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Analytical expressions for the velocity field and the effective slip length of pressure-driven
Stokes flow through slippery pipes and annuli with rotationally symmetrical longitudinal
slits are derived. Specifically, the developed models incorporate a finite local slip length
and constant shear stress along the slits, and thus go beyond the assumption of perfect slip
employed commonly for superhydrophobic surfaces. Thereby, they provide the possibility
to assess the influence of both the viscosity of the air or other fluid that is modelled to
fill the slits as well as the influence of the micro-geometry of these slits. First, expressions
for tubes and annular pipes with superhydrophobic or slippery walls are provided. Second,
these solutions are combined to a tube-within-a circular-pipe scenario, where one fluid
domain provides a slip to the other. This scenario is interesting as an application to achieve
stable fluid–fluid interfaces. With respect to modelling, it illustrates the specification of
the local slip length depending on a linked flow field. The comparison of the analytically
calculated solutions with numerical simulations shows excellent agreement. The results
of this paper thus represent an important instrument for the design and optimization of
slippage along surfaces in circular geometries.

Key words: low-Reynolds-number flows, micro-/nano-fluid dynamics

1. Introduction

Flows over microstructured or nanostructured surfaces are of great technical importance.
For example, grooves, posts or holes are incorporated into no-slip walls whose structures
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contain a secondary immiscible fluid, as in the case of superhydrophobic surfaces
(Shirtcliffe et al. 2010), where air is trapped between the primary water flow and the
wall structuring. This wetting scenario is called the Cassie state, where the primary fluid
wets only the upper surface of the structure, forming a heterogeneous solid–liquid and
solid–gas interface (Cassie & Baxter 1944). Such configurations lead to a lower surface
wettability and thus to self-cleaning and water-repellent behaviour as for the lotus leaf
(Koch, Bhushan & Barthlott 2009). Furthermore, the relative surface fraction of the
no-slip wall is reduced, and the primary fluid can slide over air cushions on the surface,
reducing drag significantly (Vinogradova 1999; Ou, Perot & Rothstein 2004; Belyaev &
Vinogradova 2010; Rothstein 2010; Karatay et al. 2013). This is of great importance since
hydrodynamic drag is related directly to the energy required to transport a fluid through
a domain bounded by walls, implying a potential high economic incentive. The reduction
in drag is caused by the ability of the primary flow to exhibit a finite velocity on the
fluid–fluid interface in comparison to a solid wall. This induces an internal movement and
potentially results in circulation of the fluid trapped within the microtexture. Depending
on the internal resistance of the fluid to displacement, the primary flow experiences drag
(McHale, Flynn & Newton 2011). Air is therefore a suitable secondary fluid due to its
low viscosity. However, a key factor is the ability of the interface to shift according to
the experienced shear stress. This mobility can be limited by deposited surfactants and
impurities (Schäffel et al. 2016). The interface then becomes rigid, and circulation within
the textures is no longer possible (McHale et al. 2011). Additionally, air dissipation from
the microstructures can occur (Nizkaya, Asmolov & Vinogradova 2014). The interface
then migrates into the microstructure (sagging) and drives the remaining air out, i.e. the
primary fluid has conquered and filled all microstructures. The result for both cases is the
Wenzel state (Wenzel 1936). The slipping effect is then reduced significantly. Surfaces
impregnated with a lubricant instead of air (liquid-infused surfaces) have proven to be
a useful tool to prevent such Cassie–Wenzel transitions (Wong et al. 2011) while still
allowing slippage (Asmolov, Nizkaya & Vinogradova 2018), and are therefore receiving
increasing attention (Hardt & McHale 2022). Liquid-infused surfaces promote anti-icing
(Latthe et al. 2019) and anti-biofouling (Epstein et al. 2012) effects, which are major
challenges in various industries such as transportation, agriculture and energy (Cao et al.
2009; Ras & Marmur 2016; Agbe, Sarkar & Chen 2020).

To maximize the area fraction of the secondary fluid and to account for possible interface
collapse, numerous microstructures are incorporated onto the surface. Since these are
much smaller than the general geometry, complete numerical resolution of the full domain
is not feasible. One way to solve this problem is to average the cumulative effect of all
microstructures across the patterned wall and implement it into the numerical model using
the Navier-slip boundary condition

w = λeff
∂w
∂n

. (1.1)

The effective slip length λeff can be understood as a virtual depth below the surface
where the velocity is extrapolated to zero (see figure 1) and connects the velocity w
with its normal derivative on the slip wall. Thus it is an important input quantity for
numerical studies of microstructured surfaces, and can be extracted from analytical
models. Superhydrophobic structures of particular importance for application are parallel
longitudinal stripes on pipe surfaces (see figure 3 below). An important result on
this subject is given by Philip (1972a), who derived an analytical solution for the
pressure-driven flow field of a pipe containing N rotationally symmetric no-shear wall
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Figure 1. Schematic illustration of the slip boundary condition.

sections on an otherwise no-slip wall. Lauga & Stone (2003) took up that formula and
derived the effective slip length for such a configuration using (Philip 1972b)

λ̃eff = λeff

R0
= 2

N
ln
(

sec
(

θ

2

))
, (1.2)

with the pipe radius R0, number of no-shear slits N, and the angle θ as a measure for
the no-shear fraction with θ/π being the proportion of the total wall surface occupied
by no-shear slits. Crowdy (2021) derives, among other things, analytical solutions for the
effective slip length of pressure-driven annular flows containing longitudinal stripes on the
inner or outer wall. In the case of stripes on the inner wall, it is given by

λ̃eff = R̃1 ln(R̃1) − 2R̃1
S

I−1
, (1.3)

with λ̃eff , R̃1 in (1.3) being normalized with respect to the outer radius of the annulus.
Here, R̃1 denotes the dimensionless inner radius of the annulus. The outer wall is set to be
the unit disk. Also, S is a scaling constant, and I−1 is the coefficient in a Laurent expansion
performed by Crowdy (2021), both dependent solely on geometric parameters. For further
details, see § 2.2.3. However, both approaches assume perfect local slip along certain
boundary parts, i.e. the primary flow experiences no shear stress there. At this point, it
seems appropriate to explain the difference between molecular (or intrinsic) and apparent
slip (Lauga, Brenner & Stone 2005). The former describes slippage at a molecular level,
where liquid molecules actually slide along a solid wall, with the slip length amounting
to a few nanometres. The latter is caused, as mentioned above, by the presence of an
enclosed secondary fluid, which leads to a slip length of the order of magnitude of the
surface structures. Here, the scale of the microstructures is assumed to be significantly
larger than any molecular slippage (Schönecker, Baier & Hardt 2014). For this reason, the
effects of the molecular slip are neglected in the following considerations.

A perfect slippage, of course, cannot be achieved in reality, but represents an ideal limit
where the enclosed fluid is decoupled from the bulk flow. The local slip length is infinite.
Thus in such models, it does not matter whether the microstructures are impregnated by
air, oil or water – the effect remains unchanged. In addition to the viscous interaction of
both fluids, the influence of the microstructure geometry is also not considered, although
it plays a crucial role (see Schönecker & Hardt 2013, 2015). In other words, the drag
reduction and the effective slip length are influenced strongly by the assumptions made
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for the flow of the secondary fluid, restricted by the microstructure design. For example,
with open longitudinal grooves, recirculation of the enclosed fluid does not necessarily
occur. In closed microstructures, however, this is inevitable due to mass conservation.
Furthermore, both fluids can be driven by their own pressure gradient, which, depending
on the configuration, increases significantly the effective sliding length (Busse et al. 2013).
Such a case is discussed in § 3. Therefore, it is of utmost importance to develop models
that take these multiple influencing factors duly into account.

