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We present numerical analyses of two-dimensional electrohydrodynamic (EHD) flows of
a dielectric liquid between a wire electrode and two plate electrodes with a Poiseuille
flow, using direct numerical simulation and global stability analysis. Both conduction and
injection mechanisms for charge generation are considered. In this work we focused on
the intensity of the cross-flow and studied the EHD flows without a cross-flow, with a
weak cross-flow and with a strong cross-flow. (1) In the case without a cross-flow, we
investigated its nonlinear flow structures and linear dynamics. We found that the flow in the
conduction regime is steady, whereas the flow in the injection regime is oscillatory, which
can be explained by a global stability analysis. (2) The EHD flow with a weak cross-flow is
closely related to the flow phenomena in an electrostatic precipitator (ESP). Our analyses
indicate that increasing the cross-flow intensity or the electric Reynolds number leads to
a less stable flow. Based on these results, we infer that one should adopt a relatively low
voltage and weak cross-flow in the wire-plate EHD flow to avoid flow instability, which
may hold practical implications for ESP. (3) The case of strong cross-flow is examined
to study the EHD effect on the wake flow. By comparing the conventional cylindrical
wake with the EHD wake in linear and nonlinear regimes, we found that the EHD effect
brings forward the vortex shedding in wake flows. Besides, the EHD effect reduces the
drag coefficient when the cross-flow is weak, but increases it when it is strong.

Key words: wakes

1. Introduction

Electrohydrodynamics (EHDs) is an interdisciplinary subject that studies the coupling of
electric forces and fluid motion (Castellanos 1998). Techniques based on EHDs have broad

† Email address for correspondence: mpezmq@nus.edu.sg

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 966 A4-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:mpezmq@nus.edu.sg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.419&domain=pdf
https://doi.org/10.1017/jfm.2023.419


X. He, P.A. Vázquez and M. Zhang

application prospects in many engineering fields. With the process of urbanization, air
pollution has become a critical issue worldwide. The air pollutants can be broadly divided
into two categories, particulate matter and waste gases (Kulkarni & Kherde 2015). An
electrostatic precipitator (ESP) remains one of the most popular devices for the waste-gas
treatment. The ESP is widely used in coal-fired power plants, accounting for nearly 80 %
of factories in China in the past few decades (Teng, Fan & Li 2020). The ESP in general
has the advantages of low energy consumption, large flue gas treatment capacity and
high-efficiency (Jaworek et al. 2019).

For a theoretical study, the geometry of the ESP device can be idealised as uniformly
distributed wire electrodes placed in a channel between two plate electrodes. When
a sufficiently high voltage is applied to the wire electrodes, corona discharge occurs,
and the generated ions move towards the plate electrodes. As the dusty gas enters and
passes through the channel, the neutral particles become charged via ion attachment,
moving towards the collecting plates under the action of Coulomb force. Subsequently,
the particles are deposited at the collecting plates and get collected (Yamamoto &
Velkoff 1981; Zhao & Adamiak 2008). Although they are widely used, the ESP devices
encounter problems such as particle re-entrainment and insufficient capacity to remove
small particles (Teng et al. 2020). In particular, in recent years, the emission of PM2.5
(particles with diameters less than 2.5 μm) endangers the environment and public health
(especially in developing countries), leading to more stringent PM2.5-emission limits in
the past decade worldwide (Mep 2011). Therefore, in order to meet the stricter standard of
flue gas emission, it is necessary to further study and improve the performance of ESP. In
this regard, we are particularly interested in the fluid dynamics in ESP.

Physically, the flow in the ESP can be divided into two components, the primary flow
that carries the particles or dusts, and the secondary flow generated by the electric field. It
has been shown that the EHD secondary flow has a significant effect on the transport
of particles, especially small particles (Yamamoto et al. 2013; Zehtabiyan-Rezaie,
Saffar-Avval & Adamiak 2018); however, the underlying flow mechanism has not been
fully elucidated. Therefore, it is important to study the complex interaction between the ion
motion and the fluid dynamics in the wire-plate EHD flow. In this work we will consider a
similar but simplified problem related to the fluid dynamics in ESP, that is, the EHD flow
in a wire-plate geometry, which is a more general and idealised configuration than the ESP
configuration, to focus on the essential flow dynamics. We will adopt the direct numerical
simulation (DNS) method and the global linear stability analysis. In particular, we are
keen to compare our computations with the experimental results reported in McCluskey &
Atten (1988). As a theoretical study, our parametric study will be extensive, i.e. we will not
confine ourselves in exploring the parametric range for the ESP flow solely, but explore
a large parameter space. In the following we summarize the research on EHD flow in a
wire-plate configuration.

1.1. EHD flow in a wire-plate configuration
Yabe, Mori & Hijikata (1978) firstly studied the corona wind in the two-dimensional (2-D)
wire-plate system experimentally and theoretically. They quantitatively proved that the
corona wind is generated by the Coulomb force acting upon ions. Yamamoto & Velkoff
(1981) analysed the interaction between the primary flow and the EHD secondary flow
in both one-wire and two-wire configurations. Their results showed that the collection
of dust particles could be influenced by the EHD flow. The experiment of the flow in
a wire-plate ESP was performed by Blanchard, Dumitran & Atten (2001) to investigate
the effect of the turbulent motion on the distribution of charged particles. In addition,
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a 2-D numerical model was built, in which the typical velocity of EHD secondary flow
was observed of the order of 1 m s−1, agreeing with the experimental results. Zhao &
Adamiak (2008) numerically investigated the EHD flow in a single wire-plate ESP. The
interaction between the electrostatic field and airflow was analysed and a complete airflow
regime map was obtained for a wide range of control parameters. The standard k − ε

model has been used in the numerical simulations of turbulent flows in the wire-plate ESP
by Chun et al. (2007). The influence of the control parameters on EHD flow patterns was
analysed qualitatively. The results of turbulent structures were presented, but there was no
detailed analysis of the turbulent flows therein. Feng et al. (2018) examined the EHD flow
pattern and vortex structure quantitatively in the wire-plate ESP using the Okubo–Weiss
index. The relationship between EHD flow pattern and pressure drop, turbulence intensity
and flow vortex index was explored. Guo et al. (2019) numerically studied the EHD effect
in the ESP. Their results indicated that the EHD has an important influence on the particle
deposition pattern, especially when the gas flow velocity is low.

The working fluid in the above studies was gas. There is also research on the flow
of a dielectric liquid in the wire-plate EHD configuration. McCluskey & Atten (1988)
conducted an experiment to examine the wake behind a wire in a laminar cross-flow
with and without charge injection into the liquid. Their results showed that the wake
could be modified by the injected charges when the voltage was high. Fernandes, Cho
& Suh (2014) studied the wire-plate EHD flow without cross-flow both numerically and
experimentally. The Onsager effect, also named the Onsager–Wien effect, referring to the
electric field enhanced ion dissociation was considered for ion transport (Onsager 1934;
Vázquez et al. 2019). They showed that the numerical simulation slightly overestimates the
flow velocity measured experimentally, but the gap narrows by adopting a proper truncated
series for the Onsager function. Barz, Scholz & Hardt (2018) conducted numerical
simulations of a confined cylinder wake flow subjected to a direct current (DC) electric
field, and a small electrokinetic velocity was applied at the cylinder surface. They studied
the influence of electrokinetic manipulation on the flow past a cylinder under different
electrode arrangements. The results showed that the vertical electrostatic force component
influences the characteristics of the lift coefficient, and the drag coefficient is affected
by the horizontal force component. Besides, Wang et al. (2021) performed a numerical
investigation of the wire-plate EHD-Poiseuille flow of a dielectric liquid. A detailed map
of flow patterns at different hydrodynamic Reynolds numbers (Re, quantifying the ratio
of inertia to viscosity) and electric Reynolds numbers (based on the ionic transit velocity)
was displayed.

After reviewing the literature, one can realize that the induced EHD flow structure can
interact with the primary Poiseuille flow and this interaction is important in determining,
e.g. how the ESP flow behaves. In the hydrodynamic community, such interaction between
large-scale flow structures can be analysed using stability analysis. This analysis has
not been applied to the EHD flow in a wire-plate geometry. In the following, we will
summarize the stability analyses on the EHD flows between two plane plates, which has
been studied extensively.

1.2. Stability analysis of EHD flow
From the perspective of the stability analysis, the uniform electric field configuration was
often adopted due to their simplicity. Schneider & Watson (1970) firstly used the linear
stability analysis to predict the start of flow motion of a dielectric liquid between two
parallel electrodes subjected to unipolar injection. Meanwhile, Atten & Moreau (1972)
analysed the modal stability of electroconvection, showing that in the weak injection
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case, that is, when the charge injection intensity parameter C � 1, the criterion for the
flow stability depends on the injection strength. In addition, the critical electric Rayleigh
number T (quantifying the ratio between the Coulomb force and the viscous force) was
calculated in the case of space charge limited (SCL, when C → ∞) injection. Atten (1974)
investigated the stability of EHD flow subjected to SCL injection during the transient
regime adopting a quasistationary approach. It was found that the experimental criterion
is lower than the theoretical one under the transient condition. Zhang et al. (2015) studied
EHD flows between two parallel plates with and without cross-flow under the strong
injection case by using the modal and non-modal linear stability analysis theories, the latter
of which can depict the non-normality of the linearized Navier–Stokes operator in EHD
flows. They found that, in the hydrostatic EHD flow, the transient energy growth caused
by the non-normality of the linear operator is limited. Subsequently, Zhang (2016) carried
out a detailed weakly nonlinear stability analysis of the 2-D EHD in the SCL regime
with and without cross-flow by adopting a multiscale expansion method. Furthermore,
DNS has been employed to study the bifurcation of the EHD flow near and beyond the
linear critical threshold Tc, such as the work of Chicón, Castellanos & Martin (1997),
Wu et al. (2013) and so on. In particular, Wu et al. (2013) studied the critical bifurcation
of EHD flow in a 2-D finite container without considering the charge diffusion effect.
Deterministic and stochastic bifurcations in EHD flow of a dielectric liquid between two
parallel plates was investigated by Feng et al. (2021). They tried to reduce the discrepancy
of the linear instability criteria between experiment and theory by considering stochastic
boundary conditions.

It is noted that the works on the stability analysis of the EHD flow that we reviewed
above all pertain to the configuration of two parallel walls. The linear stability analysis
of EHD flow in a blade-plane configuration has been performed by Pérez, Vazquez &
Castellanos (1995) based on the parallel-flow approximation. The neutral stability curves
were generated in the wavenumber-Grashof number (denoting the ratio of the Coulomb
force to viscous force) plane. Pérez et al. (2009) numerically investigated the EHD flow
between a blade injector and a flat plate by DNS. They studied the transition from laminar
to chaotic flow with a varying electric Rayleigh number T . The EHD flow between two
eccentric cylinders was numerically investigated by Huang et al. (2020). The detailed
bifurcation diagrams corresponding to different flow regimes were presented in terms of
T . Their results indicated that the parameter eccentricity (the distance between the centres
of outer and inner cylinders over the difference in the radii of two cylinders) influences the
bifurcation. After reviewing the literature, we realise that more work should be conducted
for the linear stability of EHD flow with a non-uniform electric field to understand its fluid
dynamics, especially in the wire-plate configuration.

