting from a uniform bias in the wake. We also found wakes which
demonstrated a spanwise dependence on the bias were globally symmetric, due to the
asymmetries cancelling out in the spanwise-averaging process. We now turn our focus into
more deeply interrogating the local properties of the biases. Furthermore, for Re = 1000,
we also restrict our attention to the largest spanwise domain of L;/D = 20 initialised with
a fully developed realisation of the flow at Re = 300. For additional analysis of the effect
of the initial conditions, we refer the reader to Appendix A.

3.5.1. Fourier decomposition of the wake
To begin with, we first look at the spanwise wavelength of the structures, in which Fourier
decomposition is performed in the spanwise direction

o0

R 27in
)= Y sy, t)exp( . Z), (3.2)
'z

n=—00
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where the Fourier coefficients are given by

. 1 [L 27ing
Un (X, y, 1) = —/ u(x,y, z, 1) €xp (— ) dz, (3.3)
L; Jo L,
and the energy of each Fourier mode as
|Eal* = / i (x, y, > V. (3.4)
14

The time-averaged and instantaneous values of Ej, for L,/D = 20 are plotted in figure 23
for Re = 300, 1000 and 3900. Beginning with the case of Re = 300, we find in figure 23(a)
that the time-averaged energy is fairly evenly distributed amongst low wavenumbers
k™ = 2mn/L,, which is a result of nonlinear energy exchange shown in figure 23(b).
Such a result is expected given intermittent switching between von Karman shedding
and a suppressed wake observed in figure 16. Moving up to Re = 1000, figure 23(c,d)
shows that the time-averaged energy spectra contains a prominent peak at a wavenumber
of k¥ D ~ 0.63, along with a secondary peak at k¥ D a2 1.26 corresponding to its second
harmonic. The time-dependent behaviour also shows that the energy of these modes
remains relatively constant over 1000D/U, supporting our findings in the previous section
that these structures are stable over long time scales.

Finally, for Re = 3900, we find in figure 23(e) that the largest peak again occurs
at k@D ~ 0.63 along with its second harmonic at kYD ~ 1.26. However, unlike the
Re = 1000 case, there appears to be greater level of energy in the other modes. Looking
further into this, figure 23(f) shows that for 0 < (r — #p) U/D < 300, the energy remains
quite stable. However, for 300 < (t — t9) U/D < 500, there appears to be an exchange
of energy between the different modes, with a slight decrease in energy for k® and
k™, and an increase in the energy of k) and k. It appears that the time scale of
this exchange in energy is much larger than those captured in our simulations. Thus,
we may only hypothesise on the dynamics over much longer time intervals. Plausibly,
this phenomena is part of a long-term oscillation similar to the expanding and shrinking
wake observed in an unconfined circular cylinder (Lehmkuhl er al. 2013) and in flat
plates (Najjar & Balachandar 1998). There, the associated time scale was determined as
orders of magnitude larger than the shedding frequency. Another plausible explanation
is slow transition towards a new asymptotic state. Ooi et al. (2020) found nonlinear
saturation for the flow past a confined circular cylinder with § = 0.5 can take as long
as 1200D/U. Further investigation of energy transfer would be interesting for any future
work conducted.

3.5.2. Local flow statistics

In the previous section, we observed a peak energy mode in the spanwise energy spectra,
with a given wavelength. The presence of such a peak is indicative of the presence
of the wake-bias flipping its orientation along the span of the cylinder, supporting the
observations made in figures 16, 18 and 19. To further investigate the properties of the
locally asymmetric features, we now consider properties of the mean flow. However,
structures in the aforementioned figures meander across the spanwise extent of the
domain over time. Thus, taking the time average of the flow over the entire interval will
contaminate the flow structures of interest with remaining features of the full flow field.
As such, in this section, we differentiate between:

(i) a global average as one where the time and spanwise average is taken over
sufficiently long intervals to obtain converged statistics; and
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Figure 23. (a,c,e) Time-averaged spanwise spectra and (b,d, f) time dependence of the energy of the first four
wavenumbers for (a,b) Re = 300, (c,d) Re = 1000 and (e, f) Re = 3900. Symbols denote (4) k), (o) k@, (M)
k3, (x) k™ and (o) k=),

(i1) alocal average as one where we average the flow at a specific spanwise location over
a restricted time interval where the flow displays a specific property.