This work derives analytical equations for pressure-driven pipe flow through tubes and
annuli that have rotationally symmetric slits on their walls. Such circular geometries are
ubiquitous in practical applications, hence a possible control of drag reduction is highly
attractive. Overall, new models for three types of geometries are derived. In the first two,
pipe (§ 2.1) and annular pipe (§ 2.2) flows, the influence of the enclosed fluid on the bulk
flow is modelled classically though a slip boundary condition that is applied locally at the
fluid–fluid interfaces. As a novelty, the slip length at the fluid–fluid interfaces is allowed
to be finite. Thereby, these solutions provide the platform to incorporate effects of the
viscosity of the lubricating fluid as well as of the geometry of the microstructures. The
third geometry considered is a pipe within an annular tube (§ 3). This geometry represents
a fundamental implementation of how superhydrophobic or liquid-infused pipes can be
realized in practice. By combining the previous two models, a full description of the
flow is obtained. This means that model parameters like a slip length on the fluid–fluid
boundaries are no longer required. The effect of the viscosity of the secondary fluid and the
geometry of its boundaries on the flow of the primary fluid are incorporated directly. With
respect to the mathematical methodology, a superposition approach is employed, which is
both convenient and leads to a distribution of the local slip length that is more physical
than classic assumptions of a constant local slip length, especially for high-viscosity
lubricating fluids. For that, available pre-existing no-shear velocity fields, which describe
the absence of shear stress at the boundary slit parts, are superposed with suitable solutions
of the Poisson equation exhibiting a constant shear stress along the same boundaries. The
resulting superposed velocity fields then feature constant non-zero shear stresses along
these very interfaces. Finally, the results of this work are discussed, analysed and illustrated
in § 4.

2. Mathematical description of the flow field and effective slip length

A pressure-driven Stokes flow (0, 0, w(x, y)) of a fluid of viscosity μ along the Z axis of an
arbitrary Cartesian domain (x, y, Z) having a cross-section in the (x, y) plane is governed
by the Poisson equation

∇2w(x, y) = − s
μ

, (2.1)

where −s is the negative pressure gradient along the Z axis, and ∇ is the nabla operator in

∇2 = ∂2

∂x2 + ∂2

∂y2 . (2.2)

It is assumed that the Reynolds number is sufficiently small to neglect inertial forces acting
on the fluid. Velocities are non-dimensionalized with respect to sL2/μ, with L being a
characteristic length of the respective flow regime. Furthermore, the finite slip boundaries
follow the shape given by the pipe geometry. That is, the surface tension is large enough
to prevent further curvature of the interface.
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Figure 2. Liquid-infused pipes with mixed boundary conditions, no-shear (or finite constant shear) slits shown
as red bold line segments along the otherwise no-slip boundaries. (a) Pipe flow with N = 2. (b) Annular pipe
flow with N = 2 slits on the inner wall.

Due to the linearity of the Poisson equation, the resulting velocity field is also
linear under consideration of appropriate boundary conditions. Thus flow fields can be
superposed, and the result is also a linear solution of the governing partial differential
equation. Consider

μ∇2w1 + μ∇2w2 = ∇p1 + ∇p2, (2.3)

with additivity f (x1) + f (x2) = f (x1 + x2) yielding

μ∇2(w1 + w2) = ∇( p1 + p2), (2.4)

with the superposed velocity field w = w1 + w2 and pressure gradient p = p1 + p2. With
this method, previous no-shear solutions will be extended in such a way that they possess
a finite local slip length instead of an infinite one along their interface.

2.1. Liquid-infused pipe with patterned wall
A flow in a circular tube with N longitudinal rotationally symmetric slits on the outer wall
is considered first, as illustrated in figure 2(a), where N ≥ 1 is an integer.

2.1.1. Velocity field – no-shear solution
A very important theoretical reference for modelling superhydrophobic or slippery
surfaces is Philip (1972a). He offers analytical solutions to a variety of mixed value
boundary problems that are composed of a mixture of no-shear and no-slip boundaries.
One of these solutions describes the aforementioned circular tube with longitudinal
no-shear slits on the outer wall, which will be referred to as Philip pipe flow hereafter.
The velocity field for an arbitrary dimensionless pipe radius 0 < |z̃| ≤ R̃ can be written as
(Lauga & Stone 2003)

wpc(z̃) = sR2
0

μ

(
1
4

(R̃2 − |z̃|2) + 1
N

R̃2 τ(z̃)
)

, (2.5)

where R0 is the dimensionally dependent pipe radius, R̃ = R/R0 is the normalized outer
pipe radius, and z̃ = z/R0 = x̃ + iỹ is the dimensionless complex coordinate. The index pc
indicates the circular Philip solution. It consists of a rotationally axisymmetric Poiseuille
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flow superposed on an asymmetric second part with τ(z̃) governing the no-shear slit
influence on the flow, given by

τ(z̃) = Im

⎡⎢⎢⎣cos−1

⎛⎜⎜⎝cos(κ(z̃))

cos
(

θ

2

)
⎞⎟⎟⎠− κ(z̃)

⎤⎥⎥⎦ (2.6)

and

κ(z̃) = − i
2

ln
(

ζ

R̃N

)
= − i

2
ln
(

z̃N

R̃N

)
= − iN

2
ln
(

z̃

R̃

)
. (2.7)

Here, ζ = z̃N is the transformed coordinate as a result of the conformal mapping
performed by Philip, and Im denotes the imaginary part of an expression. As in § 1,
θ = Nφ is a measure for the no-shear fraction, with φ being the slit half-angle.

2.1.2. Velocity field – finite shear solution
The Philip pipe flow solution has perfect slip along the fluid–fluid interfaces, resulting in
an infinite local slip length. As mentioned, this assumption corresponds to an ideal state of
fluid–fluid interaction, non-existent in reality (Bolognesi, Cottin-Bizonne & Pirat 2014).
To close this gap, one needs to find a solution with finite slip along the slit parts of the
boundary. Such a flow field can be described by a superposition ansatz (Schönecker et al.
2014)

w(z̃) = A1w1(z̃) + A2w2(z̃), (2.8)

with w1(z̃) being the aforementioned Philip pipe flow solution wpc(z̃). The underlying
assumption of this model, as mentioned before, is that the shear stress across the fluid–fluid
interface is constant. To account for that, w2(z̃) is chosen to be Poiseuille flow

w2(z̃) = 1
4

s2R2
0

μ
(R̃2 − |z̃|2). (2.9)

The superposition ansatz thus gives

w(z̃) = A1
1
4

s1R2
0

μ

(
(R̃2 − |z̃|2) + R̃2

N
τ(z̃)

)
+ A2

1
4

s2R2
0

μ
(R̃2 − |z̃|2), (2.10)

with constants A1 and A2 to be determined. Note that w1 and w2 are driven by (different)
pressure gradients s1 and s2, respectively. Under the condition that the combined flow is
driven by a combined pressure gradient

s = A1s1 + A2s2, (2.11)

and that the Navier-slip condition applies in the centre of the slit at �̃� = R̃ + i0,

w(�̃�) = λ ∂w(�̃�)
−∂n

, (2.12)

the constants A1 and A2 are readily determined. The resulting superposed velocity field
solution is

w(z̃) = sR2
0

μ

(
1
4

(R̃2 − |z̃|2) + α
R̃2

N
τ(z̃)

)
, (2.13)
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normalized as

w̃(z̃) = w(z̃)

(
sR2

0
μ

)−1

= 1
4

(R̃2 − |z̃|2) + α
R̃2

N
τ(z̃), (2.14)

with

α = λ̃N

λ̃N + 2R̃ τ(�̃�)
, (2.15)

where λ̃ = λ/R0 is the dimensionless local slip length at the slit centre, and

τ(R̃ + i0) = τ(�̃�) = cosh−1
(

sec
(

θ

2

))
. (2.16)

By comparing the superposed flow field with Philip pipe flow, we find that the solutions
differ only by the coefficient α in the second term. As λ̃→ ∞, α converges to 1, and
w(z̃) → wpc(z̃), yielding the no-shear solution, as it should. Therefore, α can be interpreted
as an imperfection coefficient adjusting the slit influence on the velocity field depending
on a potentially finite local slip length.

