
Adv. Appl. Prob. (SGSA) 43, 636–648 (2011)
Printed in Northern Ireland

© Applied Probability Trust 2011

ASYMPTOTIC NORMALITY OF THE MAXIMUM
LIKELIHOOD ESTIMATOR FOR COOPERATIVE
SEQUENTIAL ADSORPTION

MATHEW D. PENROSE,∗ University of Bath

VADIM SHCHERBAKOV,∗∗ Moscow State University

Abstract

We consider statistical inference for a parametric cooperative sequential adsorption model
for spatial time series data, based on maximum likelihood. We establish asymptotic
normality of the maximum likelihood estimator in the thermodynamic limit. We also
perform and discuss some numerical simulations of the model, which illustrate the
procedure for creating confidence intervals for large samples.
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1. Introduction

This paper is concerned with maximum likelihood estimation for the cooperative sequential
adsorption (CSA) model for spatial time series. The main peculiarity of CSA is that the
likelihood for a point (particle) to appear at a given location in space depends on the number of
previous particles of the series nearby; depending on the parameters, the new particle may be
attracted to, or repelled by, previous particles. Mathematically, CSA is formulated as a random
finite sequential allocation of particles in a bounded region of space (the observation window).

Originally motivated by adsorption processes in physics and chemistry [3], CSA dynamics
seem to be relevant to many applications. It was first noticed by physicists (see, e.g. [3, p. 1285])
that this type of model can be used for modelling the spatial-temporal processes similar to the
irreversible spread of disease or epidemics, and biological growth was mentioned in [3] as
another potential application. These ideas have been recently supported by both experimental
and simulation studies of the keratin filament (KF) network formation in biology. KF networks
are part of the cell cytoskeleton and they determine the shape and biophysical properties of the
cells. Loosely speaking, the KF is an aggregated spatial structure formed by a union of curved
finite segments (fibres). Experimental results [12] and simulation studies [1] suggest that the KF
can be thought as a result of a sequential spatial growth process with self-organising properties.
It is also argued in [10] (see also the references therein) that self-organising processes combined
with simple physical constraints seem to have key roles in controlling organelle size, number,
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Figure 1: CSA simulations in D = [0, 1]2. Left: � = 1000, R = 0.01, and (βi)i≥0 =
(1, 1000, 10 000, 0, 0, . . . ). Right: � = 500, R = 0.03, and (βi)i≥0 = (1, 0, 0, . . . ), i.e. RSA.

shape, and position, and these factors then combine to produce the overall cell architecture.
CSA seems to be useful for modelling spatial random growth with self-organising properties.

Following [9] and [11] we consider a parametric version of CSA formulated as follows.
Consider a sequence of points X1, X2, . . . , X� located randomly in a bounded convex region
D of Euclidean space R

d . Let the parameters R > 0 (the interaction radius) and βi ≥ 0
(i = 0, 1, 2, . . . ) be fixed. Given the first k points X1, . . . , Xk , let the conditional probability
density of Xk+1 at x ∈ D be proportional to βi , if x has i points among X1, . . . , Xk within
distance R of it. The special case of CSA with β0 = 1 and βi = 0 for i ≥ 1 is known as
random sequential adsorption (RSA).

CSA can be used for modelling both clustered and regular point patterns. A variety of spatial
point patterns can be generated by modulating the parameters. See, for example, Figure 1.

We consider statistical inference for the parameters of our model based on maximum
likelihood estimation (MLE). In earlier work [9] we showed that the maximum likelihood
estimator exists uniquely, and is consistent in the thermodynamic limit, whereby the observation
window expands to the whole space and the number of allocated points grows linearly in the
volume of the window. The main result of the present paper is asymptotic normality of the
maximum likelihood estimator in the same limiting regime, which we prove in Section 3 using
martingale techniques. This provides asymptotic justification for the creation of confidence
intervals based on the normal distribution, which we illustrate on simulated examples in
Section 5. Section 6 contains some concluding remarks.