The use of a local average will therefore allow for statistics to be taken conditional
on when a bias is observed. Thus, making it possible to investigate the properties of the
different dynamics we previously observed at different spanwise locations.

Beginning with Re = 300, we plot in figure 24 the locally averaged streamwise velocity
over the interval 100 < (r — tp) U/D < 200 and along the spanwise coordinates z/D = 3, 6
and 10. We choose such an interval based on the relative stability of the horizontal streaks
in figure 16(a), highlighted by the dotted lines. Mathematically, for a specific spanwise
location, we average over instances where v/D is single signed for the biased flows, and
where v4/D > 0.4 along a plane where von Kiarman shedding exists. We first look at
the time-averaged flow at z/D = 3, where the amplitude profile is largest in figure 16(b),
the time-averaged wake is symmetric, which is expected given that the wake is of von
Karman type. At the spanwise coordinates z/D = 6 and 10 figure 24(b,c) shows that
over this time interval, the bias retains its orientation over long scales and is, hence,
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Figure 24. Contours of the locally averaged streamwise velocity u/U along the spanwise coordinates
(a) z/D =3, (b) z/D = 6 and (¢) z/D = 10 for Re = 300.
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Figure 25. Contours of the (a,c,e) streamwise and (b,d, f) crossflow velocity fluctuations along the spanwise
coordinates (a,b) z/D = 3, (¢,d) z/D = 6 and (e, f) z/D = 10 for Re = 300.

locally asymmetric. We also present in figure 25 contours of the Reynolds stresses u/u’/ U?
and v'v’/U?. The Reynolds stresses were computed using the locally averaged flow so that
the spanwise modulation was observed. Along the spanwise plane z/D = 3, figure 25(a)
shows two maxima in /s / U? within the CSLs, whereas there is only a single maximum in
figure 25(b) at the tail. The formation of von Karman vortices as the CSLs roll up results in
the strong fluctuations in both the streamwise and crossflow velocities, and the distribution
is typical of confined cylinder flows (Nguyen & Lei 2021; Ooi et al. 2022). Along the
planes z/D = 6 and 10, we find that there are minimal fluctuations in the streamwise and
crosstflow velocities as shown in figure 25(c—f), which are the result of the suppression of
shedding in the wake.
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Figure 26. Contours of (a) the locally averaged spanwise vorticity at z/D = 6 and (b) the instantaneous
spanwise vorticity for a two-dimensional flow, at a Reynolds number of Re = 300.

As suggested in § 3.1, the instantaneous wake at this Reynolds number does resemble the
corresponding two-dimensional case, accordingly the locally averaged spanwise vorticity
of the flow at z/D = 6 is plotted alongside the analogous two-dimensional flow result in
figure 26(a) and (b), respectively. Notably, at this Reynolds number, the two-dimensional
flow is steady, consistent with the findings of Ooi ef al. (2020). Comparing the two cases,
we find strong resemblance, with the top and bottom CSLs attaching at x/D = 3, before
being convected downstream. However, some differences exist for x/D > 4, due to an
instability resulting in the formation of spanwise vortices observed in figure 8(c,d), which
are not captured in the two-dimensional simulation. In the two-dimensional case, Sahin &
Owens (2004) found that increased confinement resulted in the flow undergoing a pitchfork
bifurcation to two asymmetric states. The similarity of the wakes here also suggests the
same mechanism remains responsible for the asymmetry in three-dimensional flows.