1.3. The current work
From the literature review above, one can see that all the previous studies on the wire-plate
EHD flow focused on distinguishing different flow patterns in a fully developed phase. The
global instability mechanism in this flow, however, has not been studied. Elucidating the
instability mechanism is clearly important as it concerns the dynamics of the large-scale
flow structures in the flow. Based on this information, one will be able to infer how
the flow becomes unstable and transitions to turbulence. Some studies have indicated
that turbulence is deleterious for the ESP performance (Leonard, Mitchner & Self 1983;
Badran & Mansour 2022). Thus, understanding and controlling the flow instability and the
turbulence generation in the ESP flow is important.
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Figure 1. Sketch of the wire-plate EHD-Poiseuille flow problem.

In order to distill its global instability mechanism, in this work we will perform a global
stability analysis for the 2-D EHD flow in a dielectric fluid layer subjected to a Poiseuille
flow in a wire-plate configuration. The flow is not turbulent but is about to become
unstable. Both conduction (dissociation/recombination) and injection mechanisms for the
charge generation will be considered, and the enhanced dissociation by the electric field
will also be included in the model. Since this is a theoretical study, we will explore a large
parameter space to gain a global view of the fluid dynamics in this EHD wire-plate flow. In
particular, we have chosen to particularly vary the velocity of the cross-flow to understand
its effect. According to the strength of the cross-flow, the flow can be categorised
into three regimes, i.e. no cross-flow, a weak cross-flow and a strong cross-flow. They
correspond to three interesting flow phenomena. Namely, the no cross-flow case studies
electroconvection due to charge injection from the wire electrode. The weak cross-flow
case resembles the flow pattern in ESP and may be helpful for understanding the fluid
dynamics in the latter. Note that an analogy of the flow with particles in ESP and fluids
in EHD has been made by Atten, McCluskey & Lahjomri (1987). The strong cross-flow
investigates the EHD effect on the cylindrical wake flow.

The remaining parts of this paper are organised as follows. In § 2 we describe the
physical problem, the governing equations with boundary conditions and the framework
of DNS and the global linear stability analysis. The numerical methods are introduced
in § 2.4. We then report our results on the three flow regimes in § 3. The conclusion is
drawn in the last section. The three appendices explain the validation of our nonlinear
simulations and linear analyses. In particular, the nonlinear results are compared with the
previous experimental work in the wire-plate EHD flow (McCluskey & Atten 1988) and
cylindrical wake flow (Verhelst & Nieuwstadt 2004).

2. Problem formulation and numerical method

2.1. Mathematical modelling
As shown in figure 1, a metallic wire located between two parallel plates is immersed in an
incompressible dielectric liquid subjected to a Poiseuille flow. The streamwise direction
is x and the wall-normal direction is y. The radius of the wire is R∗ and the distance
between the two plate electrodes is 2L∗

y . In this paper dimensional variables and parameters
are denoted with superscripts ∗. A constant electric potential φ∗

0 is applied to the wire
electrode, while the two plate electrodes at plane y = ±L∗

y are grounded.
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It has been observed in the experimental works that conduction and injection are two
major mechanisms of the charge generation in dielectric liquids (Daaboul et al. 2017;
Sun et al. 2020). In the conduction scenario, ions are generated in the liquid as a result
of the dissociation–recombination process of a solute or impurity present in the liquid.
In dielectric liquids only a very small part of the solute is dissociated and a dynamic
equilibrium is established between the ionic species and the neutral solute. In the injection
mechanism charges are produced by the electrochemical reaction between the interface of
the electrode and the dielectric liquid (Atten 1993). Both ion generation mechanisms will
be considered in this work; especially, the main reason of considering the conduction
mechanism lies in the conductivity of the liquid. In order to illustrate this point, we
will compare the typical time scales relevant in our flow system. There are four time
scales, namely, the transit drift time scale, τ ∗

K , the travel time of the ions at the electric
drift velocity; the convective time scale, τ ∗

c , the travel time at the velocity of the liquid;
the diffusion time scale, τ ∗

D, the time of ionic diffusion and finally, the ohmic time
scale, τ ∗

σ , for the charges recombination. For the convenience of explanation, we take
the parameters in the typical experiment of McCluskey & Atten (1988) as an example.
In the experiment the typical electric potential is φ∗

0 = 5 kV. The measured velocity
in experiments without the imposed external flow is of the order of U∗ = 40 cm s−1.
The liquid used is benzyl neocaprate (BNC) with the following physical properties,
namely, relative permittivity εr = 3.8, electrical conductivity σ ∗ = 10−9 S m−1 and ionic
mobility K∗ = 5 × 10−9 m2 (V · s)−1. These are also typical values used in some of our
simulations. Taking L∗

y = 1 mm as the typical distance between the wire and the plates,
and L∗

x = 10L∗
y = 10 mm as the streamwise length scale, we have

the transit drift time τ ∗
K = L∗2

y /(K∗φ∗
0 ) � 0.04 s,

the convective time τ ∗
c = L∗

x/U∗ � 0.025 s,

the diffusion time τ ∗
D = L∗2

y /D∗
ν = L∗2

y e∗
0/(K

∗k∗
BT∗) � 104 s,

the ohmic time τ ∗
σ = ε∗/σ ∗ � 0.03 s,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

where the Einstein equation D∗
ν±/K∗± = k∗

BT∗/e∗
0 (Melcher 1981) has been used to describe

the relation between the diffusion coefficients and ionic mobilities, where k∗
B is the

Boltzmann constant, T∗ is the temperature in Kelvins (T∗ ≈ 295 K in McCluskey &
Atten 1988), e∗

0 denotes the elementary electric charge. We can see from (2.1) that the
recombination time τ ∗

σ is close to the transit times τ ∗
K and the convective time τ ∗

c , meaning
that dissociation and recombination of the species cannot be neglected. Particularly, they
become more considerable when the charges are entrained by the velocity rolls into the
bulk of the fluid, where the charges have a longer time to recombine. On the other hand,
because τ ∗

D is much larger than other times, the diffusion effect will be less important in
the bulk region, but its effect in the region close to the bluff body and boundaries should
not be neglected.

In non-polar dielectric liquids (relative permittivity εr ≤ 5) the ions injected
from the electrodes are the same as those of the same polarity involved in the
dissociation–recombination process (Denat, Gosse & Gosse 1979). Then, we will consider
a 1–1 conduction model similar to the one described in Atten & Seyed-Yagoobi (2003),
Vázquez et al. (2019). There are two ionic species in the dielectric liquid, one positive
and one negative, and their volumetric densities are N∗+ and N∗−, respectively, with the
same ionic mobilities K∗+ = K∗−, and the same diffusion coefficients D∗

ν+ = D∗
ν−. The

species are weakly dissociated, so the concentration of the neutral species c∗ can be
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considered constant. In equilibrium

k∗
Dc∗ = k∗

RNeq∗
+ Neq∗

− = k∗
RN∗2

eq , (2.2)

where k∗
D and k∗

R denote the dissociation and recombination rate constants, respectively,
and k∗

R = (K∗+ + K∗−)/ε∗, which is the upper limiting value derived by Langevin (1902).
Here N∗

eq is the equilibrium charge concentration.
Due to electroneutrality, Neq∗

+ = Neq∗
− = N∗

eq = σ ∗/(2e∗
0K∗). Since the electric field

near the wire is strong, the Onsager–Wien effect has to be considered, which describes the
enhancement effect of the electric field on dissociation (Onsager 1934). The dissociation
constant depends on the magnitude of the electric field as (Castellanos & Pérez 2007)

k∗
D(|E∗|) = k0∗

D F(|E∗|) = k0∗
D

I1(4ω(|E∗|))
2ω(|E∗|) , with ω(|E∗|) =

(
e∗3

0 |E∗|
16πε∗k∗2

B T∗2

)1/2

,

(2.3)

where I1 is the modified Bessel function of the first kind and of order 1 and ω(|E∗|) is the
enhanced dissociation rate coefficient. We assume that the positive species are injected
from the wire with a constant concentration N∗+ = Q∗

0/e∗
0, where Q∗

0 is the injected charge
density.

We obtain the governing equations for the wire-plate EHD-Poiseuille flow as follows
(similar to the equations in Vázquez et al. 2019), consisting of the Poisson equation for the
electric potential φ∗, the definition equation of the electric field E∗, the transport equations
for the species concentrations N∗±, the momentum equation and the continuity equation for
the flow field:

∇∗ · (ε∗∇∗φ∗) = −e∗
0(N

∗
+ − N∗

−), (2.4a)

E∗ = −∇∗φ∗, (2.4b)

∂N∗+
∂t∗

+ ∇∗ · (N∗
+U∗ + K∗

+N∗
+E∗ − D∗

ν+∇∗N∗
+)

= e∗
0(K

∗+ + K∗−)(n0∗
eq)2

ε∗

(
F(ω(|E∗|)) − N∗+N∗−

(n0∗
eq)2

)
, (2.4c)

∂N∗−
∂t∗

+ ∇∗ · (N∗
−U∗ − K∗

−N∗
−E∗ − D∗

ν−∇∗N∗
−)

= e∗
0(K

∗+ + K∗−)(n0∗
eq)2

ε∗

(
F(ω(|E∗|)) − N∗+N∗−

(n0∗
eq)2

)
, (2.4d)

ρ∗ ∂U∗

∂t∗
+ ρ∗U∗ · ∇∗U∗ = −∇∗P∗ + μ∗∇∗2U + e∗

0(N
∗
+ − N∗

−)E∗, (2.4e)

∇∗ · U∗ = 0, (2.4f )

where ε∗ is the permittivity of the liquid, ρ∗ the density, n0∗
eq the concentration of the ionic

species at equilibrium, P∗ the pressure and μ∗ the viscosity.
Regarding the boundary conditions for the velocity field, at the inlet, we impose a

parabolic Poiseuille flow. The electric potential obeys a zero normal derivative at the inlet.
The densities of ion species N∗+ and N∗− at the inlet are fixed at a constant that has the same
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value as the initial condition (n0∗
eq in this work) within the domain. Therefore, the boundary

conditions at the inlet read as follows:

inlet : U∗ = − 1
2μ∗

∂P∗

∂x∗ (L∗2
y − y∗2)ex, n · ∇∗φ∗ = 0, N∗

+ = n0∗
eq , N∗

− = n0∗
eq .