2. Assumptions and results

Let D, R, and {βk, k ≥ 0} be as in Section 1. For any x ∈ R
d and any finite sequence

y = (y1, . . . , yn), n ≥ 1, of points in R
d , we denote by ν(x, y) the number of points yi in the

sequence y, such that the distance between x and yi is at most R. By definition, ν(x,∅) = 0.
Our CSA model is defined as follows. Let X(�) = (X1, . . . , X�) ∈ D� be the vector of

first � random points sequentially generated by CSA. Given the sequence X(k) (which can be
empty, i.e. k = 0), the conditional probability density function of the next point Xk+1 is

ψk+1(x | X(k)) = βν(x,X(k))∫
D
βν(y,X(k)) dy

, x ∈ D.
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Write p�,β,D(x1, . . . , x�) for the joint density function
∏�
k=1 ψk(xk | x(k − 1)) of the first �

points.
As in [9], we assume throughout that the interaction radius R is a fixed and known constant,

that β0 = 1 (this entails no loss of generality; see [9]), and that there is a (possibly unknown)
constant N ∈ N such that βk > 0 for k ≤ N and βk = 0 for k > N . One interpretation of
the last assumption is that it might be impossible to distinguish a new point that has too many
existing points nearby, and, therefore, such new points are not observed. If N is unknown, it
has to be estimated before estimating the βs. In a fixed finite volume, N is estimated by N̂ ,
which is defined by Equation (2.9) of [9]. Given N̂ , the rest of the estimation procedure is
carried out as described in Section 2.2 of [9]. By Theorem 2.2 of [9], N̂ converges to N in
probability in the thermodynamic limit (recalled below). That is, we have an exact value for N
with high confidence, but only confidence intervals for the continuous parameters βk, k ≤ N ;
we are interested here in constructing these intervals. Therefore, for simplicity of notation, we
assume in the rest of the paper that N̂ = N .

For asymptotics, it is natural to consider the thermodynamic limit which we now describe.
Let D1 be the unit cube centred at the origin (or some other bounded convex region with unit
volume), and consider a sequence of rescaled domains

Dm = m1/dD1, m ∈ Z+.

Fix {�m, m ≥ 1}, an arbitrary monotonically increasing N-valued sequence. Here �m represents
the number of observed points in the domain Dm.

Assumption 1. The number of observed points is asymptotically linear in m, that is,

lim
m→∞

�m

m
= µ ∈ (0, θ∞), (1)

where θ∞ is the jamming density (see [9]).

Given parameters N and β = (β1, . . . , βN), consider the probability measure Pm,β on D�mm
specified by the probability density p�,β,D with � = �m and D = Dm. The expectation with
respect to this measure is denoted by Em,β . We assume that β ∈ B, where B := (0,∞)N . The

true parameter is denoted by β(0)= (β
(0)
1 , . . . , β

(0)
N ). Also, we define for short P(0)m = Pm,β(0)

and E(0)m = Em,β(0) .
Given m, assume that �m ≥ 2 and define the log-likelihood function

Lm(X
m(�m), β) = log(p�m,β,Dm(X

m
1 , . . . , X

m
�m
)),

where Xm(�m) = (Xm1 , . . . , X
m
�m
) is the vector of observed points in Dm. Given observation

Xm(�m), we define the maximum likelihood estimators

β̂(Xm(�m)) = (β̂1,m, . . . , β̂N,m)

of parameters β(0) = (β
(0)
1 , . . . , β

(0)
N ) as maximisers of the function Lm(Xm(�m), β), which

can be found as a solution of ∇Lm(Xm(�m), β) = 0, where we define

∇Lm(Xm(�m), β) =
(
∂Lm(X

m(�m), β)

∂β1
, . . . ,

∂Lm(X
m(�m), β)

∂βN

)
.

The following two results are from [9] (see Theorem 2.2 and Lemma 5.2, part 2, respectively,
of [9]).
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Lemma 1. (Consistency of MLE.) Under Assumption 1, with P(0)m -probability tending to 1 as
m → ∞, there exists a unique positive solution (β̂1,m, . . . , β̂N,m) of the likelihood equations
and

(β̂1,m, . . . , β̂N,m) → (β
(0)
1 , . . . , β

(0)
N )

in P(0)m -probability as m → ∞.