Moving up to a Reynolds number of Re = 1000, figure 18(c) shows horizontal streaks
remaining relatively stable within the interval 600 < (¢t — tp) U/D < 1000. Thus, we plot
in figure 27 the locally averaged streamwise velocity within this interval at the spanwise
locations z/D =7, 9.65 and 12.5, which are streak centre points in figure 18(c). In
figure 27(a,c), along z/D = 7 and 12.5 the wake is locally asymmetric. Of note is that
figure 27(a) is a mirror image of figure 27(c) about the centreline y/D = 0. Meanwhile
in figure 27(b), the wake is symmetric at the point z/D = 9.65, approximately halfway
between the two asymmetric wakes. Similar to Re = 300, asymmetry orientation flips
at along the spanwise domain. The gap between the planes in figure 27(a,c) gives a
wavelength of 1/D =~ 11, similar to the peak given in figure 23(c). To gain further insight
into the dynamics of the wake, we plot in figure 28 contours of the Reynolds stresses
w'u'/U? and v'v//U? along the retained spanwise planes. First looking at u'u//U?, we
find that along the spanwise planes where the flow is asymmetric, the most intense
fluctuations are within the deflected CSL and WSL, whereas in the opposing shear layer,
the fluctuations are quite minimal. A similar effect is also observed in figure 28(b,d,f)
for v/v//U?, although fluctuations are more intense in the crossflow velocity within the
deflected CSL compared with the deflected WSL. These intense fluctuations specifically in
the deflected CSL are result of the strong spanwise vortices observed in figure 9(a,c). It is
possible that the increased fluctuations of v'v’/U? along the deflected CSL are the result of
the breakdown of the corresponding spanwise vortex observed in figure 11(a,c). Looking at
the behaviour along z/D = 9.65 where the wake is locally symmetric, we find that u/u’/ U?
is largest within both the top and bottom CSLs and WSLs. Meanwhile, the distribution of
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Figure 27. Contours of the locally averaged streamwise velocity u/U along the spanwise coordinates
(a)z/D =17, (b) z/D = 9.65 and (c) z/D = 12.5 for Re = 1000.
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Figure 28. Contours of the (a,c,e) streamwise and (b,d, f) crossflow velocity fluctuations along the spanwise
coordinates (a,b) z/D =17, (¢,d) z/D = 9.65 and (e, f) z/D = 12.5 for Re = 1000.

v/v'/U? is largest along the centreline at x/D ~ 4. As mentioned in § 3.1, vortex shedding
occurs along these planes and is responsible for the distribution of Reynolds stresses. For
a blockage ratio of g = 0.6, Nguyen & Lei (2021) observed vortex shedding at a similar
Reynolds number and comparison of u'u//U? and v'v'/U? with that study shows good
qualitative agreement, supporting this conclusion.

To further investigate the asymmetry, we again plot the spanwise vorticity of the locally
averaged flow at z/D = 12.5 in figure 29(a), along with the globally averaged flow for the
smallest spanwise domain case L;/D = 4.5 in (b) and the two-dimensional flow in (c). For
the three-dimensional cases, we observe in figure 29(a,b) the attachment of the CSLs at the
tail of the wake is quite similar. However, unlike the Re = 300 case, the two-dimensional
flow differs quite significantly from the three-dimensional cases. In the two-dimensional
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Figure 29. Contours of (a) the locally averaged spanwise vorticity at z/D = 12.5 for a computational domain
of L./D = 20, (b) the globally averaged spanwise vorticity for a spanwise domain of L./D = 4.5 and (c) the
spanwise vorticity for a two-dimensional flow.

case, the wake is much shorter, with the shear layers reattaching at x/D =~ 2.5, whereas
with the three-dimensional simulations, the WSLs remain wall-attached until x/D = 3
before separating and forming a wake at x/D = 4. Increasing the spanwise domain only
lengthens the wake, but does not affect the asymmetry, which is an effect of confinement,
as with Re = 300. It is also worth mentioning that additional comparisons (not shown
here) of the Reynolds stresses with the lower spanwise domain L;/D = 4.5 showed
good qualitative agreement. Interestingly, for the largest spanwise domain L;/D = 20, we
observe in figure 29(a), the wake is slightly shorter than in the shorter spanwise domain of
L,/D = 4.5. Observations of the locally averaged streamwise velocity in figure 27 also
show there is a slight variation in the wake length over the span. Comparison of the
globally asymmetric wake at L./D = 4.5 and 20 in Appendix A shows that there is little
difference in the wake length for the two spanwise domains. Hence, the variation of the
length of the wake is purely a result of modulation.