(2.5)

At the outlet, we apply the following open boundary condition for all the variables:

outlet : n · ∇∗U∗ = 0, n · ∇∗φ∗ = 0, n · ∇∗N∗
+ = 0, n · ∇∗N∗

− = 0. (2.6)

At the wire surface, a no-slip boundary condition is used for the velocity. In addition,
a constant electric potential φ∗

0 is applied to the wire. For the positive species N∗+, a
constant volumetric density Q∗

0/e∗
0 is injected from the wire and not affected by the nearby

electric field, according to the autonomous and homogeneous hypothesis of the injection
mechanism. The electrode is an open boundary for opposite polarity ions. This means that
we ignore in our computations the very thin layer near the metallic electrodes where the
electron transfer between the ionic species and the electrodes occurs. This is a common
assumption in EHD problems (Castellanos 1991; Pérez et al. 2014; Vázquez et al. 2019).
Therefore, the boundary condition for the negative ions is a zero normal derivative of the
ion concentration. We summarize the boundary conditions at the wire as follows:

wire : U∗ = 0, φ∗ = φ∗
0 , N∗

+ = Q∗
0/e∗

0, n · ∇∗N∗
− = 0. (2.7)

At the plate electrodes, the boundary condition for velocity is also no-slip. The electric
potential is zero, meaning that the plates are grounded. Similar to the process of negative
ions on the wire, the normal derivative of the positive ion concentration at the plate
electrodes is zero, whereas the concentration of the negative species is zero due to
Coulomb repulsion. Thus, the boundary conditions at the plates are as follows:

plates : U∗ = 0, φ∗ = 0, n · ∇∗N∗
+ = 0, N∗

− = 0. (2.8)

2.2. Non-dimensionalized governing equations
In this section we discuss the non-dimensionalization of the equations. We non-
dimensionalize (2.4a)–(2.4f ) by the following scales. The length is non- dimensionalized
by R∗ (the radius of the wire), the time t∗ by R∗2/(K∗+φ∗

0 ), the electric potential φ∗

by φ∗
0 , the electric density N∗± by n0∗

eq , the velocity U∗ by K∗+φ∗
0/R∗, the pressure by

ρ∗K∗2+ φ∗2
0 /R∗2 and the electric field E∗ by φ∗

0/R∗. In addition, due to the electroneutrality,
the electrical conductivity σ ∗ satisfies the equation (Langevin 1903)

σ ∗

K∗+ + K∗−
= e∗

0n0∗
eq . (2.9)
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Numerical analyses of wire-plate electrohydrodynamic flows

Therefore, the non-dimensional governing equations can be obtained as follows:

∇2φ = −C0λ
2(N+ − N−), (2.10a)

E = −∇φ, (2.10b)

∂N+
∂t

+ ∇ · (N+U + N+E − α∇N+) = λ2C0(1 + Kr)(F(ω(|E|)) − N+N−), (2.10c)

∂N−
∂t

+ ∇ · (N−U − KrN−E − Krα∇N−) = λ2C0(1 + Kr)(F(ω(|E|)) − N+N−),

(2.10d)

∂U
∂t

+ U · ∇U = −∇P + 1
ReE ∇2U + λ2C0M2(N+ − N−)E, (2.10e)

∇ · U = 0. (2.10f )

The Onsager function (equation 2.3) becomes

F(|E|) = I1(4ω(|E|))
2ω(|E|) with ω(|E|) = O1/2

s |E|1/2. (2.11)

The corresponding profile of the parabolic 2-D Poiseuille flow can be written as

Ux( y) = 3
2

ReW

ReE

(
1 − y2

L2
y

)
= 3

2
U0

(
1 − y2

L2
y

)
. (2.12)

The non-dimensional parameters are

C0 = σ ∗L∗2
y

(K∗+ + K∗−)ε∗φ∗
0
, Kr = K∗

−
K∗+

, α = D∗
ν±

K∗±φ∗
0

= k∗
BT∗/e∗

0

φ∗
0

, ReW = ρ∗U∗
0 R∗

μ∗ ,

ReE = ρ∗K∗
+φ∗

0

μ∗ , U0 = ReW

ReE
= U∗

0 R∗

K∗+φ∗
0
, M =

√
ε∗

ρ∗

K∗+
, CI = Q∗

0R∗2

ε∗φ∗
0

,

Os = e∗3
0 φ∗

0

16πε∗k∗2
B T∗2R∗ , λ = R∗

L∗
y
, Λ1 = L∗

x1

R∗ , Λ2 = L∗
x2

R∗ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

In the above, C0 is the conduction number, which is the ratio of the drift time L∗2
y /K∗φ∗

0
and recombination time ε∗/σ ∗. The parameter Kr is the ionic mobilities ratio of positive
and negative ionic species. Here α is the charge diffusion coefficient. The hydrodynamic
Reynolds number ReW is the Reynolds number related to the velocity of the cross-flow.
The electric Reynolds number ReE is defined with the drift velocity (ionic transit velocity).
The ratio between ReW and ReE, i.e. U0 measures the non-dimensional mean velocity of
the Poiseuille flow. The mobility number M is the ratio between hydrodynamic mobility
and ionic mobility, and it depends only on the properties of the fluid. The number CI
is the non-dimensional value of the injected charge at the wire. The parameter Os is
the Onsager constant, which describes the Onsager effect (Onsager 1934). In addition,
the blockage ratio λ measures the relative sizes of the radius of the wire to the distance
between the wire and the plates. Finally, Λ1 and Λ2 denote the ratio of the length of the
left or right half of the plates to the radius of the wire. For the initial conditions, we start
the nonlinear numerical simulation with no flow (U = 0) and N+ = N− = 1. In addition,
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x = 0x = –Λ1
x = Λ2

y = –1/λ

y = 0

y = 1/λ

y

O
x

N+ = N– = N0

N– = 0

N+ = CI /λ
2C0

N– = 0

n . ∇N+ = 0

n . ∇U  = 0

n . ∇N– = 0

n . ∇N+ = 0

n . ∇N+ = 0

n . ∇N– = 0 n . ∇φ = 0n . ∇φ = 0

Ux =   U0(1 – y2λ2)

Uy = 0

Λ1
Λ2

3
2

2

1

U = 0

U = 0

U  = 0

φ = 0

φ = 1

φ = 0

λ

Figure 2. Geometry and boundary conditions of wire-plate EHD-Poiseuille flow.

figure 2 depicts the non-dimensional domain with the boundary conditions, which are also
listed as follows:

inlet : U = 3
2

U0

(
1 − y2

L2
y

)
ex, n · ∇φ = 0, N+ = N0 = 1, N− = N0 = 1;

outlet : n · ∇U = 0, n · ∇φ = 0, n · ∇N+ = 0, n · ∇N− = 0;
plates : U = 0, φ = 0, n · ∇N+ = 0, N− = 0;

wire : U = 0, φ = 1, N+ = CI

λ2C0
, n · ∇N− = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

Similar to the classical Newtonian cylindrical wake flow, our wire-plate EHD flow will
also become time dependent once the driving parameters exceed some critical values.
In the field of hydrodynamic instability, the global stability analysis (Theofilis 2011) has
been well developed to study the stability of a certain base flow. This base flow could be
the time-averaged flow or the unstable steady base flow. The latter means a solution to
the Navier–Stokes equations and it can be obtained via the selective frequency damping
(SFD) method (Akervik et al. 2006). This method adds a forcing term to the right-hand
side of the governing equations

− χ(G − Ĝ), (2.15)

where G = (N+, N−, φ, U)T and χ is the control coefficient. Here Ĝ is the modification
of G with reduced temporal fluctuations, which reads ∂Ĝ/∂t = (G − Ĝ)/Δ, where Δ

denotes the filter width, which is the inverse of the cutoff angular frequency ωc. The
convergence of the SFD method is influenced by the filter width Δ, as well as the control
coefficient χ . The guideline for choosing the parameters has been given in Akervik et al.
(2006) as χ ≥ ωr, Δ = 1/ωc ≥ 2/ωi, where ωr and ωi denote the real and imaginary parts
of the leading eigenvalue, respectively.

In addition, the lift force FL and drag force FD on the wire surface will be computed.
They can be used to further define the lift and drag coefficients as

Cl = FL

RU2
0
, Cd = FD

RU2
0
. (2.16a,b)
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Numerical analyses of wire-plate electrohydrodynamic flows

2.3. Linearization
In order to understand the perturbative dynamics in the wire-plate EHD-Poiseuille flow, we
perform a linear stability analysis by linearizing the above nonlinear governing equations
(Schmid & Henningson 2001). From a mathematical point of view, the linearization
step is to find the linear approximation of the function at a fixed point, that is, the
first-order Taylor series of the function around that point. In this work the base flow is
time independent. When the EHD flow is steady, we can use the final steady state of the
nonlinear simulation as the base flow. When the EHD flow is oscillatory, the SFD method
is applied to obtain the steady solution. In some cases of the wire-plate EHD flows with
a strong cross-flow, time-averaged mean flow is also used as the base flow. In this work
we use the lower-case variables for the perturbation and the variables with bars for the
base flow. The linearization step is based on the Reynolds decomposition, i.e. the total
flow state is decomposed into the base flow component and the perturbation, i.e. f total =
F̄ + f = (φ̄, Ē, N̄+, N̄−, Ū, P̄)T + (ϕ, e, n+, n−, u, p)T . The Reynolds decomposition is
substituted into the nonlinear equations and the nonlinear terms of the perturbation are
neglected to arrive at the linearized equations. After the linearization step, the linear
equations for the wire-plate EHD-Poiseuille flow read

∇2ϕ = −C0λ
2(n+ − n−), (2.17a)

e = −∇ϕ, (2.17b)

∂n+
∂t

+ ∇ · ((Ē + Ū)n+ + (e + u)N̄+) − α∇2n+

= λ2C0(1 + Kr)(X(|Ē|) Ēx

|Ē|ex + X(|Ē|) Ēy

|Ē|ey − N̄+n− − N̄−n+), (2.17c)

∂n−
∂t

+ ∇ · ((−Ē + Ū)n− + (−e + u)N̄−) − α∇2n−

= λ2C0(1 + Kr)(X(|Ē|) Ēx

|Ē|ex + X(|Ē|) Ēy

|Ē|ey − N̄+n− − N̄−n+), (2.17d)

∂u
∂t

+ (u · ∇)Ū + (Ū · ∇)u = −∇p + 1
ReE ∇2u

+ λ2C0M2[(n+ − n−)Ē + (N̄+ − N̄−)e], (2.17e)

∇ · u = 0, (2.17f )

where

X(|Ē|) = F′(|Ē|)ω′(|Ē|) = I′
1(4ω(|Ē|)) · 4ω(|Ē|) − I1(4ω(|Ē|))

4(ω(|Ē|))2
· 1

|Ē|1/2
. (2.18)

It is noted that the derivative of the modified Bessel function of the first kind and γ th-order
satisfies the relationship I′

γ (x) = 1
2(Iγ−1(x) + Iγ+1(x)), where the prime denotes the

derivative with respect to the argument, and we have γ = 1 in this work. The linear
boundary conditions read as follows:

inlet : u = 0, n · ∇ϕ = 0, n+ = 0, n− = 0;
outlet : n · ∇u = 0, n · ∇ϕ = 0, n · ∇n+ = 0, n · ∇n− = 0;

plates : u = 0, ϕ = 0, n · ∇n+ = 0, n− = 0;
wire : u = 0, ϕ = 0, n+ = 0, n · ∇n− = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.19)
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For simplification, the above linearized equations are written in the following form:

∂f
∂t

= Lf . (2.20)

Here L represents the linearized operator for the wire-plate EHD-Poiseuille flow. When
a time-independent base flow is considered in the linear stability analysis, a wave-like
assumption in time can be made to the solution

f (x, y, t) = f̃ (x, y) eωt. (2.21)

Inserting this expression into (2.20) leads to an eigenvalue problem

ωf̃ = Lf̃ , (2.22)

where ω is the complex-valued eigenvalue corresponding to the eigenvector f̃ . The real
part ωr denotes the temporal growth rate of perturbations. The sign of the leading mode
determines the stability/instability of the linearized system. If ωr > 0, the perturbation will
grow exponentially at a large time; otherwise, the perturbation will decay. The imaginary
part ωi represents the frequency of the eigenmode.