2.1.3. Effective slip length
With the flow field dependence on a local slip length at hand, it is now possible to calculate
the effective slip length. It represents the averaged influence of the slip boundary parts
on the velocity field, and involves equating the total volume flux V̇ caused by a given
pressure gradient to that of a suitable comparison flow (0, 0, w∗(x, y)) with the same
pressure gradient, containing a no-slip wall at |z| = R. The effective slip length is the value
of λeff , for which V̇∗ = V̇(λeff ). In our case, however, it is not necessary to calculate the
volume flow. Instead, we consider a pressure-driven pipe flow with some constant effective
slip length λeff at the outer wall. This will provide a simple formula that can be used to
calculate the effective slip length. First, a general axisymmetrical pipe flow solution is
given by

w∗ = − s
4μ

|z|2 + c1 ln(|z|) + c2, (2.17)

subject to

∂w∗(|z| = 0)

∂|z| = 0, w∗(|z| = R) = λeff
∂w∗(|z| = R)

−∂|z| , (2.18a,b)

which yields

w∗ = 1
4

s
μ

(R2 − |z|2) + 1
2

s
μ

Rλeff , (2.19)

which corresponds to a pipe flow with constant slip λeff at the outer wall. This can be
interpreted as the effective slip length. From (2.19), an expression for λeff at |z| = R is
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determined easily to be

λeff = μ

s
2
R

w∗(R). (2.20)

As mentioned above, all groove influence is abstracted to an average effect on the given
wall. So all that is left to do is to average (2.13) along the boundary

w∗(R) = 1
2π

∫ 2π

0
w(R) dϕ = α

s
μ

R2

N
1

2π

∫ 2π

0
τ(z̃) dϕ, (2.21)

where ϕ is the coordinate angle. Solving the above integral involves using the integral
relation derived by Philip (1972b), stating that the averaged slip influence is given by

1
2π

∫ 2π

0
τ(z̃) dϕ = τ̄ (z̃) = ln

(
sec

(
θ

2

))
. (2.22)

The resulting normalized effective slip length λ̃eff = λeff /R is

λ̃eff = α
2
N

ln
(

sec
(

θ

2

))
. (2.23)

Equation (2.23) again transitions into the Philip solution if the local slip length diverges.
However, there is a more straightforward way to calculate the effective slip length.
Equation (2.20) shows that the Poiseuille part is not contributing to the effective slip
length, since it is zero at |z| = R, while the second part is non-zero on the boundary and
contributes with the factor α. The normalized slip length can therefore be determined
directly by

λ̃eff = αλ̃eff ,P, (2.24)

with λ̃eff ,P being the effective slip length of the Philip (1972a) no-shear solution.

2.1.4. Volume flow
Another useful result is the total volume flux generated by the superposed flow of (2.13).
For this purpose, we consider the volume flow to be given by

V̇ = 2π

∫ R

0
w(x, y) r dr = 2

sπ
μ

∫ R

0

(
1
4

(R2 − |z|2) + α
R2

N
τ̄ (z̃)

)
r dr, (2.25)

where we again use the integral identity of Philip (1972b). The associated total volume
flux is therefore

V̇ = sπ
μ

(
1
8

R4 + α
R4

N
ln
(

sec
(

θ

2

)))
. (2.26)

As in (2.13), with λ̃→ ∞ the volume flux transitions into the Philip solution (Philip
1972b), representing the ideal no-shear limit. With the comparison volume flux of a
Poiseuille flow with no-slip at the outer wall being

V̇ns = 1
8

sπ
μ

R4, (2.27)

the effective slip length can be calculated alternatively with

λeff = R
4

(
V̇

V̇ns
− 1

)
, (2.28)

which also results in (2.23).
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2.2. Annular liquid-infused pipe with patterned inner wall
A second flow regime of great interest is an annular slippery pipe with N rotationally
symmetric slits on the inner boundary wall, as illustrated in figure 2(b).

2.2.1. Velocity field – no-shear solution
Crowdy (2021) provides an analytical flow field solution for annular superhydrophobic
pipes of radius R̃1 ≤ |z̃| ≤ R̃2, with R̃2 = 1, and N ≥ 1 no-shear boundary slits on the
inner wall. The velocity field is given as

wca(z̃) = sR2
0

μ

(
1
4

(1 − |z̃|2) + 1
2

Re(H(ζ ))

)
, (2.29)

where the subscript ca indicates the Crowdy annular flow field (Crowdy 2021). Like
(2.5), this solution consists of a rotationally symmetric Poiseuille flow and a superposed
asymmetric second term with the real part of an analytic function H(ζ ). This function
represents the slit influence on the flow field and is

H(ζ ) = 1
N

∫ ζ

−1

⎡⎢⎢⎢⎣R̃2
1 − M

⎛⎜⎜⎝P
(

ζ ′

q
, q
)

P
(

ζ ′

q
, q
)

P
(

ζ ′

a
, q
)

P
(

ζ ′

ā
, q
)
⎞⎟⎟⎠

1/2⎤⎥⎥⎥⎦ dζ ′

ζ ′ , (2.30)

where a = R̃N
1 eiθ , and q = R̃N

1 . The angle θ = φN is defined in the same way as for
the Philip pipe solution. The variable ζ = zN is, as before, the transformed complex
coordinate. Also, M is a scaling factor determined by imposing wca(x, y) = 0 on the
no-slip portions of the inner wall:

M =
1 − R̃2

1
4

+ 1
2

R̃2
1 ln(R̃1)

S
, (2.31)

with

S = 1
2N

∫ −q

−1

⎛⎜⎜⎝P
(

ζ

q
, q
)

P
(

ζ

q
, q
)

P
(

ζ

a
, q
)

P
(

ζ

ā
, q
)
⎞⎟⎟⎠

1/2

dζ

ζ
. (2.32)

Here, P(ζ, q) is called the prime function for the concentric annulus and is defined as a
convergent infinite product for any ζ /= 0:

P(ζ, q) = (1 − ζ )

∞∏
n=1

(1 − q2n ζ )(1 − q2n/ζ ), 0 ≤ q < 1. (2.33)