A similar result is observed at Re = 3900 in figure 30, where the local average is
taken between 0 < (t — #p)U/D < 100 based on the identified criterion targeting flow
structures of interest. We again see spanwise dependence of the asymmetry in the wake,
with the wake being a mirror image of itself at z/D = 9.25 and 14.25. The spacing
between the two planes of 5D does imply a spanwise wavelength of 10D, consistent
with the largest peak in figure 23(e). Due to the already large differences between the
two- and three-dimensional flows at Re = 1000, we refrain from comparison with the
two-dimensional flow at Re = 3900. However, we do note the structure of the wake is
similar to Re = 1000, and comparisons with Ooi et al. (2022) show strong similarities with
the globally asymmetric wake observed when L;/D = 7. Therefore, it is likely the same
confinement effects are responsible for the asymmetries at this Reynolds number as well.
Much like the case at Re = 1000, there is again a spanwise variation in the wake length
between 2D to 2.5D, which is likely due to modulation. Contours of the Reynolds stresses
are also given in figure 31. Along the planes z/D = 9.25 and 14.25, the regions of most
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Figure 30. Contours of the locally averaged streamwise velocity #/U along the spanwise coordinates
(a) z/D =9.25,(b) z/D = 11.75 and (c) z/D = 14.25 for Re = 3900.

intense «/u//U? are within the deflected shear layers, whereas for v/v'/U?, the crossflow
fluctuations are largest in the region where the CSLs meet. Qualitatively, the locations of
the maxima are similar to those presented by Ooi et al. (2022), and is a result of the similar
dynamics observed along these planes. Meanwhile, at z/D = 11.75, we see in figure 31(c)
the strongest streamwise fluctuations are still concentrated within the shear layers, with a
similar magnitude as the asymmetric planes. In contrast, for v/v'/U? in figure 31(d) the
magnitude of the crossflow fluctuations is much smaller. This attenuation of the Reynolds
stresses is a result of rapid breakdown of the shear layers observed in figure 13(b).

The statistics presented in this section demonstrate that the horizontal streaks observed
in § 3.3, where the wake is biased over long time scales, results in a local asymmetry in the
flow, which is heavily dependent on the spanwise location. There is a strong parallel in our
observations of asymmetric wake flipping along the spanwise direction with the findings
of Chiang et al. (2001) for the suddenly expanded channel. They found the existence of a
globally asymmetric flow along with one where the orientation of the asymmetry changes
along the span, which we have also observed here for a spanwise domain of L./D = 20
and Re = 1000. We do remark that their use of no-slip side walls allows for a singular
flip to occur, whereas in our case the periodic boundary conditions along the spanwise
boundaries require a flipping flow to flip an even number of times.

The local asymmetries observed for Re = 300, 1000 and 3900 all show strong
similarities with the globally asymmetric wakes observed for smaller spanwise domains
and purely two-dimensional flows. Thus, the same mechanism that maintains global
asymmetry in those cases is responsible for maintaining local asymmetry of the flow
whilst it is modulated. In § 3.3, we found the flow is sensitive to the initial conditions.
Hence, we propose the following interpretation of the wake modulation. While the
flow is developing, the distribution of the initial perturbations/conditions along the span
causes the flow to locally choose a side of the channel to bias towards. Once the local
asymmetries develop, their orientation is then maintained by the same mechanism as
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Figure 31. Contours of the (a,c,e) streamwise and (b,d, f) crossflow velocity fluctuations along the spanwise
coordinates (a,b) z/D = 9.25, (c,d) z/D = 11.75 and (e, f) z/D = 14.25 for Re = 3900.

in the two- and three-dimensional cases where the asymmetry is global. Over time, we
saw in figures 16, 18 and 19 the modulation meanders across the spanwise domain. If we
consider the plane where the flow is locally symmetric, we note that the flow is unstable
in the two-dimensional sense. Hence, locally, the flow may bias towards one channel side
depending on the background unsteadiness. Therefore, symmetry planes move along the
spanwise direction, resulting in meandering of asymmetric structures.