2.4. Numerical methods
The DNS in this paper are conducted using the high-order open-source computational
flow solver Nek5000 based on the spectral element method (Fischer, Lottes & Kerkemeier
2008). The code adopts the PN − PN−2 formulation (Fischer & Patera 1991) for the spatial
discretisation with the polynomial order N = 7 in our simulations. The semi-implicit
scheme BDF2/EXT2 is adopted for time integration. The time step δt satisfies the
Courant-Friedrichs-Lewy condition with the target Courant number being 0.5 for the
nonlinear simulation and 0.25 for the linear simulation. Meanwhile, the global eigenvalue
problem for the linear system is solved by the matrix-free time-stepping method called the
implicitly restarted Arnoldi method (IRAM) (Edwards et al. 1994; Lehoucq & Sorensen
1996; Tuckerman & Barkley 2000) in the Nek5000 solver.

3. Result and discussions

In this section we present the results of DNS and linear global stability analysis for the 2-D
wire-plate EHD-Poiseuille flow. As mentioned earlier, we will study three different flow
settings, i.e. without a cross-flow, with a weak cross-flow and with a strong cross-flow. For
the case without a cross-flow, the aim is to examine the flow structure and instability of the
EHD flow in a wire-plate configuration. The case with a weak cross-flow is highly related
to the flow dynamics in ESP. Finally, when a strong cross-flow is imposed, the overall flow
resembles the classical cylindrical wake confined between two walls. This part will reveal
how the electric field influences the wake behind the wire and its instability. We have fixed
the ratio of the wire diameter to the channel height as 0.2. This value can be changed to
study the confinement effect. Nevertheless, this is not considered in this work as our focus
is on the three flow patterns to be discussed below.

The validation of our numerical simulations is shown in the appendices. In Appendix A
we verify the nonlinear code by comparing our results with those in the experimental work
(McCluskey & Atten 1988; Verhelst & Nieuwstadt 2004) and the numerical work (Xiong,
Bruneau & Kellay 2013). In Appendix B we prove the robustness of the linear solver by
comparing the leading eigenvalues of the confined cylinder wake flow obtained by our
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Numerical analyses of wire-plate electrohydrodynamic flows

code with those in Li & Zhang (2022). Moreover, the grid independence tests are reported
in Appendix C.

3.1. Wire-plate EHD flow without a cross-flow
We first investigate the stability of the wire-plate EHD flow without a cross-flow.
Theoretically, there exists a critical value of the electric voltage beyond which the
EHD flow transitions from the conduction regime to the injection regime. When the
electric field is weaker than this threshold, only the conduction mechanism related to the
dissociation–recombination process is at play. Once the electric field at the wire electrode
excedes this critical value, the injection can occur, and it will play a leading role as the
electric field becomes stronger. In the experiment of McCluskey & Atten (1988), this
critical voltage was tested to be around 2 kV, and the corresponding critical mean electric
field between wire and plates was approximately 1.2 × 106 V m−1. This critical value,
expressed in our non-dimensionalization method, corresponds to the dimensionless critical
ReE = 0.23. That is, when ReE < 0.23, only the conduction mechanism is significant;
otherwise, both conduction and injection of the species need to be considered, and the
latter dominates, which we call the injection regime. Thus, the study of this EHD flow
without a cross-flow is divided into two parts, namely the conduction regime (ReE <

0.23, CI = 0) and the injection regime (ReE > 0.23, CI = 0.2). Besides, this flow is
featured by many parameters and we are not able to consider the effect of all of them, so
the values of the other parameters are fixed at C0 = 3, M = 37, Kr = 1, Os = 8.6, λ = 0.2
and α = 0.001.

It will be seen that the nonlinear flow in the conduction regime is steady whereas those
in the injection regime may be oscillatory at large ReE. We attribute the instability in the
injection regime to a global instability mechanism. Thus, we conduct the global stability
analysis of the flows in these two regimes.

3.1.1. Conduction regime
Figure 3 depicts the final steady state of the distribution of positive and negative species,
net charges (N̄+ − N̄−), x velocity and y velocity at ReE = 0.1 (conduction regime).
The solid lines in panel (d) are the streamlines. In the conduction regime, charges are
generated everywhere in the domain. It can be found from panels (a) and (b) that the
charges accumulate at the electrode of the opposite polarity. The distribution of charges
is controlled by electric drift (N±E) and liquid convection (N±U). The concentration of
net charges is displayed in panel (c), which shows that negative charges accumulate near
the wire and positive charges exist near the plates. From panels (d) and (e), we can see
that there are two pairs of vortices in the lower half of the region, one large and one small
near the wire, rotating in opposite directions. The whole flow field is symmetrical about
the centreline. Panel ( f ) presents the distribution of several variables at x = 0, including
the density of positive and negative species, net charges, electric potential and y velocity.
It can be clearly seen that approaching the plate electrodes, the potential decreases from 1
to 0, and the positive (negative) species density increases (decreases), respectively, and the
density of net charges changes from negative to positive. It is observed from the y velocity
that the flow near the wire is directed toward the cylinder.

Figure 4(a) shows the leading growth rates of the linearized wire-plate EHD flow in
the conduction regime at different electric Reynolds numbers. The imaginary parts of
the eigenvalues, representing the frequency of the base flow, are zero. We find that the
growth rate increases with increasing ReE, indicating that the linear system becomes
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Ūy
0
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3
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1
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y

0 01.5 0.03

N̄–

Ūy

N̄+

N̄+ – N––

φ̄

(b)(a)

(d )(c)

(e)

( f )

N̄–, N̄+, N̄+ – N̄–, φ̄

Figure 3. Steady state of the wire-plate EHD flow without cross-flow at ReE = 0.1, CI = 0 (thus, the ion
generation mechanism is the dissociation process). Distributions of (a) positive species, (b) negative species,
(c) net charges, (d) x-velocity field and streamlines, (e) y-velocity field and ( f ) positive and negative species
N̄+, N̄−, net charges N̄+ − N̄−, electric potential φ̄ and y-velocity Ūy along the line of x = 0.

more unstable at larger electric intensity. Figure 4(b–e) displays the eigenvectors of the
leading eigenmode for positive and negative ion species and velocity in the x and y
directions at ReE = 0.1. We can see that the perturbations of positive and negative ions are
concentrated near the plate electrodes, and their values have opposite signs. Additionally,
the eigenvectors of x velocity and y velocity are symmetric with respect to the vertical
line x = 0. These results may be instructive to gain more insight into the instability of the
EHD conduction pumping in a wire-plate electrode configuration that uses the conduction
mechanism to generate the ions. Particularly, the eigenvectors present the region where the
perturbations accumulate and develop.

3.1.2. Injection regime
Then we explore the injection regime of the wire-plate EHD flow without cross-flow. We
plot the final steady state of the nonlinear wire-plate EHD flow at CI = 0.2, ReE = 0.9 in
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Figure 4. (a) Growth rates of the conduction regime of a wire-plate EHD flow without cross-flow at different
electric Reynolds numbers, the frequencies are all zero; and the corresponding leading eigenvectors at ReE =
0.1, CI = 0 for (b) positive charge density; (c) negative charge density; (d) x velocity; (e) y velocity.

figure 5(a–d). We find from panel (a) that in the injection regime the positive species hit
the plate vertically under the action of the Coulomb force. The negative species generated
by the dissociation process are also concentrated in the central region, as shown in panel
(b). The distribution of the net charges is shown in panel (c), which resembles the pattern
of positive species, leading to flow convection and the formation of two pairs of vortices
(panel d). At larger ReE, the flow becomes oscillatory, as shown in figure 5(e), which
displays the time evolution of maximum velocity magnitude in the flows at ReE = 0.9 and
ReE = 1.2, respectively. Three snapshots of the oscillatory flow at ReE = 1.2 are further
presented in figure 5( f ), from which we can see that the beam of positive species swings
left and right.

As mentioned earlier, we adopt the global stability analysis to understand this oscillatory
flow. In order to get a time-independent base flow for the linear stability analysis of the
oscillatory flow at ReE = 1.2, the SFD method is applied. The base states in this case
resemble those in figure 5 at ReE = 0.9 and, thus, will not be presented. We plot in figure 6
the concentration of positive and negative species, the electric potential as well as the
y velocity in the upper part of the domain along the line of x = 0. Compared with the
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(d )(c)
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Figure 5. Nonlinear simulation of wire-plate EHD flow without a cross-flow at CI = 0.2 (thus, the dominant
ion generation mechanism is injection; which is the same for the cases below with CI > 0). Distribution of
(a) positive species; (b) negative species; (c) net charges and (d) velocity magnitude and streamlines at ReE =
0.9. (e) Time evolution of maximum velocity magnitude at different ReE. ( f ) Concentration of positive species
at ReE = 1.2 at different times, from top to bottom, t = t1, t2, t3, as shown in the inset of panel (e).

conduction regime (figure 3f ), we find that the electric potential shows a similar trend. In
addition, the densities of both kinds of ion species decrease with increasing y except that
near the plate electrode, the positive species density increases due to the accumulation,
and the negative ones continue to decrease to zero. Moreover, we find that the magnitude
of the velocity in the injection mechanism is positive and two orders of magnitude greater
than that in the conduction mechanism, which is also found in the experimental study of a
needle-plate configuration (Sun et al. 2020).