For further information on prime functions, see Crowdy (2020).
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2.2.2. Velocity field – finite shear solution
As for Philip pipe flow, we seek a solution that does not necessarily impose an infinite local
slip length on the slit portions of the boundary, but rather has a potentially finite local slip
length. As before, constant shear stress along the fluid–fluid interface is assumed. We again
choose a superposition approach

w(z̃) = B1 w1(z̃) + B2 w2(z̃), (2.34)

with w1(z̃) being the no-shear solution for the annulus provided by Crowdy (2021), and
w2(z̃) chosen to be the Poiseuille solution for an annular domain, with w2(z̃) = 0 at |z̃| =
R̃1 and |z̃| = 1, resulting in

w2(z̃) = 1
4

s2R2
0

μ

(
(1 − |z̃|2) − (1 − R̃2

1)
ln(|z̃|)
ln(R̃1)

)
. (2.35)

The superposition ansatz thus gives

w(z̃) = B1
s1R2

0
μ

(
1
4

(1 − |z̃|2) + 1
2

Re(H(ζ ))

)
+ B2

1
4

s2R2
0

μ

(
(1 − |z̃|2) − (1 − R̃2

1)
ln(|z̃|)
ln(R̃1)

)
, (2.36)

with constants B1 and B2 again to be determined. Here, w1 and w2, as before, are driven
by the pressure gradients s1 and s2, respectively. Under the condition that the combined
flow is driven by a combined pressure gradient

s = B1s1 + B2s2, (2.37)

and with the Navier-slip condition imposed at the centre of the slit �̃� = R̃1 + i0

w(�̃�) = λ ∂w(�̃�)
∂n

, (2.38)

the constants B1 and B2 are determined, yielding the corresponding superposed flow field

w(z̃) = 1
4

sR2
0

μ

(
(1 − |z̃|2) + 2β1 Re(H(ζ )) − β2(1 − R̃2

1)
ln(|z̃|)
ln(R̃1)

)
, (2.39)

with

β1 =
λ̃

(
R̃2

1 + 2R̃2
1 ln

(
1

R̃1

)
− 1

)
R̃2

1λ̃− λ̃+ R̃1 ln
(

1

R̃1

)
(R̃2

1 − 2 Re(H(q)) + 2λ̃R̃1 − 1)

(2.40)

and

β2 = (1 − β1) =
R̃1 ln

(
1

R̃1

)
(R̃2

1 − 2 Re(H(q)) − 1)

R̃2
1λ̃− λ̃+ R̃1 ln

(
1

R̃1

)
(R̃2

1 − 2 Re(H(q)) + 2λ̃R̃1 − 1)

, (2.41)

where λ̃ = λ/R0 is the normalized local slip length, and H(q) is the value of the analytic
function H(ζ ) evaluated at the centre of the slit boundary portion, at coordinate �̃�,
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Pressure-driven Stokes flow along slippery tubes and annuli

corresponding to ζ(�̃�) = q. Analysing the behaviour of (2.39) depending on coefficients
β1 and β2 shows that for λ̃→ ∞, β1 → 1 and β2 → 0, delivering the no-shear solution
of (2.29). Therefore both coefficients can be referred to as weighting coefficients, steering
the influence of the no-shear (2.29) and no-slip solution (2.35) on the superposed flow
field. The normalized velocity field is calculated easily to be

w̃(z̃) = 1
4

(
(1 − |z̃|2) + 2β1 Re(H(ζ )) − β2(1 − R̃2

1)
ln(|z̃|)
ln(R̃1)

)
. (2.42)

2.2.3. Effective slip length
As with the pipe flow in § 2.1.3, a suitable comparison flow is needed to determine
the effective slip length for the superposed annular flow above. For that, the general
axisymmetrical solution of (2.17) is solved again, with velocity normalized with respect
to sR2

0/μ, and length scales with R0. This solution is subject to no-slip on the wall at
|z̃| = R̃2 = 1 and a Navier-slip boundary condition at |z̃| = R̃1, so

w̃∗(|z̃| = R̃2) = 0, w̃∗(|z̃| = R̃1) = λ̃ ∂w̃∗(|z̃| = R̃1)

∂|z̃| . (2.43a,b)

Implementing both boundary conditions yields an annular axisymmetric solution with a
constant slip length at |z̃| = R̃1, which can be interpreted as an effective slip along that
boundary λ̃ ≡ λ̃eff . The solution for the flow field is found to be

w̃∗ = 1 − |z̃|2
4

− R̃1 ln(|z̃|) R̃2
1 − 2R̃1λ̃eff − 1

4(λ̃eff − R̃1 ln(R̃1))
. (2.44)

Evaluating this solution at the inner slip wall |z̃| = R̃1 gives

w̃∗(|z̃| = R̃1) = 1 − R̃2
1

4
− R̃1 ln(R̃1)

R̃2
1 − 2R̃1λ̃eff − 1

4(λ̃eff − R̃1 ln(R̃1))
. (2.45)

A rearrangement provides a formula for the effective slip length on the inner wall of the
annulus R̃1 ≤ |z̃| ≤ 1 as a function of the normalized velocity w̃∗ on that very wall:

λ̃eff = − 4R̃1 ln(R̃1)w̃∗

1 − R̃2
1 − 4w̃∗ + 2R̃2

1 ln(R̃1)
. (2.46)

As mentioned earlier, the effective slip length abstracts the cumulative groove influence
on the flow field as an average effect along the respective wall. Equation (2.42), however,
is based on mixed boundary conditions along the groove containing wall. It is easy to
see that the velocity is not constant, since it is zero at the no-slip portions, and non-zero
along the slits. Therefore, it is necessary to average the velocity along |z̃| = R̃1, and
thus indirectly the groove effect. A closer look at (2.29) and (2.42) reveals that the only
rotationally asymmetric terms are those containing the real part of the analytic function
H(ζ ). The no-shear and finite shear solutions are thus related closely with respect to their
asymmetric behaviour. Therefore, it makes sense to first consider the effective slip length
of the former. The finite slip solution can then be considered as a simple extension of it.
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Reconstructing the effective slip length of the no-shear solution derived by Crowdy (2021),
we must first identify the average of Re(H(ζ )) at |z̃| = R̃1 along the inner wall:

Re(H(ζ ))avg = 1
2π

∫ 2π

0
Re(H(ζ )) dϕ. (2.47)

Although not given explicitly in Crowdy (2021), it is readily determined to be

Re(H(ζ ))avg = R̃2
1 ln(R̃1) − MI−1 ln(R̃1), (2.48)

with the aforementioned scaling factor M from (2.31), and

I−1 = 1
2πi

∮
C

⎛⎜⎜⎝P
(

ζ

q
, q
)

P
(

ζ

q
, q
)

P
(

ζ

a
, q
)

P
(

ζ

ā
, q
)
⎞⎟⎟⎠

1/2

dζ

ζ
, (2.49)

where C is any closed circle inside the annulus q < |ζ | < 1 enclosing the origin (Crowdy
2021). Accordingly, the averaged velocity for the no-shear solution along the inner wall is
given by

w̃∗
ca(|z̃| = R̃1) = 1

4(1 − R̃2
1) + 1

2 (R̃2
1 ln(R̃1) − MI−1 ln(R̃1)), (2.50)

and the associated normalized effective slip length for the no-shear case is

λ̃eff ,ca = λeff ,ca

R0
= R̃1 ln(R̃1) − 2R̃1

S
I−1

, (2.51)

with S from (2.32), as is given in Crowdy (2021). Determining the effective slip for the
superposed annular flow is performed similarly. Equation (2.42) shows that the annular
flow multiplied by β2 (third term in brackets) does not contribute to λeff , since it is zero at
the inner wall. Therefore,

w̃∗ = β1w̃∗
ca = β1

1
4 (1 − R̃2

1) + β1
1
2(R̃2

1 ln(R̃1) − MI−1 ln(R̃1)) (2.52)

at |z̃| = R̃1. From that, with (2.46), the effective slip length for the finite shear case is
calculated easily to be

λ̃eff = λeff

R0
= R̃1 ln(R̃1) β1

I−1 ln(R̃1) − 2S

I−1 ln(R̃1) β1 − 2S(β1 − 1)
. (2.53)

For β1 → 1, representing an infinite local slip length on the slit boundary parts, (2.53)
converges to the effective slip length of the no-shear solution in (2.51), as expected.