Lemma 2. (Asymptotics of the observed information matrix.) Consider the matrix

Jm(X
m(�m), β) := −

(
∂2Lm(X

m(�m), β)

∂βi∂βj

)N
i,j=1

.

There is a family ofN×N positive definite real matrices J (0)(µ), defined forµ ∈ (0, θ∞), such
that, under Assumption 1, if β(m) is a sequence of B-valued random variables converging in
probability to β(0) as m → ∞ then

Jm(X
m(�m), β(m))

m
→ J (0)(µ) (2)

in P(0)m -probability as m → ∞.

In [9], we proved (2) for only the special case with β(m) = β(0), but the general case stated
above can be proved in the same manner as that result.

In Section 4 we give an extended study of the structure of the limiting information matrix
J (0)(µ).

We can now give the main result of the paper, which states that the MLE is asymptotically
normal.

Theorem 1. Under Assumption 1,

√
m(β̂(Xm(�m))− β(0)) → N (0, (J (0)(µ))−1)

in P(0)m -distribution as m → ∞, where N (0, (J (0))−1(µ)) is the Gaussian vector with zero
mean and covariance matrix (J (0)(µ))−1.

Theorem 1 provides asymptotic justification for creating confidence intervals based on the
normal distribution, when we have a large number of points in a large region relative to the
interaction radius R; this is the case for the simulated examples in Section 5, which take place
on the unit square with small R. We shall describe the creation of confidence intervals in more
detail in the context of those examples.

We prove Theorem 1 using the following limiting result for the model score

∇Lm(Xm(�m), β(0)),
which we prove in Section 3.

Theorem 2. Under Assumption 1, m−1/2∇Lm(Xm(�m), β(0)) converges in distribution as
m → ∞ to a Gaussian vector with zero mean and covariance matrix J (0)(µ).

Proof of Theorem 1. Choose δ > 0 such that the ball of radius δ centred at β(0) is contained
in B. By Lemma 1 we have

|β̂(Xm(�m))− β(0)| < δ,
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with probability P(0)m close to 1 if m is large enough. With ∂i denoting differentiation with
respect to the ith component of β, we implement a Taylor expansion of ∂i(Lm(Xm(�m), β))
about β(0):

0 = ∂iLm(X
m(�m), β̂(X

m(�m)))

= ∂iLm(X
m(�m), β

(0))+
N∑
j=1

∂2
ij (X

m(�m), β̄)(β̂(X
m(�m))− β(0))j ,

where β̄ lies on the line segment from β(0) to β̂(Xm(�m)). Rewriting this expression, we obtain

N∑
j=1

−∂2
ij (X

m(�m), β̄)

m
(
√
m(β̂(Xm(�m))− β(0))j ) = ∂iLm(X

m(�m), β
(0))√

m
.

In the left-hand expression β̄ depends on i but converges in probability to β(0) as n → ∞ by
Lemma 1. By Lemma 2, for each (i, j), the first factor inside the sum converges in probability
to J (0)ij (µ). Observing that Theorem 2 applies to the right-hand side, we can complete the proof
by applying Lemma 6.4.1 of [5].

3. Proof of Theorem 2

The proof ofTheorem 2 is based on the observation that each component of∇Lm(Xm(�m), β)
can be expressed as a sum of martingale differences; see (8) below.

Let Xm(�m) = (Xm1 , . . . , X
m
�m
) be the sequence of observed points Xmi in Dm. Define the

quantities
ξmk,i := 1{ν(Xmi ,Xm(i−1))=k}, k = 0, . . . , N, i = 1, . . . , �m, (3)

tmk,�m :=
�m∑
i=1

ξmk,i , k = 0, . . . , N, (4)

and

	mk,i :=
∫
Dm

1{u : ν(u,Xm(i))=k} du, 0 ≤ i ≤ �m, k ≥ 0.