Figures 7(a) and 7(b) present the results of the global stability analysis of the flows using
the IRAM, e.g. the growth rates and frequencies of the linearized flow in the injection
regime at different electric Reynolds numbers. Panel (a) illustrates that the growth rate
increases linearly with the increase of ReE, meaning that larger ReE renders the flow
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Figure 6. Concentration of positive and negative species, electric potential and y velocity along the line of
x = 0 of the SFD base flow of a wire-plate EHD flow without cross-flow in the injection regime at ReE =
1.2, CI = 0.2.
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Figure 7. (a) Growth rates and (b) frequencies of a wire-plate EHD flow without cross-flow in the injection
regime at different electric Reynolds numbers obtained by IRAM and nonlinear simulations. The inset of panel
(a) is the log plot of the amplitude of Ux vs t, and its slope in the linear phase gives the linear growth rate. The
inset of panel (b) shows the x-velocity evolution of point (0,0.25) in a nonlinear simulation at ReE = 0.9, 1.2.
The corresponding leading eigenvectors at ReE = 1.2 are shown: (c) positive charge density; (d) negative charge
density; (e) x velocity; ( f ) y velocity.

more unstable. In addition, the critical electric Reynolds number is found to be ReE
w/,c =

0.98, above which the flow transitions from stable to unstable, and the oscillation occurs.
Moreover, the frequency also increases with increasing ReE. Superposed on the IRAM
results are the results of the nonlinear simulations of a slightly disturbed SFD base flow,
represented by red stars. The perturbation will undergo a linear stage, as shown in the inset
of panel (a), indicated by the dashed lines. The values of the slopes in the simulations are

966 A4-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.419


X. He, P.A. Vázquez and M. Zhang

–150 0 150

5 150

100

50

0

–50

–100

–150

4

3

2

1

10 15 20 25 30

t

y

(b)(a)

Figure 8. (a) The leading eigenvectors of a wire-plate EHD flow without a cross-flow at ReE = 1, CI = 0.2
for pressure. (b) Pressure perturbation at x = 0.5 of the upper plate (red line in panel (a)) as a function of y and
time.

compared favourably to the growth-rate results of IRAM. In panel (b) the inset shows the
evolution of the disturbance in Ux at point (0,0.25) for ReE = 0.9 (stable) and ReE = 1.2
(unstable). The frequency information is extracted from the linear stage in these time
series and also compared favourably to the frequency results of IRAM. Figures 7(c)–7( f )
show the eigenvectors of the leading eigenmodes at ReE = 1.2, and they display different
patterns compared with those in the conduction regime (figure 4b–e). Additionally, it can
be seen that there is a change of symmetry in the perturbation distributions for the positive
and negative charge density as well as the velocity fields from figures 4–7. The former are
symmetric with respect to the vertical central plane, whereas the latter are antisymmetric.

A discussion on the instability mechanism of wire-plate EHD flow in the injection
regime is in order. Figure 8(a) shows the linear eigenvector of the pressure of the wire-plate
EHD flow without a cross-flow at ReE = 1, which is slightly larger than the critical value,
as shown in figure 7(a). We plot in figure 8(b) the time series of the pressure perturbation at
x = 0.5 of the upper plate (red line in panel a). It illustrates that the maximum (minimum)
pressure near the wire propagates upward to the plate electrode, indicating that there is a
pressure feedback mechanism. It seems that the high pressure near the plate caused by the
impinging flow leads to an increase in pressure near the wire, which creates a feedback
loop. This pressure feedback mechanism may be a major cause for system instability,
which is also observed in thermal plumes (Lesshafft 2015) and cavity flows (Akervik et al.
2007).

3.2. Wire-plate EHD flow with a weak cross-flow
When a weak flow is imposed, the positive charges will be convected downstream and hit
the plate electrodes obliquely. Such a pattern is common in ESP, in which the charged
particles attached by ions will advect downstream and settle on the plates due to the
EHD secondary flow. Via the study of this case, we hope to improve our understanding
of the dynamics of the large-scale flow structures in ESP. Firstly, the streamlines of the
flow field and the distribution of charge density may be helpful to unravel the interaction
between electric field and flow field. Additionally, it has been pointed out that reducing
the generation of turbulence helps increase the deposition efficiency of ESP (Leonard
et al. 1983). Our global linear stability analysis of this flow is conducive to a deeper
understanding of the flow instability in ESP.
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3.2.1. The EHD flow and the pressure field on the wire
We first investigate the time evolution of the wire-plate EHD flow with a weak cross-flow
at the parameters C0 = 3, M = 37, Kr = 1, CI = 0.2, Os = 8.6, U0 = 0.3, λ = 0.2 and
α = 0.001. In figure 9(a) we show the time evolution of the maximum velocity norm of
the nonlinear wire-plate EHD-Poiseuille flow at ReE = 4 and ReE = 6, respectively. We
observe that at ReE = 4, the velocity field remains in a steady state. The distribution of
charges and the velocity field of the steady state are presented in figure 9(b–e). It can
be seen from panels (b) and (c) that the beams of positive and negative species both
tilt downstream and hit the plate electrodes. We find from panel (d) that the vortices
also tilt downstream. At larger ReE = 6, a periodic oscillation emerges (figure 9a).
Figure 9( f,g) exhibits the positive species concentration and velocity magnitude field of
the time-periodic state at different times at ReE = 6. It can be seen that the charge beams
swing strongly. Such a flow condition is unfavourable for the ESP collecting the charged
dusts. This is because the charged beams and the corresponding flow structures will bounce
back after hitting the walls, bringing the charged dusts back to the bulk region. This seems
to suggest the importance of choosing a proper voltage applied on the wire when operating
the ESP. It is advisable to apply a voltage that is lower than the oscillatory threshold, so
that on one hand the EHD secondary flow is intense enough to carry the dust to the plate
electrodes, and on the other hand, it avoids the instability/chaotic flows caused by the EHD
effect, which may reduce the collection efficiency.

Now we would like to discuss the effect of EHD flow on the drag on the wire when the
cross-flow is weak. It is noted that the drag on the bluff body is a net force in the streamwise
direction due to the pressure and shear forces. Therefore, the drag coefficient can be
divided into two parts, i.e. the distributions of pressure and shear forces, respectively.
We define the pressure drag coefficient Cdp and the friction drag coefficient Cdf following
Achenbach (1968),

Cd = Fd

RU2
0

= Fdp

RU2
0

+ Fdf

RU2
0

= Cdp + Cdf , (3.1)

where Fdp is related to the pressure drag on the wire and Fdf the shear stress on the wire.
Figure 10 shows the Cd, Cdp and Cdf at U0 = 0.3 in the case of no EHD effect (cylinder
flow), with the EHD effect at ReE = 4 and ReE = 6, respectively. It can be seen from panel
(a) that the presence of the EHD flow reduces the drag on the wire. When ReE increases
from 4 to 6, although the system starts to oscillate, the average drag coefficient is less
than that at ReE = 4. This indicates that the EHD flow will cause less of a pressure drop
and a larger flow rate in ESP. In the study of turbulent flow in wire-plate ESP, Soldati &
Banerjee (1998) also found that EHD flow reduces drag since the mean velocity increases
at a constant pressure drop in the presence of the EHD flow. Additionally, from panels (b)
and (c), we can observe that the reduction drag is mainly caused by the decrease of Cdf ,
indicating that the EHD flow reduces the shear forces on the wire surface. A further note
is on the negative dip of the Cd, Cdp, Cdf values when the flow is initiated, which may
be related to the specific initial condition we considered in this weak cross-flow case. We
observe that there are two plumes inclined at around 45◦ with respect to the aft direction,
which may give rise to the negative dip of the drag coefficients. The results of this part
illustrate that a proper EHD effect in ESP can drift particles to the plate electrodes and also
increase the flow rate due to the reduced pressure drop. Animations have been provided
for the weak cross-flow case as supplementary movies available at https://doi.org/10.1017/
jfm.2023.419.
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Figure 9. (a) Evolution of the maximum velocity norm of a nonlinear wire-plate EHD-Poiseuille flow at U0 =
0.3 vs ReE. The instants t4, t5, t6 in the zoomed-in view denote three sampling times that are depicted in
panels ( f ) and (g). Distribution of (b) positive species, (c) negative species, (d) x-velocity field and streamlines,
(e) y-velocity field of the final steady state of a wire-plate EHD flow with a weak cross-flow at U0 = 0.3,

ReE = 4. Distribution of ( f ) positive species density and (g) the velocity magnitude of a wire-plate EHD flow
with a weak cross-flow at a periodic state at U0 = 0.3, ReE = 6. In each panel, from top to bottom, the time
stamps are t = t4, t = t5, t = t6, respectively (t4 − t6 can be found in panel (a)).
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Figure 10. Comparison for time evolution of the drag coefficient (a) Cd and its decomposition of (b) the
pressure drag coefficient Cdp and (c) the friction drag coefficient Cdf between the cylinder wake flow and
wire-plate EHD-Poiseuille flow at ReE = 4 and ReE = 6 at U0 = 0.3. The dash lines denote the time-averaged
value of Cd , Cdp and Cdf in the oscillation state.

3.2.2. Global stability analysis of the EHD flow
Next, we present the results on the linear stability analysis. Again, when the final state is
a steady flow, we use that final state as the base flow. When the flow is unsteady, the SFD
method is adopted to obtain the base flow. Firstly we examine the stability of the linearized
flow at different electric field intensities. The parameters are C0 = 3, M = 37, Kr =
1, CI = 0.2, Os = 8.6, U0 = 0.3, λ = 0.2 and α = 0.001. Figures 11(a) and 11(b) show
the growth rates and frequencies of the wire-plate EHD flow with cross-flow for different
electric Reynolds numbers ReE. We can see that with the increase of ReE, the growth rate
increases, meaning that the flow becomes more unstable. Additionally, the critical electric
Reynolds number is examined to be ReE

weak,c = 4.44, indicating that passing this critical
value, the flow transitions from a steady to a time-periodic oscillation. This is consistent
with the results in figure 9(a). Moreover, the frequency increases with increasing ReE.

We then investigate the effect of cross-flow intensity on the stability of the linear
system. The parameters are C0 = 3, M = 37, Kr = 1, CI = 0.2, Os = 8.6, λ = 0.2 and
α = 0.001. Figures 11(c) and 11(d) display the growth rates and frequencies at different
U0 and ReE = 4.5 in the wire-plate EHD-Poiseuille flow. It can be observed that the
growth rate of the perturbations increases with increasing U0, and the critical U0 is
found to be 0.295. It indicates that the increase of cross-flow intensity leads to a more
unstable flow. It may imply that the speed of the carrying flow in the ESP should not
be too large; otherwise, it will lead to flow instability, rendering the flow oscillatory and
reducing the working efficiency of ESP. This to some extent seems to be consistent with
the conclusion in Leonard et al. (1983). We can observe from panel (d) that the frequency
also increases with the increase of U0 that may be due to the enhancement of inertial flow
increasing the phase speed. The global eigenvectors of the most unstable mode for the
wire-plate EHD-Poiseuille flow with a weak flow at U0 = 0.3 and ReE = 4.5 are shown
in figures 11(e)–11(h). We can see that they are similar to those in the injection regime of
the wire-plate EHD flow without a cross-flow (figure 7), but tilted downstream, indicating
that the EHD flow plays a more important role when the cross-flow is weak.