4. Conclusions

In the present study, the influence of wall proximity and the spanwise domain extent
has been investigated through DNS for a range of Reynolds numbers. We have shown
for a fixed blockage ratio of 8 = 0.7, a range of wake dynamics may occur at different
points along the spanwise extent. For the lowest Reynolds number Re = 300, a reverse
von Karman wake coexists along with a suppressed wake. These wakes were observed
to be localised at different points along the span and were found to intermittently
switch between one another. Within the locally suppressed wake regime, the wake also
demonstrates an asymmetry, which may be orientated towards either side of the channel.
Analysis of these asymmetries found the structure of the wake strongly resembles the
two-dimensional case, and the same mechanism was responsible for their appearance. For
larger Reynolds numbers of Re = 1000 and 3900, we found that the asymmetric wake
becomes dominant. We observed wakes which were modulated along the span, which
results in the orientation flipping multiple times across the cylinder span. At Re = 1000,
we found that with increases in the spanwise domain up to L,;/D = 20, the wake would flip
zero, two and four times for L;/D = 4.5, 12 and 20, respectively. Additional simulations
confirmed that for L;/D = 4.5, the flow converges towards a globally asymmetric flow
that demonstrated no flipping along the spanwise direction. Therefore the critical spanwise
domain where spanwise modulation of the wake first occurs lies between 4.5D and 12D.
Moreover, we have also observed a strong dependence of the flow on the initial conditions.
For L,/D = 20, we were able to produce a wake that flips zero, two and four times
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depending on our choice of initial conditions. We have also found for both Re = 1000
and 3900, along the locally asymmetric planes of the spanwise modulated flow, the wake
is slightly shorter than the globally asymmetric wake, and is a result of the spanwise
modulation. The first- and second-order statistics are also structurally similar to the
globally asymmetric cases, indicating similar wake dynamics occur between the two cases.
The result suggests that the same mechanism responsible for maintaining the asymmetry in
the globally asymmetric flow also maintains the local asymmetry in a spanwise modulated
flow.

There are still a number of questions that have arisen from the observations presented
here. Although it is outside the scope of this study, we would still like to stimulate
discussion for future researchers investigating such flow phenomena. A natural extension
of this work may involve an investigation into the incipience of these flow structures. We
would suggest a method such as linear stability analysis or some form of model order
reduction may be useful in determining the origin of these instabilities.
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Appendix A. Dependence on the initial conditions

In § 3.3, we saw the appearance of a spanwise modulation in the wake once the spanwise
domain was increased to L,;/D = 12. For L;/D = 4.5, figure 20 showed the flow initialised
with a rescaled snapshot from L,/D = 12 reverted to a flow biased towards the bottom of
the channel. We plot the time- and spanwise-averaged streamwise and crossflow velocities
as the dotted lines in figure 32. Downstream of the cylinder for x/D > 4, we see in figure 32
profiles of /U and v/U are asymmetric with respect to the channel centreline, which does
demonstrate that the flow is globally asymmetric. Comparison with the solution restarted
from a fully developed flow at Re = 300, represented by the solid line in figure 32, shows
there are visually no differences in u/U and v/U. Hence, for sufficiently small L,/D, the
flow is globally asymmetric.

For larger spanwise domains, figure 21 shows the flow is dependent on the initial
conditions, with zero, two and four flips possible. To further investigate this, we consider
the Fourier decomposition given in (3.2). We first plot the time- and spanwise-averaged
streamwise velocities in figure 33. We see for case (i), the flow is globally symmetric as
a result of the alternating signs of the crossflow velocity and, hence, bias of the wake, in
figure 21(a), whereas case (ii) is globally asymmetric due to the presence of only a bottom
biased wake in figure 21(b). Comparison of #/U and v/U with the solutions obtained
using L,/D = 4.5 in figure 32 shows there is good agreement between the two data sets.

Looking now at the modulation of the wake, we plot the energy in figure 34(a,b). For
case (1) in §3.3, the most dominant peak occurs for kUD ~ 0.314 or, equivalently, a
wavelength of A/D = 20. Figure 34(b) also shows the energy at this wavenumber is quite
stable over 1000D/U. For larger wavenumbers k», k®), and k¥, we find in figure 34(b)
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Figure 32. Convergence of the time- and spanwise-averaged (a) streamwise velocity u/U and (b) crossflow
velocity v/U for Re = 1000. Symbols represent simulations run with ( ) L,/D = 4.5 restarted from
a simulation at Re =300, (------ ) L;/D = 4.5 restarted with a rescaled solution from L,/D = 12, and
(o) L;/D = 20 restarted using case (ii) from § 3.3.
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Figure 33. Contours of the time- and spanwise-averaged streamwise velocity for (a) case (i) and (b) case (ii).

there is nonlinear exchange of energy between these modes, resulting in the variations
in the widths of the top and bottom biased regions in figure 21(a). As for case (ii),
figure 34(c,d) shows that the energy is quite evenly distributed for wavenumbers up to
7. Although there is a slight peak for kXD & 0.94 and kXD ~ 1.26. The appearance
of these peaks are likely caused by the patches observed in figure 21(b), which like the
L./D = 4.5 case are a result of slight variation of the instantaneous wake across the span.
It is possible to see time intervals where there are three and four streaks separated by the
patches.