Note that 	mk,i = 0 for i < k and that 	m0,0 is equal to m. In terms of t- and 	-statistics, the kth
component of ∇Lm(Xm(�m), β) can be written as follows (see Equation (6.5) of [9]):

∂Lm(X
m(�m), β)

∂βk
= tmk,�m

βk
−

�m∑
j=1

	mk,j−1

	m0,j−1 + ∑N
i=1 βi	

m
i,j−1

(5)

for j = 1, . . . , N . Let F (m)
j = σ {Xm1 , . . . , Xmj } be the σ -algebra generated by the first j points

observed in Dm. Define, for short,

ξ̄mk,i := Em,β(ξ
m
k,i | F (m)

i−1 ).

It is easy to see that

ξ̄mk,i = βk	
m
k,i−1

	m0,i−1 + ∑N
j=1 βj	

m
j,i−1

, k = 1, . . . , N, i = 1, . . . , �m. (6)
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Given k and m, define the sequence of martingale differences

ζmk,i := 1

βk
(ξmk,i − ξ̄mk,i), 1 ≤ i ≤ �m. (7)

Equation (5) can now be rewritten as

∂Lm(X
m(�m), β)

∂βk
= 1

βk

lm∑
i=1

(ξmk,i − ξ̄mk,i) =
lm∑
i=1

ζmk,i , k = 1, . . . , N. (8)

This implies that, for any real vector a = (a1, . . . , aN)
	, the triangle array

[
Em,β

(
1√
m

N∑
k=1

ak
∂Lm(X

m(�m), β)

∂βk

∣∣∣∣ F (m)
j

)
,F (m)

j

]�m
j=1

, m ≥ 2,

is a zero-mean square integrable martingale array.
By the Cramér–Wold device (see, for example, [2]), Theorem 2 follows from the following

fact.

Lemma 3. Under Assumption 1, for any real vector a = (a1, . . . , aN)
	,

1√
m

N∑
k=1

ak
∂Lm(X

m(�m), β
(0))

∂βk
→ N (0, σ 2

a )

in distribution as m → ∞, where

σ 2
a = a	J (0)(µ)a,

J (0)(µ) is the matrix arising in Lemma 2, and N (0, σ 2
a ) is the Gaussian vector with zero mean

and variance σ 2
a .

In proving Lemma 3 we shall repeatedly use the following fact which is simple enough for
us to omit its proof.

Lemma 4. Let ξn, n ≥ 1, and ηn, n ≥ 1, be two sequences of random variables, and let
C > 0, a, and b be some constants. Suppose that |ξn| < C, |ηn| < C, ξn → a in probability
as n → ∞, and E(ηn) → b as n → ∞. Then E(ξnηn) → ab as n → ∞.

Proof of Lemma 3. By (8), for any β ∈ B, we have

1√
m

N∑
k=1

ak
∂Lm(X

m(�m), β)

∂βk
= 1√

m

�m∑
i=2

ηmi ,

where

ηmi =
N∑
k=1

akζ
m
k,i

and ζmk,i are the quantities defined by (7). It is easy to see that

1√
m

max
i

|ηmi | ≤ 2N√
m

max
k=1,...,N

ak

βk
→ 0 as m → ∞ (9)
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and
1

m
Em,β(max

i
(ηmi )

2) ≤ 4N2

m
max

k=1,...,N

(
ak

βk

)2

→ 0 as m → ∞. (10)

By Propositions 1 and 2 below, we also have, under Assumption 1,

1

m

�m∑
i=2

(ηmi )
2 → a	J (0)(µ)a (11)

in P(0)m -probability as m → ∞.
Using (9), (10), and (11), we can then apply the central limit theorem for martingale

difference arrays (see Theorem (2.3) of [7]) to complete the proof of Lemma 3.

Proposition 1. Under Assumption 1,

lim
m→∞

1

m

�m∑
i=2

E(0)m ((η
m
i )

2) = a	J (0)(µ)a.

Proof. By Theorem 2.2 of [9], under assumption (1), we have, as m → ∞,

	mj,�m

m

P(0)m→ γ
(0)
j (µ), j = 1, . . . , N, (12)

where the functions (γ (0)j (µ), µ ∈ (0, θ∞(β(0))), 0 ≤ j ≤ N , are strictly positive and contin-
uous in µ.