3.3. Wire-plate EHD flow with a strong cross-flow
When the cross-flow is strong, the Poiseuille flow plays a leading role in the system.
Via this flow configuration, we can examine the effect of the electric field on the
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Figure 11. Growth rates and frequencies of a wire-plate EHD flow with a weak cross-flow at (a,b) different
ReE at U0 = 0.3, and (c,d) different U0 at ReE = 4.5, and the corresponding leading eigenvectors at U0 =
0.3, ReE = 4.5 for (e) positive charge density, ( f ) negative charge density, (g) x velocity, (h) y velocity.

wake flow. In this section we will mainly vary the cross-flow velocity U0 and the remaining
parameters are fixed at C0 = 3, M = 37, Kr = 1, CI = 0.2, Os = 8.6, λ = 0.2, ReE = 2.4
and α = 0.001.

3.3.1. Oscillatory wake flow
As shown in figure 12, at a steady state, the charge forms a long line behind the wire
and flows to the outlet (with U0 = 7). Additionally, the recirculation zone can be clearly
distinguished from the distribution of the positive species behind the cylinder. When the
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1.0 –10 –5 0 5 101.2 1.4 1.7 (b)(a)

Figure 12. The final steady state of nonlinear simulation for wire-plate EHD-Poiseuille flow at U0 = 7.
(a) The concentration of positive species, (b) vorticity.

Sampling point (10,0)

(b)(a)

(d)(c)

Figure 13. Nonlinear simulation for cylinder wake flow and wire-plate EHD-Poiseuille flow at (a) U0 = 12 at
t = 75, (b) U0 = 15 at t = 40, (c) U0 = 18 at t = 30, (d) U0 = 21 at t = 20. In each panel, from top to bottom,
they are vorticity of a Newtonian cylinder wake flow, vorticity of a wire-plate EHD-Poiseuille flow, positive
charge density of a wire-plate EHD-Poiseuille flow.

cross-flow is stronger, vortex shedding will occur. Figure 13 illustrates the vortex shedding
in the wake at different U0 of the Newtonian cylinder wake and wire-plate EHD-Poiseuille
flow, respectively. We find that the velocity fields are similar in the cases with and without
the EHD effect. In addition, from the distribution of positive species (bottom figure in each
panel), we observe that, interestingly, the charges in the wire-plate EHD-Poiseuille flow
also undergo oscillatory motions and accumulate at the centres of the vortices.

Similar to the cylinder wake flow, this unstable motion is caused by the
Kelvin–Helmholtz instability due to the high shear layer that exists near the cylinder
surface. This instability leads to a rolling up and a separation of fluid from the surface
of the cylinder causing the formation of vortex shedding (Nishioka & Sato 1978; Nair &
Sengupta 1996). To understand the phenomenon that the ions are trapped in the centres
of the vortices and convected with them, one may resort to the similar dynamics of the
(passive) particles in the sheared flow. It has been studied in the work of particle dispersion
in a jet that the influence of large-scale structures on the particle motion mainly depends on
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Figure 14. Comparison for time evolution of the nonlinear results between a cylinder wake flow (black lines)
and wire-plate EHD-Poiseuille flow (red lines) at different U0. Results are shown for (a) Ux at the sampling
point (10,0), (b) Uy at the sampling point (10,0), (c) Cl for the wire, (d) Cd for the wire.

the ratio of the particle aerodynamic response time to the flow characteristic time (Chung
& Troutt 1988). If the ratio is much smaller than 1, the particles can quickly respond to the
large-scale vortex, and will closely follow the flow streamlines. The dynamics of the ions
in our results may be understood similarly. In the case with a strong cross-flow, the effect
of Coulomb force (N±E) on the movement of ions is weak compared with the convection
(N±U). The (massless) ions are thus weakly influenced by the electric field, but strongly
affected by the fluid motion. They act like the passive scalar in a strongly convected flow.
Thus, the ions are entrained by the flow and move into the vortex centres.

3.3.2. The EHD effect on the wake flow: lift and drag coefficients
Figure 14 compares the time evolution of Ux, Uy at a sampling point (10,0) (shown
in figure 13a) and Cd and Cl for the wire with and without the EHD effect
with U0 = 12, 15, 18, 21 (the corresponding hydrodynamic Reynolds number ReW =
28.8, 36, 43.2, 50.4, respectively). First, in all panels, one can observe that the EHD effect
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has brought forward the start of the vortex shedding. The transient phase is due to the
fact that we use a zero velocity field as the initial condition. Numerical simulations of the
cylinder wake subjected to a DC electric field have been performed by Barz et al. (2018).
The electrodes are placed around the cylinder at different angles, and there is a small
electrokinetic velocity at the cylinder surface. Their results showed that a vertical
equivalent electrostatic force component reduces the time required for a stable vortex to
disengage, which is similar to our results in wire-plate EHD-Poiseuille flow. Panel (a)
shows that in the vortex shedding phase the presence of charges slightly increases the
oscillatory streamwise velocities. In panel (b) we find that the EHD effect decreases the
oscillation amplitude of the y velocity at U0 = 12, but it has little effect on the y velocity at
larger U0. Panel (c) shows the EHD effect on the lift coefficient Cl, where the amplitude of
oscillating Cl in the Newtonian cylinder wake is slightly smaller than that in the EHD case.
This means that the EHD effect can increase the maximum lift coefficient in the wake flow.
Moreover, the values of the drag coefficient Cd in panel (d) increase significantly due to
the imposed EHD effect. As the cross-flow intensity increases, the boosting effect becomes
weaker (from left to right).

We would like to investigate further how the electric field influences the drag in the
EHD wake flow. We check the two parts of the drag coefficient, i.e. the pressure drag
coefficient Cdp and the friction drag coefficient Cdf , separately for both cylinder wake flow
and wire-plate EHD-Poiseuille flow, as shown in figure 15. It can be observed from the four
panels that within the parameters we choose, Cdp are all higher than Cdf , indicating that
pressure contributes more to the drag forces. In addition, from every panel, we find that
the EHD effect can increase both Cdp and Cdf . However, the increase of Cdf by the EHD
effect is small in these four cases, and the increased value decreases with increasing U0. On
the other hand, the enhancement of Cdp is more significant, which indicates that the EHD
effect mainly boosts the pressure drag, even though the enhancement also becomes weaker
as U0 increases. On the other hand, when examining the recirculation zone (displayed in
the mean flow fields at U0 = 12 as shown in panels (b) and (d) of figure 17), we find that the
recirculation zone becomes smaller and the separation points move aft when we consider
the effect of the electric field. In order to further explore the reason for the increase of Cdp
by the EHD effect, we plot the distribution of the projection of the pressure on the x axis
(denoted as Px in figure 16) acting on the upper half-wire with respect to the arc length θR,
as shown in figure 16. Taking the wire-plate EHD-Poiseuille flow as an example, the drag
force due to the pressure can be regarded as the net area enclosed by the red line and the x
axis, that is, Ω1 + Ω3 − Ω2. Therefore, we can find that the increase of the Cdp is mainly
because the charge injection increases the pressure on the back face of the wire, though it
shrinks the recirculation zone.

3.3.3. Global stability analysis of the EHD flow
It has been found that, for the cylinder wake (Barkley 2006), the nonlinear oscillating
frequencies obtained from DNS are close to the frequency obtained from a linear stability
analysis based on the time-mean flow field. In addition, the growth rate is virtually
zero. This property is called the real-zero imaginary-frequency (RZIF) property (Turton,
Tuckerman & Barkley 2015). It also exists in travelling waves of thermosolutal convection
(Turton et al. 2015), and the ribbons and spirals of counter-rotating Taylor–Couette flow
(Bengana & Tuckerman 2019). In order to estimate whether the wire-plate EHD flow with
a strong cross-flow has the RZIF property, we use both the time-mean flow and SFD base
flow to carry out the global linear stability analysis in this section.
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Figure 15. Comparison for time evolution of the drag coefficient Cd and its decomposition of the pressure drag
coefficient Cdp and friction drag coefficient Cdf between the cylinder wake flow (with the superscript ‘cyl’)
and wire-plate EHD-Poiseuille flow (with the superscript ‘EHD’) at ReE = 2.4 at (a) U0 = 12, (b) U0 = 15,
(c) U0 = 18, (d) U0 = 21.
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Figure 16. The streamwise pressure distribution with respect to the arc length acting on the upper half-wire
for a cylinder wake flow and wire-plate EHD-Poiseuille flow at ReE = 2.4 and U0 = 12. Here Ω1–Ω3 denote
the area of the shaded parts.
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(a) (b)

(c) (d)

(e) ( f )

(0.510,0.860)

(0.532,0.847)

Figure 17. The SFD base flow (a,c,e) and mean flow (b,d, f ) for the cylinder wake flow and wire-plate
EHD-Poiseuille flow at U0 = 12. From top to bottom, they are (a,b) vorticity of the cylinder wake flow, (c,d)
vorticity of the wire-plate EHD-Poiseuille flow, (e, f ) positive charge density of the wire-plate EHD-Poiseuille
flow. The black solid lines are the outlines of the recirculation zones and the black dots are the separation
points.

Figure 17 shows the SFD base flow (left panels) and time-mean flow (right panels) for
the Newtonian cylindrical wake and the wire-plate EHD flow at U0 = 12. It can be found
from panels (a) and (c) that the vorticity fields of the SFD base flow in the two cases
resemble each other. In addition, the positive charge distribution of the SFD base flow
(panel e) shows a similar pattern to the steady flow as shown in figure 12. The vorticity
field of the time-mean fields of the cylinder wake and the wire-plate EHD-Poiseuille flow
are displayed in panels (b) and (d), respectively. We can see that the mean flows for the
two types of flows are similar, and display a different pattern from SFD base flows (panels
a and c), where the vorticity concentrates only near the wire. Moreover, from panel ( f ),
we find that the concentration of positive species is also near the wire. It is noted that the
expanded structure in panel ( f ) is due to the vortex shedding bringing the positive charges
to these downstream regions. Once these positive charges are time averaged, one can see
such a pattern.