3. Coupled flow – pipe within a pipe

Section 2 provides, among other things, analytical mathematical expressions for the
pressure-driven flow field of a circular pipe flow (§ 2.1) and an annular pipe flow (§ 2.2),
both containing a periodic array of longitudinal slits along one boundary. Both solutions
presented stand for themselves. However, they assume not perfect slip, but rather a constant
finite shear stress along these grooves, contrary to most of the literature (Lauga & Stone
2003; Sbragaglia & Prosperetti 2007; Crowdy 2016, 2021; Lee, Choi & Kim 2016; Yariv
& Schnitzer 2018; Schnitzer & Yariv 2019). This is represented by a finite local slip
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Pressure-driven Stokes flow along slippery tubes and annuli

R2

R1

b

a

Figure 3. Fluid domain connection: pipe flow (domain a) and annular flow (domain b) are connected via two
rotationally symmetric shear slits on the inner wall, illustrated as bold red arcs.

length at the fluid–fluid interface, which is to be determined depending on the respective
application. In the case of liquid-infused surfaces, this could be longitudinal grooves or
other roughness features along the surface filled with a second immiscible fluid, usually
air or oil. However, the practical application of such surfaces is challenging, as the trapped
fluid can be pushed out of the microstructure. The interfacial collapse then leads to a
Cassie–Wenzel transition. This ruins the desired effects of these surfaces, such as drag
reduction. One way to prevent this is to use bottomless surfaces, where the downward walls
inside the microstructures have been removed. This provides the operator with a greater
degree of control. External pressure control, for example, can prevent the interface from
collapsing. A possible configuration of such a surface is a pipe within a pipe, as illustrated
in figure 3. Such a domain is composed of a pipe flow a and an annular flow b, which
are connected along certain boundary areas, illustrated as red circular arcs in figure 3.
This makes it possible, for example, to increase the interfacial stability by controlling both
flow fields accordingly. Obviously, the pipe within a pipe geometry is composed of the
solutions for the pipe flow and the annular flow derived in § 2, both of which have a local
slip length as an unknown to be determined. These local slip lengths can be calculated
readily as parameters depending on the corresponding linked flow field, so λa = f (wb)

and vice versa. To emphasize that λa,b follows from the connection of the two flow fields,
it will be referred to here as Λa,b.

Accordingly, a pipe within a pipe is considered, connected through a periodic array of
rotationally symmetric longitudinal slits on the outer wall of the inner circle. The no-slip
wall portions of this boundary are assumed to be infinitely thin. Both domains are assumed
to be pressure-driven and open downstream; accordingly, recirculation of the fluids is
not considered. The outer radius of the governing equation of the inner pipe flow (2.13)
is scaled to be of radius R̃1, which corresponds to the inner radius of the annular flow
solution. It is given by

wa(z̃) = saR2
0

μa

(
1
4

(R̃2
1 − |z̃|2) + α(Λ̃a)

R̃2
1

N
τ(z̃)

)
, (3.1)

with sa, μa being the negative pressure gradient and viscosity within fluid domain a.
The imperfection coefficient α is now defined in dependence on the normalized local
connection slip length Λ̃a = Λa/R0 for the inner pipe. Here, R0 is set to be the dimensional
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radius of the outer pipe. The outer pipe flow is governed by the annular pipe flow solution
of (2.39):

wb(z̃) = 1
4

sbR2
0

μb

(
(1 − |z̃|2) + 2β1(Λ̃b) Re(H(ζ )) − β2(Λ̃b) (1 − R̃2

1)
ln(|z̃|)
ln(R̃1)

)
, (3.2)

with sb, μb of domain b, and β1, β2 depending on the normalized local connection slip
length Λ̃b = Λb/R0 for the outer pipe flow. A coupling of both flows has two unknowns,
Λ̃a(wb) and Λ̃b(wa). Consequently, two connection conditions are needed. Specifically,
both the velocity and shear stress at a single point on the interface must be equal, so

wa(�̃�) = wb(�̃�), μa
∂wa(�̃�)
−∂n

= −μb
∂wb(�̃�)

∂n
, (3.3a,b)

evaluated in the centre of the groove at �̃� = R̃1 + i0. Solving the system of equations
(3.3a,b) yields expressions for the local slip lengths

Λ̃a(wb) = μaΩa, Λ̃b(wa) = μbΩb, (3.4a,b)

where Ωa, Ωb are the connection coefficients of fluid domains a and b, respectively. They
are given by

Ωa = −
2R̃1 cosh−1

(
sec

(
θ

2

))
(R̃2

1 − 2 Re(H(q)) − 1)

(
(R̃2

1 − 1)sb + 2R̃2
1 ln

(
1

R̃1

)
(sb − sa)

)
(

R̃2
1 + 2R̃2

1 ln
(

1

R̃1

)
− 1

)(
Nsbμa(R̃2

1 − 2 Re(H(q)) − 1) + 4R̃2
1saμb cosh−1

(
sec

(
θ

2

))) ,

(3.5)

and Ωa = −Ωb. Both coefficients are dependent only on already known quantities and can
be evaluated easily. The local connection slip lengths are in proportion to the viscosities
of both fluid domains.

Although unequal pressure gradients sa, sb are not excluded explicitly in (3.5), the
original assumption to neglect additional flow-induced interface curvature is no longer
valid if sa 
 sb or sa � sb. However, these equations can be used to consider cases where
the local pressure difference s = |sa − sb| at the fluid–fluid interface is less than the
Laplace pressure. In the special case sa = sb, the connection coefficients can be simplified
to

Ωa,s = −
2R̃1 cosh−1

(
sec

(
θ

2

))
(R̃2

1 − 2 Re(H(q)) − 1)(R̃2
1 − 1)(

R̃2
1 + 2R̃2

1 ln
(

1

R̃1

)
− 1

)(
Nμa(R̃2

1 − 2 Re(H(q)) − 1) + 4R̃2
1μb cosh−1

(
sec

(
θ

2

))) ,

(3.6)

where, again, Ωa,s = −Ωb,s. The subscript s indicates the same pressure gradient in both
flow domains. With both connection coefficients at hand, the normalized local connection
slip length for both flow domains can be determined easily, using (3.3a,b). An interesting
special case occurs when the same fluid flows in the inner and outer pipes, again with
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Figure 4. Progression of imperfection and weighting coefficients with increasing local slip length λ̃ for
θ = π/2, R1 = 0.5 and N = 2: (a) imperfectioncoefficient α; (b) weighting coefficients β1 and β2.

sa = sb. The coefficients simplify further and yield

Λ̃a,s,μ = −
2R̃1 cosh−1

(
sec

(
θ

2

))
(R̃2

1 − 2 Re(H(q)) − 1)(R̃2
1 − 1)(

R̃2
1 + 2R̃2

1 ln
(

1

R̃1

)
− 1

)(
N(R̃2

1 − 2 Re(H(q)) − 1) + 4R̃2
1 cosh−1

(
sec

(
θ

2

))) ,

(3.7)
with Λ̃a,s,μ = −Λ̃b,s,μ. Index μ means that μa = μb.