It was shown in Section 6.2 of [9] that the limit of the scaled Hessian in Lemma 2 evaluated
at the true parameter has the integral representation

J (0)(µ) = J (β(0), µ) =
∫ µ

0
Q(0)(λ) dλ, (13)

where

Q(0)(λ) =
[

γ
(0)
i (λ)

β
(0)
i Z(β(0), λ)

δij − γ
(0)
i (λ)γ

(0)
j (λ)

Z2(β(0), λ)

]N
i,j=1

, (14)

δij is the Kroneker symbol, and

Z(β, λ) = γ
(0)
0 (λ)+

N∑
i=1

βiγ
(0)
i (λ).

Let us show that if i = im is such that i/m → λ ∈ (0, µ) as m → ∞ then

E(0)m ((η
m
i )

2) → a	Q(0)(λ)a

as m → ∞. Indeed,

E(0)m ((η
m
i )

2) =
N∑

k,j=1

akaj E(0)m (ζ
m
k,iζ

m
j,i)

=
N∑

k,j=1

akaj

β
(0)
k β

(0)
j

E(0)m ((ξ
m
k,i − ξ̄mk,i)(ξ

m
j,i − ξ̄mj,i))

=
N∑

k,j=1

akaj

β
(0)
k β

(0)
j

E(0)m (ξ
m
k,iξ

m
j,i − ξmk,i ξ̄

m
j,i − ξmj,i ξ̄

m
k,i + ξ̄mk,i ξ̄

m
j,i).
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Note that

E(0)m (ξ
m
k,iξ

m
j,i) = E(0)m (ξ

m
k,i)δkj = E(0)m (ξ̄

m
k,i)δkj ,

where δij is the Kroneker symbol and

E(0)m (ξ
m
k,i ξ̄

m
j,i) = E(0)m (ξ

m
j,i ξ̄

m
k,i) = E(0)m (ξ̄

m
k,i ξ̄

m
j,i).

Therefore,

E(0)m ((η
m
i )

2) =
N∑

k,j=1

akaj

β
(0)
k β

(0)
j

[E(0)m (ξ̄mk,i)δkj − E(0)m (ξ̄
m
k,i ξ̄

m
j,i)].

By (6) and (12),

ξ̄mr,i = β
(0)
r 	mr,i−1

	m0,i−1 + ∑N
j=1 β

(0)
j 	mj,i−1

→ β
(0)
r γ

(0)
r (λ)

γ
(0)
0 (λ)+ ∑N

j=1 β
(0)
j γ

(0)
j (λ)

= β
(0)
r γ

(0)
r (λ)

Z(β(0), λ)
(15)

in P(0)m -probability as i/m → λ for any r = 0, . . . , N . This fact along with Lemma 4 yields

1

β
(0)
k β

(0)
j

[E(0)m (ξ̄mk,i)δkj − E(0)m (ξ̄
m
k,i ξ̄

m
j,i)] → Q

(0)
kj (λ)

as i/m → λ. We can then complete the proof of Proposition 1 by applying the dominated
convergence theorem to show that the sum converges to the integral (see Section 5.2 of [9] for
a similar argument).

Proposition 2. Under Assumption 1,

lim
m→∞

1

m2 var

( �m∑
i=2

(ηmi )
2
)

= 0,

where the expectation is taken with respect to the measure P(0)m .

Proof. To simplify notation, we assume in the proof that N = 1; modifications for the
multivariate case are obvious. Also, we omit the upper index in the notation for the η, ζ ,
and ξ variables. So, in the rest of the proof we define β = β1, a = a ∈ R, ηi = ηmi , ζi = ζm1,i ,
ξi = ξm1,i , ξ̄i = ξ̄m1,i , and Fj = F (m)

j . Besides, we write E instead of E(0)m .
It suffices to show that, under Assumption 1,

cov(η2
i , η

2
j ) → 0

for any pair of sequences i = im and j = jm such that i 
= j and i/m → λ′, j/m → λ′′ as
m → ∞, where λ′ can coincide with λ′′. This suffices because the contribution from terms
with i = j , divided by m2, is asymptotically negligible since the ηi are uniformly bounded.