Appendix B. Convergence of time- and spanwise-averaged statistics

To ensure that the statistical samples have sufficiently converged, we look at the effects of
using different averaging intervals on the time- and spanwise-averaged flow profiles at a
number of streamwise locations. Beginning with the lowest Reynolds number of Re = 300,
we consider averaging intervals of 0 < (r — 1p)U/D < 100, 0 < (¢t — to)U/D < 500 and
0 < (t—1)U/D < 1000 in figure 35 of the streamwise velocity in (a) and the crossflow
velocity in (b). Visually, it appears that the results virtually lie on top of each other for
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Figure 34. (a,c) Time-averaged spanwise spectra and (b,d) time dependence of the energy of the first four
wavenumbers for (a,b) case (i) and (b) case (ii) from § 3.3. Symbols denote (A) kD () k@, (m) kP, (x) k¥
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Figure 35. Convergence of the time- and spanwise-averaged (a) streamwise velocity u/U, and (b) crossflow
velocity v/U for Re = 300. Symbols represent statistics averaged over (A) 0 < (t — 19)U/D < 100, (o) 0 <
(t —19)U/D < 500 and (——) 0 < (t — 19)U/D < 1000.

all averaging intervals chosen. Hence an averaging interval of 100D /U does appear to be
sufficient to obtain converged statistics.

For a Reynolds number of Re = 1000, we plot in figure 36, the convergence of u/U
and v/U for averaging intervals of 0 < (t — 19)U/D < 100, 0 < (¢t — to)U/D < 500 and
0 < (t — tp)U/D < 1000. The simulation chosen in this case is that at L,/D = 20 restarted
from an Re = 300 flow. We also remark that similar observations were made for the other
spanwise domains and initial conditions and, hence, are not given here for brevity. We see
in figure 36(a) that there is little difference in the streamwise velocity for the three cases.
However, for the crossflow velocity, figure 36(b) shows that the crossflow velocity obtained
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Figure 36. Convergence of the time- and spanwise-averaged (a) streamwise velocity u/U and (b) crossflow
velocity v/U for Re = 1000. Symbols represent statistics averaged over (A) 0 < (r—1o)U/D < 100,
()0 < (t—19)U/D <500 and (——) 0 < (t — 19)U/D < 1000.
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Figure 37. Convergence of the time- and spanwise-averaged (a) streamwise velocity u/U and (b) crossflow
velocity v/U for Re =3900. Symbols represent statistics averaged over (A) 0 < (t —to)U/D < 100,
()0 < (t—1))U/D <250 and (——) 0 < (t — to)U/D < 500.

over 0 < (¢t — t9)U/D < 100 differs quite significantly for x/D > 4, whereas the other two
averaging intervals are very similar. Thus, an averaging interval of 500D /U appears to be
sufficient.

Finally, for the largest-Reynolds-number case considered Re = 3900, we plot in
figure 37 intervals of 0 < (r —#)U/D <100, 0 < (t —t)U/D <250 and 0 < (t —
to)U/D < 500. Figure 37(a) shows that the streamwise velocity has sufficiently converged
for all averaging intervals, with a difference in the peak values of less than 1%.
Visualisations of the crossflow velocity in figure 37(b) also show that there is good
agreement between the three averaging intervals, with virtually no difference in the results
when averaged over 0 < (t — 7o) U/D < 100 and 0 < (¢t — 19)U/D < 250. However, there
do appear to be some discrepancies at x/D = 2 between these cases and the case where
we averaged over 0 < (r — 19)U/D < 500. This difference is due to the variation in the
modulating wavelength observed in figure 23(f), although the time scale of the effect is
much greater than the formation of shear layer vortices that it has little influence on the
results over 500D/ U.
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