Figure 18 presents the growth rates and frequencies of a Newtonian cylinder wake flow
and wire-plate EHD-Poiseuille flow at different U0 based on SFD base flow and mean flow.
The growth rates in panel (a) resulting from the SFD base flow of the cylinder wake (black
solid line with circle symbols) and wire-plate EHD-Poiseuille flow (red solid line with
square symbols) illustrate that although the presence of the charges has little effect on the
flow pattern, it boosts the instability of the system. We note that the instability threshold for
the flow without the EHD effect is about U0c = 9.68, and it matches with the critical value
for a flow past a confined cylinder (U0c = 9.63) obtained by Sahin & Owens (2004). The
threshold reduces to 7.43 with the EHD effect. In addition, the frequencies of the two flows
are close (panel (b), black solid line with circle symbols for the cylinder wake flow and red
solid line with square symbols for the wire-plate EHD-Poiseuille flow). On the other hand,
panel (a) also shows that the growth rates of the time-mean flow for the cylinder wake
(black dash line with circle symbols) and wire-plate EHD-Poiseuille flow (red dash line
with square symbols) are both close to zero, meaning that time-mean flows of the two flows
are marginally stable. Panel (b) also indicates that the frequencies based on the time-mean
flows for the two cases (black dash line with circle symbols for the cylinder wake flow
and red dash line with square symbols for the wire-plate EHD-Poiseuille flow) are both
close to nonlinear frequencies (blue × symbols). These results indicate that the RZIF
property also exists in the wire-plate EHD-Poiseuille flow within the parameter range we
considered.

966 A4-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.419


X. He, P.A. Vázquez and M. Zhang

4

–0.5

0

0.5

1.0

G
ro

w
th

 r
at

e

F
re

q
u
en

cy

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

6 8 10 12 14

U0

16 18 20 22 6 8 10 12 14

U0

16 18 20 22

Cylinder wake flow (SFD)
Cylinder wake flow (Mean)
Wire-plate EHD flow (SFD)
Wire-plate EHD flow (Mean)

Cylinder wake flow (SFD)
Cylinder wake flow (Mean)
Cylinder wake flow (DNS)
Wire-plate EHD flow (SFD)
Wire-plate EHD flow (Mean)
Wire-plate EHD flow (DNS)

U0c      = 7.43
EHD U0c   = 9.68

cyl

(a) (b)

Figure 18. Growth rates and frequencies of a cylinder wake flow and wire-plate EHD-Poiseuille flow at
different U0.

Finally, the global modes in the EHD cylindrical wake flow are shown. We take U0 = 12
as an example in figure 19 to display the leading eigenmodes for both Newtonian cylinder
wake flow and wire-plate EHD-Poiseuille flow. Panels (a) and (b) are the eigenvectors of x
velocity and y velocity for the Newtonian cylinder wake based on SFD base flow. Panels (c)
and (d) depict the eigenmodes of x velocity and y velocity for wire-plate EHD-Poiseuille
flow subjected to the SFD base flow, and we note that they bear resemblance to those of
the cylinder wake flow. Panels (e) and ( f ) show the eigenvectors of positive and negative
charge density, respectively. It can be found that they are all antisymmetric with respect
to the horizontal central line y = 0. As for the eigenmodes of the mean flow, we find that
the distribution of velocity perturbations shows a similar pattern to those of SFD base
flow, so we do not present them here. However, the eigenvectors of positive and negative
species show different patterns from those of SFD base flow, and they are exhibited in
panels (g) and (h). Loosely speaking, the oscillatory behaviour of the charge fields causes
the difference seen between the linear stability analyses based on the SFD and time-mean
flows. The perturbations of positive and negative species are also antisymmetric to y = 0,
but concentrate near the wire.

In conclusion, since the flow is inertia dominant when the cross-flow is strong, both
the flow pattern and the leading eigenmodes are similar to the conventional flow past
a cylinder. However, charge injection from the wire electrode can significantly advance
the onset of the vortex shedding, and increase the drag coefficient and the instability
of the linear system. It is also reasonable to observe that the modification by the EHD
effect becomes smaller as the cross-flow becomes stronger. In addition, we find that the
wire-plate EHD flow with a strong cross-flow possesses the RZIF property within the
parameter range.

4. Conclusions

In this work we conducted DNS and linear global stability analysis of the 2-D EHD flow
subjected to a Poiseuille cross-flow in a wire-plate configuration. For the mechanisms
of the generation of space charges, both conduction and injection of charges have been
considered. In this wire-plate EHD-Poiseuille problem, the process of dissociation and
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x-velocity

Newtonian cylindrical wake flow:

y-velocity

x-velocity

0 3.0–3.0 0 2.6–2.6

0 3.0–3.0 0 2.6–2.6

0 1.4–1.4 0 0.3–0.3

Wire-plate EHD-Poiseuille flow:

y-velocity

Positive charge density for SFD base flow Negative charge density for SFD base flow

Positive charge density for mean flow Negative charge density for mean flow

(a) (b)

(c) (d)

(e) ( f )

(g) (h)
0 0.2–0.2 –0.1 0.1 0 0.05–0.05

Figure 19. The leading eigenvectors of a cylinder wake flow (a,b), and a wire-plate EHD-Poiseuille flow based
on a SFD base flow (c–f ) and mean flow (g,h) at U0 = 12 for (a,c) x velocity, (b,d) y velocity, (e,g) positive
charge density, ( f,h) negative charge density.

recombination of the species cannot be ignored since the recombination time is close to
the transit times and the convective time. Therefore, the consideration of the conduction
mechanism makes our results more realistic and meaningful. The flow is characterised by
many physical parameters. In this work we have focused on varying the intensity of the
cross-flow to organise our discussions. Three flow patterns have been investigated, namely,
wire-plate EHD flow without a cross-flow, with a weak cross-flow and with a strong
cross-flow. In the no cross-flow case the electroconvection in the wire-plate configuration
was studied. The weak cross-flow case was investigated because it can be related to the
flow pattern in ESP. With the case of a strong cross-flow, we studied the EHD effect on
the cylindrical wake flow.

We first investigated the wire-plate EHD flow without a cross-flow. According to
the experiment of McCluskey & Atten (1988), only when ReE > 0.23, charge injection
occurs. Therefore, taking it as the borderline, the flow phenomena are divided into
two regimes, namely, the conduction regime (ReE < 0.23, CI = 0) and injection regime
(ReE > 0.23, CI = 0.2), and they are studied separately. In the conduction regime the
charges are generated everywhere in the domain, and their movement is mainly caused
by electric drift and flow convection. The linear stability analysis shows that the growth
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rate of the linear flow increases with the increase of ReE, and the frequency is zero. In the
injection regime the injected charges are issued from the wire and convected to the plate
electrodes vertically due to the Coulomb force. The oscillatory instability can be predicted
well by a global stability analysis of the steady flow. The growth rate and frequency both
increase with increasing ReE. Besides, the leading eigenvectors show different patterns in
the conduction regime and in the injection regime, demonstrating their different influences
on the flow.

Then, the case with a weak cross-flow was studied. Due to the action of the cross-flow,
the charge density plume tilts downstream. Since the secondary EHD flow can help the
particles in the dusty gas settle on the collecting plate, this flow pattern is commonly seen
in ESP. We performed a detailed linear stability analysis of this case. The results indicate
that at small ReE, the flow stays steady. When ReE exceeds a certain critical value, the
flow state will transition from a stable to time-periodic oscillation. A violent flapping of
the charge density beams can be observed in the oscillation state. Furthermore, we explore
the effect of the cross-flow velocity U0. It is found that a larger U0 increases the growth
rate of the perturbation within the chosen parameter range. Moreover, the eigenvectors are
presented, which are similar to those in wire-plate EHD flow without cross-flow, but the
flow structures tilt downstream. Besides, we can learn from the results that in order to
gain a good performance in ESP, it is better to adopt a lower voltage and a relatively weak
cross-flow to not cause flow oscillation or instability; otherwise, the flapping of the flow
structures on the collecting plates will cause the charged dusts in ESP to bounce back.
Furthermore, in the case of the weak cross-flow, we found that the EHD flow reduces the
drag on the wire, especially the shear forces on the wire surface, which may imply that the
EHD effect results in a large passing-through rate of the fluids in the channel, consistent
with Soldati & Banerjee (1998) results on the turbulent flow in the wire-plate ESP.

Finally, the wire-plate EHD flow with a strong cross-flow has been investigated. In this
inertia-dominant case, the flow can be compared with a confined Newtonian cylinder
wake flow. The aim of studying this case is to examine how the EHD modifies the
wake flow and its stability. The nonlinear simulations show that the EHD effect can
bring forward the vortex shedding behaviour. In addition, we observed that Cd increases
significantly due to the presence of the EHD effect. The decomposition analysis of the
drag coefficient and the distribution of the pressure around the wire/cylinder show that the
EHD effect mainly increases the pressure force acting on the aft side of the wire/cylinder.
However, interestingly, the velocity field is hardly changed by the EHD, indicating the
inertia-dominant characteristic of this flow pattern. From the perspective of flow stability
analysis, we have used both SFD base flow and time-mean flow as the base flow. The SFD
results showed that EHD flow significantly boosts the linear growth rate, although the
effect decreases with the increasing intensity of the cross-flow. In addition, the critical U0
for the onset of vortex shedding is reduced when considering the EHD effect. Furthermore,
the time-mean stability analysis indicated that both flow types with and without the EHD
effect are marginally stable. The frequencies obtained by the linear stability analysis based
on the time-mean flow are also closer to the nonlinear frequencies than those of steady
base flow, especially at large U0. Therefore, the RZIF property exists in the wire-plate
EHD-Poiseuille flow as well.

In the end, we mention the limitations of this work. First, we used an experimentally
determined borderline (McCluskey & Atten 1988) between the conduction and injection
mechanisms for the charge generation. This specific threshold value may be different in
other flow conditions. Second, the blockage ratio of the wire diameter to the channel height
is fixed at 0.2. It would be interesting to study the wire-plate EHD-Poiseuille flow with
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different blockage ratios. Additionally, the working medium in our work is assumed to be
a liquid, which may not be directly translated to the ESP, even though an analogy of the
flow with particles in ESP and fluids in EHD has been made by Atten et al. (1987). The
gas flow in the wire-plate EHD flow could be investigated as part of a large parametric
study in the future.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.419.
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Appendix A. Validation and comparison with experiment

In this section we verify our nonlinear solver for the wire-plate EHD-Poiseuille flow
by comparing our results to the experimental results in McCluskey & Atten (1988).
McCluskey & Atten (1988) have performed an experimental study of the wire-plate
EHD flow subjected to a laminar Poiseuille flow. They mounted a wire with a diameter
of D∗ = 0.1 mm in the centre between two parallel plates apart from each other by
3.5 mm. Since in this experiment the aspect ratio of the cylinder length to the diameter
is 300, it is believed that there was no influence from the sidewalls on the central
part of the flow. Therefore, we can make a comparison of our 2-D simulations with
the experimental flow in the centre part. The liquid used in the experiment was
BNC, and its physical properties are: dynamic viscosity μ∗ = 6 × 10−3 Pa · s, mass
density ρ∗ = 957 Kg m−3, relative permittivity ε∗

r = 3.8, electrical conduction σ ∗ =
10−9 S m−1. According to the Walden rule (Castellanos 1998), we can obtain that the ionic
mobility K∗+ = K∗− = 5 × 10−9 m2 (V · s)−1. Therefore, the values of non-dimensional
parameters corresponding to Φ∗

0 = 3 kV can be calculated as C0 = 3, M = 37, Kr =
1, ReE = 2.4, Os = 8.6, λ = 0.02857 and α = 8 × 10−6. In our numerical simulations we
found that when using the charge diffusion coefficient α = 8 × 10−6, it is difficult for
the numerical simulations to converge. Thus, we use α = 0.001 in most of the cases
to be discussed. As shown in figure 21, the charge diffusion effect has a small effect
on the charge distribution in the bulk flow. In addition, in order to determine the value
of CI = Q∗

0R∗2/(ε∗φ∗
0 ), an estimation of Q0 should be given, which is hard to measure

directly in the experiment. Here we assume that Q∗
0 = 1 C m−2, and we will have

CI = 0.025.