Recall that ηi = a(ξi − ξ̄i )/β, where ξ̄i = E(ξi | Fi−1). Therefore, we need to prove that

cov((ξi − ξ̄i )
2, (ξj − ξ̄j )

2) → 0 (16)
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under the same assumptions about the index sequences. Assuming for definiteness that i < j ,
we have the following identities:

ξ2
i = ξi, (17)

E(ξi) = E(E(ξi | Fi−1)) = E(ξ̄i ),

E(ξi ξ̄i ) = E(ξ̄i E(ξi | Fi−1)) = E(ξ̄2
i ), (18)

E(f (ξi, ξ̄i , ξ̄j )ξj ) = E(f (ξi, ξ̄i , ξ̄j )E(ξj | Fj−1)) = E(f (ξi, ξ̄i , ξ̄j )ξ̄j ). (19)

Here f (ξi, ξ̄i , ξ̄j ) is a polynomial function, e.g. ξi ξ̄2
i etc. (Note that (19) fails for i = j .) We

can write cov((ξi − ξ̄i )
2, (ξj − ξ̄j )

2) as a linear combination of terms of the form

E(ξ̄pi ξ
2−p
i ξ̄

q
j ξ

2−q
j )− E(ξ̄pi ξ

2−p
i )E(ξ̄ qj ξ

2−q
j ), (20)

where p ∈ {0, 1, 2} and q ∈ {0, 1, 2}. As mentioned before (see (15)), we have

ξ̄r
P(0)m→ b(λ) := β

(0)
1 γ

(0)
1 (λ)

Z(β(0), λ)
(21)

as r/m → λ, and, also, E(ξr ) → b(λ) as n → ∞. Since ξi and ξj are bounded, we have
E(ξ̄2

i ) → b2(λ′) and (using (18)) E(ξi ξ̄i ) → b2(λ′), while (using (17)) E(ξ2
i ) → b(λ′), and

likewise for j . Therefore,

E(ξ̄pi ξ
2−p
i )E(ξ̄ qj ξ

2−q
j ) → b1+min(p,1)(λ′)b1+min(q,1)(λ′′). (22)

But using (19), (21), and Lemma 4, we also have

E(ξ̄pi ξ
1−p
i ξ̄j ξj ) = E(ξ̄pi ξ

1−p
i ξ̄2

j ) → b1+min(p,1)(λ′)b2(λ′′), (23)

and using (17) for j , (19), (21), and Lemma 4, we also have

E(ξ̄pi ξ
1−p
i ξ2

j ) = E(ξ̄pi ξ
1−p
i ξ̄j ) → b1+min(p,1)(λ′)b(λ′′). (24)

Combining (23) and (24) shows that E(ξ̄pi ξ
1−p
i ξ̄

q
j ξ

1−q
j ) converges to the same limit as the

expression in (22). Hence, each expression of the form in (20) tends to 0, and we have established
(16). Hence, Proposition 2 is proved.

4. Structure of the limit information matrix

It is easy to see from (13) that positive definiteness of the matrix Q(0)(λ) = Q(β(0), λ)

for any fixed λ ∈ (0, θ∞) implies positive definiteness of the limit matrix J (0)(µ). Positive
definiteness of the matrixQ(0)(λ)was shown in Lemma 5.2 of [9]. Here we give another proof
by studying the matrix structure in more detail.

It can be seen from (14) that the matrix principal minor formed by the intersection of the
first k rows and k columns is

DN,k(β
(0), λ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ
(0)
1 (λ)(Z(β(0), λ)− γ

(0)
1 (λ)β

(0)
1 )

β
(0)
1 Z2(β(0), λ)

. . . −γ
(0)
1 (λ)γ

(0)
k (λ)

Z2(β(0), λ)

... . . .
...

−γ
(0)
1 (λ)γ

(0)
k (λ)

Z2(β(0), λ)
. . .