4. Results and discussion

Sections 2 and 3 provide mathematical expressions for the flow field and the effective
slip length for pipe and annular flow along rotationally symmetric longitudinal grooves, as
well as their connection at the slit boundary parts, to model a pipe-within-pipe geometry.
A flow through the aforementioned geometries is thus described fully as a function of the
pipe radii, number of grooves and a maximum local (connection) slip length at the slit
centre �̃�.

4.1. Imperfection and weighting coefficients
Contrary to most of the literature, the solutions derived in this work have not necessarily
an infinite local slip length at the slit boundary parts, but a potentially finite one. For θ =
π/2, radius R1 = 0.5 and two slits, figure 4 illustrates the progression of the imperfection
coefficient α of the superposed pipe flow (2.13) and the weighting coefficients β1, β2 of
the superposed annular flow (2.39) with increasing local slip length. We consider only
λ̃ ≥ 0. The dashed horizontal red line indicates the coefficient limit value 1.

With no local slip length at the boundary, α → 0, accordingly the second part of
the superposed pipe flow determining the groove influence vanishes, leaving behind a
Poiseuille flow with no slip at |z| = R. In contrast, the flow field at infinite slip length
corresponds to the no-shear solution of Philip (1972a), since α → 1. For the superposed
annular flow, β1 and β2 weight the influence of the no-shear solution provided by Crowdy
(2021) and the superposed annular Poiseuille flow, respectively. For λ̃ = 0, β1 converges
to 0 and β2 converges to 1, accordingly (2.39) transitions into the annular Poiseuille flow
with no-slip at |z| = R1 and |z| = R2. However, at infinite local slip lengths, we obtain
the no-shear solution of Crowdy (2021), since β1 → 1 and β2 → 0, representing the
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ideal limit of a non-viscous interface interaction. As mentioned, the quantity of the local
maximum slip length λ̃ is to be determined with respect to the system under consideration.
The flow field of the pipe or annulus can therefore be calculated by specifying the local
maximum slip length imposed by a microstructure, which is dependent on the properties
of the enclosed fluid and the groove/structure geometry (Ybert et al. 2007; Schönecker
et al. 2014).

4.2. Flow fields for the pipe and annular flow
For the pipe flow solution, examples of velocity contour lines are illustrated in figure 5.
Figures 5(a,c,e) show contour plots of the axial velocity, assuming N = 1, 2, 4 no-shear
slits along the pipe wall (red), at |z| = R. Figures 5(b,d, f ) correspond to the same pipe
geometries, but with finite local slip lengths along the grooves. It is easy to see that a finite
slip length reduces the overall velocity of the flow compared to the no-shear solution,
as expected. For λ̃→ ∞, figures 5(b,d, f ) transition into figures 5(a,c,e), consequently
corresponding to the ideal limit of non-viscous fluid–fluid interface interaction. Figure 6
shows contour plots of normalized pressure driven annular flow solutions, containing
N = 2, 3, 6 slits (red) at |z| = R1, and no-slip walls (blue) along the remaining boundaries.
Whereas figures 6(a,c,e) assume no-shear grooves according to Crowdy’s solution,
figures 6(b,d, f ) feature finite slip lengths.

4.3. Connected flow field
Now we will consider cases where the inner pipe flow is connected to the outer annular
flow field, and vice versa. Figure 7 illustrates such a case for two slits, inner radius
R1 = 0.5 and θ = π/2. In the present example, it is assumed that μa = μb and sa = sb,
which would correspond to the case of both pipe flows containing the same fluid and
being driven by an equal pressure gradient. The analytically calculated coupled flow field
is shown in figure 7(a). To verify the derived analytical solutions, numerical calculations
have been performed with the commercial finite-element solver COMSOL Multiphysics®.
For that, the two-dimensional Poisson equation has been solved for the inner and outer
flow domains, as illustrated in figure 7(b). The fluid domains are connected at the
red boundary parts. It should be noted that the mathematical connection of the flow
fields in the numerical calculation is done along the complete fluid–fluid interface. In
contrast, the analytical solution is coupled at only one point, the centre of the groove at
coordinate �̃�. The inner and outer no-slip walls (blue) impose w̃ = 0 and are assumed to
be infinitely thin, as is the assumption for the connected analytical flow field solution.
The triangular mesh was refined strongly along the interface to resolve adequately
the connection conditions, resulting in 374 752 mesh elements. Figure 7(b) shows the
numerically calculated velocity contour plot. The comparison in figure 7 shows clearly
the excellent agreement of both flow fields.

To investigate the agreement in more detail, a comparison of analytically and
numerically calculated shear stresses, velocities and the corresponding local connection
slip length distributions along the fluid–fluid interface is given in figure 8. All analytical
solutions are based on the combined annular flow field of (3.2). Figures 8(a,c,e) examine
a pipe-within-pipe flow regime for N = 2, R1 = 0.4, θ = π/2, and figures 8(b,d, f )
for N = 2, R1 = 0.7, θ = π/3, assuming μa = μb and sa = sb in both cases. The
underlying assumption of the derived analytical models is that the shear stress across the
fluid–fluid interface is approximated to be constant. Such a condition has already been
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Figure 5. Variation of velocity contour lines through a pipe along rotationally symmetric slits (red) and no-slip
boundaries (blue). Comparing no-shear (normalized (2.5)) with finite-shear (from (2.14)) solution. (a) No-shear
slit: N = 1, R = 0.5, θ = π/4. (b) Finite shear slit: as (a), with λ̃ = 0.2. (c) No-shear slits: N = 2, R = 0.5,
θ = π/2. (d) Finite shear slits: as (c), with λ̃ = 0.2. (e) No-shear slits: N = 4, R = 0.3, θ = π/2. ( f ) Finite
shear slits: as (e), with λ̃ = 0.2.

used to describe finite-shear models, such as in Schönecker & Hardt (2013). Numerical
simulations also show that the shear stress is indeed almost constant along the fluid–fluid
interface (Higdon 1985; Schönecker et al. 2014), with merely small deviations at
the corners. However, it should be mentioned that this assumption does not abolish the

978 A20-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1011


S. Zimmermann and C. Schönecker

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.05

0.07

0.06

0.04

0.03

0.02

0.01

0

0.05

0.07

0.06

0.04

0.03

0.02

0.01

0

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.07

0.06

0.04

0.03

0.02

0.01

0

0.05

0.07

0.06

0.04

0.03

0.02

0.01

0

0.05

w̃ca w̃

w̃ca w̃

w̃ca w̃

(a) (b)

(c) (d )

(e) ( f )

Figure 6. Variation of velocity contour lines through an annular pipe along rotationally symmetric slits (red)
and no-slip boundaries (blue). Comparing no-shear (normalized (2.29)) with finite-shear (from (2.42)) solution.
(a) No-shear slits: N = 2, R = 0.5, θ = π/2. (b) Finite shear slits: as (a), with λ̃ = 0.2. (c) No-shear slits: N =
3, R = 0.3, θ = π/3. (d) Finite shear slits: as (c), with λ̃ = 0.1. (e) No-shear slits: N = 4, R = 0.7, θ = π/2.
( f ) Finite shear slits: as (e), with λ̃ = 0.1.