A.1. Wire-plate EHD flow without cross-flow
We first validate our simulation results without cross-flow. The geometry is
symmetric with respect to x = 0, that is, Λ1 = Λ2 = 500. The comparison between
the current density obtained by our numerical simulations and the experiment by
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Figure 20. Comparison of current density distribution along the plate electrodes on the top plate for
Φ∗

0 = 3 kV without cross-flow between our results (DNS) and figure 5 in McCluskey & Atten (1988)
(experiment).

McCluskey & Atten (1988) is displayed in figure 20. We can see that the numerical results
show the same trend as the experimental results, although the current density decreases
faster away from the centre part than the experimental result. This discrepancy may be
attributed to the inevitable three-dimensional (3-D) effects in the experiments. A similar
phenomenon of comparison between the numerical simulation and experimental work has
also been observed in other studies of corona discharge in a point-plane configuration
(Adamiak & Atten 2004; Zhang, Adamiak & Castle 2007; Zhang & Adamiak 2009).

A.2. Wire-plate EHD flow with cross-flow
Now we present our numerical simulations of the EHD flow subjected to a cross-flow and
compare the results to the experimental results obtained by McCluskey & Atten (1988).
In their experiment the diameter of the wire is D∗ = 0.1 mm, and the plate electrodes are
115 mm long with the 25 mm upstream length. In addition, the gap between two plates is
35 mm. In order to be consistent with the experimental setting, the geometric parameters
are selected as Λ1 = 500, Λ2 = 1800, λ = 0.02857. The typical hydrodynamic Reynolds
number in their experiment is Re = 740 (Re = 2ρ∗U∗

0L∗
y/μ

∗), which is related to the
height between two plates (2L∗

y) and the mean velocity (U∗
0) of Poiseuille flow. So we

can get that ReW = ρ∗U∗
0R∗/μ∗ = Re × R∗/(2L∗

y) = 10.4. Therefore,

U0 = ReW

ReE = 10.4
2.4

= 4.3. (A1)

It has been clarified in the experiment that the profile upstream of the wire was a
laminar Poiseuille flow. Therefore, in the simulation we choose as the initial condition
of the x velocity the Poiseuille flow profile, i.e. f ( y) = 3

2 U0(1 − y2/L2
y). In addition,

the initial charge density is N+ = N− = 1. Figure 21 compares the velocity profiles at
different downstream distances (D∗ is the dimensional diameter of the wire) without and
with an electric field, i.e. φ∗ = 0, 3 kV. It can be seen that in the regions close to the
walls, the velocity profiles in the simulations are all close to the experimental results;
nevertheless, our results are persistently larger than the experimental results in the bulk
region. The reason is unknown to us. What we have done to further verify our numerical
results was to compare the case without the electric field to other more recent numerical/
experimental works. In the following we will perform a 2-D simulation of the classical
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Figure 21. Comparison of velocity profiles for Re = 740 and Φ∗
0 = 0 kV (upper side) and Φ∗

0 = 3 kV (lower
side) for different downstream distances. Results are shown for (a) x = 20D∗, (b) 60D∗, (c) 100D∗, (d) 140D∗.
The experimental data are extracted from McCluskey & Atten (1988).

Newtonian cylindrical wake flow and compare our velocity profiles with the results in the
literature.

Verhelst & Nieuwstadt (2004) performed an experimental study for the cylindrical wake
flow in a rectangular channel with a width of 20 mm and a height of 160 mm. In addition,
the cylinder diameter is 10 mm and then Re = U∗

maxR∗/ν∗ = 0.23. Since the Reynolds
number in the experiment is low, the 3-D effect is weak and we can make a comparison
of our 2-D simulations with theirs. Xiong et al. (2013) carried out the 2-D numerical
simulation for the same cylinder wake flow as the experimental work. The channel height
is normalised as 1, the cylinder diameter is 0.5, and Re = U∗

0D∗/ν∗ = 0.307. In order
to validate our nonlinear solver, we perform a 2-D numerical simulation of a flow past
a cylinder calculated by Nek5000. The parameters are the same as those in Xiong et al.
(2013). Then we also calculate the results using the equations of wire-plate EHD-Poiesuille
flow at φ = 0 kV, which is also simulated by Nek5000. The parameters are that the
channel height is 4, cylinder diameter is 2, ReE = 2.4, ReW = U∗

0R∗/ν∗ = 0.1535 (which
is equivalent to the above two Reynolds numbers); therefore,

Ux( y) = 3
2

ReW

ReE (1 − y2/L2
y) = 3

2
× 0.064 × (1 − y2/L2

y). (A2)
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Figure 22. Comparison of streamwise velocity profiles for different downstream distances: (a) x = −21R,
(b) −3R, (c) −1.5R, (d) 1.5R, (e) 3R.

From figure 22, we can see that the three 2-D numerical simulations are in good agreement,
and their values are slightly larger than the 3-D experimental results, which is due to the
inevitable 3-D effects and the presence of the wall in reality (Xiong et al. 2013). According
to these results, we consider that our nonlinear code is verified.
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Figure 23. Eigenvalues of the leading eigenmode at different cross-flow velocities U0 at λ = 0.5.

U0 0 0.3 0.3 15 18 21
ReE 0.8 4.5 5 2.4 2.4 2.4
Growth rate (Power) −0.0074 0.00425 0.0281 1.527 2.166 2.837
Growth rate (Arnoldi) −0.0074 0.00415 0.0279 1.529 2.166 2.836

Table 1. Comparison of growth rate obtained by the Power method and Arnoldi method for wire-plate
EHD-Poiseuille flow at different U0 and ReE.

Appendix B. Validation of linear results

Next, we validate the solution for the linearized equations. Figure 23 compares eigenvalues
of the leading eigenmode of wire-plate EHD-Poiseuillle flow at Φ = 0 (without an electric
field) obtained by the Arnoldi method with the results of the global stability analysis in Li
& Zhang (2022) for the confined wake flow. The parameters in Li & Zhang (2022) are λ =
0.5 and Re = 100, 115, 125, 150, respectively, where Re = U∗

maxD∗/ν∗. Our parameters
are consistent with those in Li & Zhang (2022) after proper transformation: C0 = 0.0, λ =
0.5, ReE = 2.4 and U0 = 13.89, 15.97, 17.36, 20.83, respectively. In addition, the charge
injection from the wire CI/(λ

2C0) in (2.14) needs to be set to zero since C0 is in the
denominator. The results in figure 23 show that the two results match well with each
other. Additionally, we compare the growth rate at different U0 and ReE = 2.4 obtained
by the power method and the Arnoldi method, as shown in table 1. The parameters are
C0 = 3, M = 37, Kr = 1, CI = 0.2, Os = 8.6, λ = 0.2 and α = 0.001. For all the cases,
the relative error does not exceed 2.5 %. Therefore, we consider that our linear solver is
also accurate and reliable.

Appendix C. Grid independence verification

We then verify the independence of our numerical results with respect to the grid
resolution. In this work we choose the domain size Λ1 = Λ2 = 40 and λ = 0.2. The
distribution of the spectral elements in the computation domain is shown in figure 24.
The region is divided into several parts to ease the discretization, and a circular region
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n3

n1

n2

n4 n5

Figure 24. Distribution of the Legendre spectral elements for the wire-plate EHD-Poiseuille problem.

Mesh n1 n2 n3 n4 n5 Element |Ū|max Relative error to M5

M1 5 5 30 5 3 760 42.710 0.47 %
M2 6 6 35 5 3 1130 42.715 0.46 %
M3 8 8 40 8 6 1876 42.866 0.11 %
M4 9 9 45 9 6 2400 42.908 0.009 %
M5 12 12 45 12 6 3366 42.912

Table 2. Grid independence validation at U0 = 21, ReE = 2.4.

|U
| m

ax

t
0

1

2

3

4

5

6

50 100 150 200 250 300

M3 (N = 7)

M3 (N = 9)

M5 (N = 7)

M5 (N = 9)

Figure 25. Time evolution of the maximum velocity magnitude for different meshes at U0 = 0.3, ReE = 6.

with a radius of 2.5 refines the mesh near the wire. It is noted that the spectral elements
mesh depends on two grid levels, one being the number of spectral elements Ne and the
other being the polynomial order within each element N. The notations for the numbers of
elements in each part is labelled in figure 24.

We first take U0 = 21, ReE = 2.4 that is the maximum U0 we study in this work
for the validation. The other parameters are C0 = 3, M = 37, Kr = 1, CI = 0.2, Os =
8.6, λ = 0.2 and α = 0.001. Here we fix the polynomial order N = 7 (Fischer et al. 2008)
and change the number of elements to study the mesh convergence. The time-averaged
maximum velocity norm |U|max is shown in table 2 for different meshes ranging from a
coarse grid M1 with 760 elements to a refined grid M5 with 3366 elements. It can be seen
that the relative errors of M3 and M4 to M5 are both less than 0.12 %, indicating that
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results converge at these mesh sizes. We adopt M3 for most cases considering both the
accuracy and the computational time.

In the case of wire-plate EHD flow with a weak cross-flow, we adopt the value of ReE

up to 6. In addition, it is found that the oscillation behaviour is sensitive to the mesh.
Therefore, we also perform a grid independence test for U0 = 0.3, ReE = 6. The other
parameters are C0 = 3, M = 37, Kr = 1, CI = 0.2, Os = 8.6, λ = 0.2 and α = 0.001. We
compare the evolution of |U |max for four sets of mesh: M3 described in table 2 with
polynomial order N = 7, M3 with N = 9, M5 with N = 7 and M5 with N = 10, as shown
in figure 25. We find from the figure that the results from the latter three meshes are close
to each other. Therefore, we take M3 with N = 9 for the calculation of wire-plate EHD
flow with a weak cross-flow.
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