γ
(0)
k (λ)(Z(β(0), λ)− γ

(0)
k (λ)β

(0)
k )

β
(0)
k Z2(β(0), λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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It is easy to see that the determinant of DN,k(β(0), λ) is

|DN,k(β(0), λ)| = (−1)k

Z2k(β(0), λ)

k∏
i=1

γ
(0)
i (λ)

β
(0)
i

|Ak − Z(β(0), λ)Ek|,

where |Ak − Z(β(0), λ)Ek| is the determinant of the matrixAk − Z(β(0), λ)Ek , with the matrix
Ak defined as

Ak = (β
(0)
1 , . . . , β

(0)
k )(γ

(0)
1 (λ), . . . , γ

(0)
k (λ))	

andEk a k× k unit matrix. By definition, |Ak − Z(β(0), λ)Ek| is the characteristic polynomial
of Ak evaluated at the point Z(β(0), λ). It can be shown (we omit the proof) that if a, b ∈ C

n

are nonzero complex vectors, such that a	b 
= 0, then a quadratic matrix M = ab	 has the
only nonzero eigenvalue a	b of multiplicity 1; 0 is the other matrix eigenvalue of multiplicity
n− 1 and the matrix characteristic polynomial is

|M − uEn| = (−1)nun−1(u− a	b), u ∈ C
n.

Hence,

|Ak − Z(β(0), λ)Ek| = (−1)kZk−1(β(0), λ)

(
γ
(0)
0 (λ)+

N∑
i=k+1

β
(0)
i γ

(0)
i (λ)

)

and

|DN,k(β(0), λ)| = (γ
(0)
0 (λ)+ ∑N

i=k+1 β
(0)
i γ

(0)
i (λ))

Zk+1(β(0), λ)

k∏
i=1

γ
(0)
i (λ)

β
(0)
i

.

The right-hand side of the preceding display is positive because the functions γi, i = 1, . . . , N ,
are positive. Thus, any principal minor of matrix (14) is positive and, by Sylvester’s criterion,
this matrix is positive definite.

5. Numerical example

This section contains a simulated example illustrating the effectiveness of MLE in distin-
guishing between CSAs which might generate rather similar patterns.

We consider two single realisations of CSA on the unit square [0, 1]2, one with increasing
rates and one with flat rates. In both cases, we take the interaction radius to be R = 0.02, and
we take N = 2 and β0 = 1. The parameters (β1, β2) are given by

(β1, β2) = (300, 500) for increasing rates, (β1, β2) = (100, 100) for flat rates.

We shall give confidence intervals for the estimated parameters with � = 200, 500, 1000,
2000, and 3000 points, respectively. In the cases � = 500 and � = 2000 we also provide
images in Figures 2 and 3. (Images for the other cases of � are included in a preprint version
of this paper, available at http://arxiv.org/abs/1005.2335v1.) Can one tell apart these two sets
of parameters given the images provided?

In the images with 500 points, it is slightly visible that the right pattern is more dispersed than
the left pattern. This effect becomes somewhat more visible for the pair of images showing
further evolution and containing 2000 points. Though the main basic feature of clustering
is common to both choices of parameters, the clustering effect is more visible in the images
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Figure 2: Realisations generated with � = 500 points: increasing rates (left); flat rates (right).
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Figure 3: Realisations generated with � = 2000 points: increasing rates (left); flat rates (right).

produced by the model with increasing rates. It seems that the right realisation spreads faster
in comparison to the left realisation. This is called mild clustering; the distribution of points
inside a cluster is more or less regular, since a new point distribution is uniform conditioned on
being adsorbed in the vicinity of existing points.

Tables 1 and 2 contain MLEs for both sets of parameters along with corresponding approx-
imate confidence intervals (any computed value is rounded to its nearest integer). The 95%
confidence intervals (CIs) are computed by formally assuming normality of β̂. The variances
of the estimates are estimated, as usual, by the corresponding diagonal elements of the matrix
inverse to the observed information matrix, divided by m. To get this matrix, we differentiate
(5) and then evaluate at β̂ using the observed t- and 	-statistics. We provide values of the
t-statistics in the tables as well. Arrays of 	-statistics were computed as described in [9] (see
Section 2.2 therein).