singularities of the shear stress occurring in the transition to the solid wall, which are
well captured by our model. Furthermore, the approach is closer to reality compared to
the assumption of constant slip length along the interface, as the latter leads inevitably to
slip length discontinuities at the groove corners. The numerical results from figures 8(a)
and 8(b) show that the shear stress along the interface is not constant. The results differ
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Figure 7. Illustration of the normalized velocity contour lines with N = 2, R = 0.4 and θ = π/2, assuming
μa = μb and sa = sb: (a) analytically calculated flow field from (3.1) and (3.2); (b) contour-lines calculated
numerically are shown for comparison.

most at the corners of the grooves, as discussed above. Nevertheless, the comparison for
both cases considered shows that the plots match remarkably well. This is especially
remarkable since the largest deviations are to be expected along the interface anyway,
which underlines further the quality of the assumption made. Analysing the averaged
shear stress along the interfaces reveals further the cumulative error as being rather
small, since τ̃ = |τ̃ num. − τ̃ ana.| = 0.0377 − 0.0365 = 0.0012 for figures 8(a,c,e), and
τ̃ = −0.159 − (−0.165) = 0.006 for figures 8(b,d, f ), with

τ̃ = 1
2φ

∫ φ

−φ

τ̃ dφ, (4.1)

where φ still is the slit half-angle. The difference can therefore be considered negligible,
thus supporting our original assumption of constant shear.

The agreement between the numerical and analytical results for the normalized velocity
along the interface is excellent, as can be seen in figures 8(c,d) for both geometries.
Examining the plots for the local connection slip length distribution in figures 8(e, f ), it is
seen readily that the curves agree well. The discrepancy of the local connection slip length
averaged over the interface

Λ̃ = 1
2φ

∫ φ

−φ

Λ̃ dφ (4.2)

is Λ̃ = |Λ̃num. − Λ̃ana.| = 1.7710 − 1.820 = 0.049 for figures 8(a,c,e), and Λ̃ =
−0.350 − (−0.349) = 0.001 for figures 8(b,d, f ). The small observable deviations can be
explained by the aforementioned assumption of constant shear stresses at the interface.
However, considering the derived flow field solutions being the result of a superposition
approach, the agreement is remarkable.

The previous consideration has been limited to the case μa = μb and sa = sb. The
interaction of air and water is shown in figure 9, but still with the same pressure
gradient. Contour plots of the normalized axial velocities are illustrated, with both
flow fields in a row being connected to each other. Each velocity is normalized
with the corresponding viscosity of the associated domain, so w̃a = wa(μa/sR2

0) and
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Figure 8. Comparison of results calculated analytically and numerically along the fluid–fluid interface at z̃ =
R1 exp(iϕ), with ϕ ∈ [−φ, φ]. The analytical solution is based on the combined annular flow field of (3.2):
(a,c,e) N = 2, R1 = 0.4 and θ = π/2; (b,d, f ) N = 2, R1 = 0.7 and θ = π/3. We assume μa = μb and sa = sb
for both cases. (a,b) Normalized shear stresses; (c,d) normalized velocities; and (e, f ) corresponding local
connection slip length distributions.

w̃b = wb(μb/sR2
0). Figures 9(a,b) show an air flow (μ = 1.8 × 10−5 Pa s) in the annular

pipe connected to a pipe water flow (μ = 10−3 Pa s), with N = 4, R1 = 0.5 and θ = π/4.
Although both flows have the same pressure gradient, it can be observed clearly that the
air is accelerated comparatively strongly by the connection of the domains, resulting in

978 A20-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1011


Pressure-driven Stokes flow along slippery tubes and annuli

0

0.01

0.02

0.03

0.04

0.06

0.05

0.07

0

0.005

0.010

0.015

0.020

0.025

0.030

0.03

0.0009

0.03

0.002
0.061

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0

0.05

0.10

0.15

0.006

0.054

0.07
0.065

0.062

0.044

0.15

0.12

0.1

0.001

w̃b w̃a

w̃b w̃a

(a) (b)

(c) (d )

Figure 9. Illustration of normalized flow field contour lines of a pipe flow (domain a) connected to an annular
flow (domain b) with w̃a = wa(μa/sR2

0) and w̃b = wb(μb/sR2
0) for water (μ = 10−3 Pa s) and air (μ = 1.8 ×

10−5 Pa s). (a) Air flow through an annular pipe for N = 4, R1 = 0.5 and θ = π/4. (b) Water flow through a
pipe connected to (a). (c) Water flow through an annular pipe for N = 8, R1 = 0.8 and θ = π/2. (d) Air flow
through a pipe connected to (c).

an almost rotationally symmetrical velocity field in the annulus. While not immediately
apparent, the velocities at the centre of each groove are equal, which can be verified easily
by dividing by the viscosity. Figures 9(c,d) show the corresponding reverse case, with
N = 8, R1 = 0.8 and θ = π/2. Again, the air now in the inner tube is disproportionately
accelerated compared to the water in the annulus. Now, in figure 10, the interaction of
water with oil (μ = 5 × 10−3 Pa s) is illustrated, each with the same pressure gradient.
The associated contour plots of the normalized velocities are illustrated, with both domains
being connected at the centre of the red boundary parts 𝔷. Again, each velocity is
normalized with the corresponding viscosity in its domain and both flow fields in a row
being connected to each other. It should be noted that for better visibility, figures 10(b)
and 10(d) are shown enlarged. Figures 10(a,b) consider a water flow in the outer pipe,
oil correspondingly in the inner, with N = 3, R1 = 0.4 and θ = π/3. Figures 10(c,d) are
unchanged geometrically, but the fluids are reversed.
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Figure 10. Illustration of normalized flow field contour lines of a pipe flow (domain a) connected to an annular
flow (domain b) with w̃a = wa(μa/sR2

0) and w̃b = wb(μb/sR2
0) for water (μ = 10−3 Pa s) and oil (μ = 5 ×

10−3 Pa s). Note that for better visibility, (b,d) are shown enlarged. (a) Oil flow through an annular pipe for
N = 3, R1 = 0.4 and θ = π/3. (b) Water flow through a pipe connected to (a). (c) Water flow through an
annular pipe for N = 3, R1 = 0.4 and θ = π/2. (b) Oil flow through a pipe connected to (a).

4.4. Local slip length for the connected case

The local slip length λ̃ at the slit centre represents a certain, yet unknown, groove
influence on the bulk pipe or annular flow and is to be determined accordingly. As
discussed earlier, this depends on the fluid properties of the enclosed fluid as well as
the microstructure geometry. Conventionally, confined grooves without their own pressure
gradient are considered. This means that the bulk flow is not accelerated additionally by
the groove, but merely slowed down less by the enclosed fluid that is passively dragged
along compared to a solid no-slip wall. The considered velocity profile of the primary
fluid then has a strictly positive normal derivative (normal vector points into the fluid zone
by definition), as illustrated in figure 1. Assuming a velocity in the positive coordinate
direction, the Navier-slip boundary condition dictates the local slip length to be defined as
positive.
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Figure 11. Change in the normalized axial velocity w̃ as z̃ traverses along the real axis from the centre of the
pipe (region a) at z̃ = 0 + i0 to the outer no-slip wall in the annular domain (region b) at z̃ = 1 + i0. The red
dashed line marks the transition between the two regions. The intersection of the curves marks the velocity in
the centre of the interface z̃ = �̃�, assuming μa = μb and sa = sb: (a) N = 2, R1 = 0.4 and θ = π/2; (b) N = 2,
R1 = 0.7 and θ = π/3.