The resulting information matrices turned out to be nondegenerate for all values of �
considered. The variances of the estimates decrease as the number of observed points increase.
As a result, the CIs become narrower. This observed reduction of variances is intuitively
expected, and consistent with the limiting situation where the effect is clearly implied by the
integral representation (13) for the information matrix. For instance, in the case of a single
parameter (N = 1) this representation implies that m times the variance of the estimate β̂1
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Table 1: MLEs, CIs, and t-statistics for a set of increasing rates (β1 = 300 and β2 = 500).

� = 200 � = 500 � = 1000 � = 2000 � = 3000

β̂1 401 377 334 320 318
CI (176, 626) (214, 540) (213, 455) (218, 422) (223, 413)

β̂2 695 594 566 546 521
CI (298, 1091) (335, 853) (360, 772) (371, 721) (364, 678)

(t0, t1, t2) (16, 93, 91) (25, 233, 242) (34, 434, 532) (43, 825, 1132) (47, 1190, 1763)

Table 2: MLEs, CIs, and t-statistics for a set of flat rates (β1 = 100 and β2 = 100).

� = 200 � = 500 � = 1000 � = 2000 � = 3000

β̂1 89 98 96 104 101
CI (55, 123) (69, 127) (73, 119) (81, 127) (80, 122)

β̂2 106 97 88 100 99
CI (61, 151) (67, 127) (66, 110) (78, 122) (78, 120)

(t0, t1, t2) (43, 100, 57) (62, 272, 166) (84, 552, 364) (95, 1048, 857) (106, 1473, 1421)

converges, asm → ∞ and �m/m → µ, to (
∫ µ

0 Q(0)(λ) dλ)−1, whereQ(0)(λ) > 0 (the matrix
is just a number here) in representation (13). This is consistent with the expected ‘reduction
of variances’ effect, if the density of points, i.e. µ, increases (a lower bound for the variance of
the estimate in the single parameter case is given by the integral with µ = θ∞, where θ∞ is the
jamming density).

Finally, it should be noted that MLEs effectively capture the correct magnitude of the
parameters and this is why the two sets of parameters considered in the example (producing
sometimes quite similar images) can be effectively distinguished. For the sake of completeness,
consider also the left image in Figure 1. It has been generated by CSA with interaction radius
0.01, N = 2, and (β0, β1, β2) = (1, 1000, 10 000). The image contains � = 1000 points and
the t-statistics are t0 = 23, t1 = 149, and t2 = 828. The MLEs for β1 and β2 are 1105.0 and
10 510.0, respectively.

6. Final remarks

It should be noted that estimation of bothN and the βs requires the interaction radiusR to be
known or estimated. If the radius is unknown then it can be estimated by the method of profile
likelihood estimation [8, p. 163]. It should also be noted that estimation of the interaction radius
is a particular case of a problem of estimation of the interaction range in models with spatial
interaction (see [4] and [6]).

Recall that the observation window D is assumed to be convex. This assumption is not
important and made mostly for definiteness and simplicity of presentation. At the same time it
is easy to imagine an application where this assumption cannot be made. For instance, if CSA
is applied for modelling the spread of infection in a nonconvex geographical region. In such a
case the model dynamics should be modified as follows. Given a nonconvex regionD, call two
points ofD geographical neighbours if they are within distanceR of each other and the straight
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line segment connecting them belongs entirely to D. It would be plausible to assume that the
probability distribution of a new point is specified by a function depending on the number of
geographical neighbours. Note that this alteration of the model does not change the proposed
statistical analysis of the model.

Finally, note that the main proofs here and in [9] can be carried out in the same way for any
spatial-temporal model which has a likelihood structure similar to that of CSA. Namely, the
likelihood must depend on a point configuration through statistics which are locally determined
functionals [9]. For example, one could assume that the sequence (βk) is eventually constant,
rather than eventually 0 as here.
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