The linked pipe-within-pipe scenario is more general than this classical consideration.
In the following, by linking the derived pipe flow and annular flow solution of § 2,
mathematical expressions for Λ̃a(wb) and Λ̃b(wa) are obtained. The local connection
slip lengths result intrinsically as a function of both individually pressure-driven linked
flow fields. Both flow regimes can thus experience a sliding effect as well as an added
acceleration effect at the fluid–fluid interface due to an additional pressure gradient in
the other fluid zone. From the perspective of one fluid regime, it is now possible that
a higher axial velocity exists beyond the interface. This is obviously not possible with
purely shear-driven grooves. Following the previous notation, region a denotes the inner
pipe flow, and region b the outer annular flow. Figure 11 shows two examples for the
velocity in the Z̃-direction as one walks along the real axis, starting from the centre of the
inner tube to the outer no-slip wall of the annulus. The red dashed line marks the transition
between the two regions, i.e. the interface. When examining the velocity normal gradient
at the interface, there are two cases to distinguish. Considering the condition (3.3b), either

∂wa(�̃�)
−∂n

= −∂wb(�̃�)
∂n

or
∂wa(�̃�)
−∂n

= ∂wb(�̃�)
∂n

. (4.3a,b)

The first case follows from the fact that the velocity gradient of the inner pipe flow is
defined in the negative radial coordinate direction, contrary to the annular flow part. This
means that the normal derivative must always have different signs in the two fluid zones.
This becomes evident when looking at e.g. figure 11(a). The local derivative of the axial
velocity profile at the interface of the inner flow is negative as the profile decreases, since
the derivative is defined in the negative x-direction (∂w̃/−∂x). In contrast, the derivative
is positive for the outer flow, since the velocity still increases until reaching a maximum at
x̃ ≈ 0.5. The exact opposite signs arise when considering the case of figure 11(b).

On the other hand, (4.3b) occurs only when both velocity gradients are equal at the
interface, meaning that both must be zero, and it therefore must be an inflection point of the
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axial velocity gradient function. Hence the shear stress at the interface is also zero. Locally,
this corresponds to the no-shear solution derived by Philip (1972a) and Crowdy (2021).
Such a case corresponds to a special case that can be brought about by the appropriate
choice of geometry, fluid properties and/or pressure gradients.

It should be noted that potentially, the derived formulas of § 3 can result in negative local
connection slip lengths. This is somewhat unintuitive at first. To clarify, let us consider the
Navier-slip condition at the slit centre of the case illustrated in figure 11(a). As established,
the velocity profile of the inner pipe flow has a local negative normal derivative at the
interface, and the outer annular flow has a positive one. At the interface, the following
must apply:

Λ̃a
∂wa(�̃�)
−∂n︸ ︷︷ ︸
<0

= Λ̃b
∂wb(�̃�)

∂n︸ ︷︷ ︸
>0

. (4.4)

Since wa(�̃�) = wb(�̃�) must be true at the interface, the local connection slip lengths
must correspond accordingly, indicating Λ̃a < 0 and Λ̃b > 0, if w(𝔷) > 0. In the present
example, Λ̃a < 0 thus ensures that the direction of the axial velocity of the internal pipe
flow at the interface is in the positive Z̃-direction. Additionally, negative connection slip
lengths can lead to α(Λ̃) > 1. This follows from the simple observation that a flow is
driven by the pressure gradient of the linked flow in addition to its own pressure gradient,
surpassing the effect of a no-shear boundary. One example would be pipe flow illustrated
in figure 10(d), with α(Λ̃) = 2.34496.

The weighting coefficients of the connected annular flow, on the other hand, can
additionally be negative. However, this does not result in reverse flow, but may even exceed
the case of no-shear slits, which will be shown in the following example. We consider
R1 = 0.4, θ = π/3 and N = 3. The inner pipe has water (μa = 0.001 Pa s) and the
annular pipe oil (μb = 0.005 Pa s) flowing through them, further assuming s1 = s2. The
weighting coefficients of the annular flow field result to β1 = 1.30142 and β1 = −0.30142,
accordingly. The associated flow field is shown in figure 10(a). By comparing the velocity
in the centre of the slits, it can be shown that the present shear example has overall higher
velocities than the comparison no-shear solution, since w̃(�̃�) = 0.065 and w̃ca(�̃�) = 0.049.

5. Conclusions

This paper is concerned with modelling pressure-driven pipe flows along longitudinal slits
or ridges filled with a second immiscible fluid. In addition to the classical pipe geometry,
flow through an annulus containing grooves on its inner wall is also considered. Such flows
have numerous applications, including water flowing over superhydrophobic surfaces or
along porous media. Surfaces of this type can lead to a significant reduction of flow
resistance and are therefore of great importance for the design of energy-efficient technical
surfaces. The basis for the corresponding design process is the knowledge of the prevailing
flow conditions in the immediate vicinity of the aforementioned microstructures and their
consequential influence on the bulk flow. Analytical solutions can decipher this complex
dynamics and are therefore of fundamental importance.

With a superposition technique, analytical approximations for the velocity field of
longitudinal flow over rotationally symmetric microstructures in pipes (see (2.14)) and
annuli (see (2.42)) were developed. The novelty of these solutions is their dependence
on a finite local slip length evaluated at the centre of the fluid–fluid interface. This
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contrasts with previous solutions by Philip (1972a) and Crowdy (2021). Typical solutions
to these mixed value boundary problems assume perfect interfacial slip, corresponding to
an infinite local slip length. This assumption represents an ideal limit of such interface
interactions. The extension of these existing approaches performed in this paper now
allows to factor in the actual influence of individual microstructures. It is not restricted
whether the surface texture is closed or open (i.e. recirculation or not), whether it is a
groove or another type of roughness feature. However, the prerequisite is the possibility of
abstracting the influence by a local slip length at the slit centre.

Therefore, viscous interaction along the fluid–fluid interface and flow properties of the
enclosed fluid, as well as the groove geometry, are now taken into account. With the
analytical solutions now available, the flow field within a pipe or an annulus can be
calculated fully as a function of rotationally symmetric longitudinal textures. The only
prerequisite is knowledge of the local slip length at the centre of the interface, which
remains to be determined on a case-specific basis. The equations are valid for single- and
multi-phase flow. From these solutions, analytical expressions for the effective slip lengths
are determined, which are an important building block in the numerical investigation of
superhydrophobic walls.

The solutions derived in § 2 are important fundamental equations for the calculation
of slippery pipes. However, a combination of those results leads to an interesting
extension, a pipe-within-pipe geometry (discussed in § 3). For that, the pipe and annulus
solutions are re-scaled and connected along their interfaces (see figure 3). This yields two
interconnected flow regimes whose physical interfacial communication is modelled using
local slip lengths as connection coefficients. Such a pipe-within-pipe promises greater
operational control over the slippery effects, as unwanted interface protrusion and potential
collapse can be prevented by appropriate external pressure control. The solutions derived
in § 3 are determined fully, i.e. no longer dependent on still unknown local slip lengths.
In fact, these are specified in the connection of both flow regions in dependence of the
respective other flow. The resulting flow field equation is then only a function of fluid
properties and geometry parameters, and therefore easily calculated.

Overall, a comparison of the analytical solutions with numerical simulations shows
excellent agreement. This is particularly remarkable since the derived equations are
the result of a comparatively simple superposition approach. This underlines strongly
the validity and quality of the mathematical assumption of constant shear stress along
all interfaces for such geometries. Ultimately, the presented equations enable further
investigation on case-specific optimization of slippage along microstructured pipe walls.
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