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1. If (X, S,fj.) is an arbitrary complemented measure 
1 00 

space and X is cr-finite then (L. )* = L or, more precisely, 
1 oo 

(L. )* is isometric and isomorphic to L by the correspondence 

G(f) - fig du, G€ (L4)*. g* L°° . 

It is well known that there exist non cr-finite spaces with 
1 oo 

(L )* * L . 

In the Bourbaki theory of measure and integration it is 
1 00 

always true that (L )* = L. [2, p. 55]. However, measurability 
in the Bourbaki sense is a local property: a function is measur
able, if and only if its restriction to each compact set is measur
able. For the non-topological general case a function is called 
locally measurable in [3]*if its restriction to each measurable 
set of finite positive measure is measurable and L, denotes 

00 

the analogue of L for locally measurable functions with norm 

^°°(f)=:sup {77°°(fx ); e € S , u(e)<oo}. Always ( L ^ O L^ 
M. e x 

but, as was shown in [3], strict inequality may hold. In this note 
we extend [3] by proving 

THEOREM 1. Every L. (X, S,u) is isometric and 
_1 1 — _1 — oo — • 

i s o m o r p h i c to a s p a c e L, = L ( X , S , | J L ) wi th (JL )* = L» ( X , S , u ) . 
i 
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00 

2. When X i s <r - f i n i t e , X = U X , wi th 0 < u(X.) < oo , 
i l 

i = l 
and X PI X. = P, (or u(X. f) X.) = 0) i i j , and the g e n e r a l 

i J. i J 
r e p r e s e n t a t i o n t h e o r e m i s ob ta ined a s an e a s y e x t e n s i o n of the 
finite t h e o r e m for e a c h X.. In [3] , in s tudying the non er - f in i te 

c a s e , two d e c o m p o s i t i o n s of X w e r e ob ta ined us ing Z o r n ' s 
l e m m a : the f i r s t into d i s jo in t s e t s ((D) d e c o m p o s i t i o n ) and the 
second into n u l l - d i s j o i n t s e t s (ND). F o r both 

X = X U ^ j X f l ^ M ; ^ = U V ° < f x ( e a ) < °° ; 

a €££ 

e € S, e C X i m p l i e s t h a t u(e) = 0 o r oo . 

In add i t ion for 

(D) e fi e t = P, a # a ' ; 
a a1 

(ND) ii(e fl e ) = 0 , a i af . 
a a 

An add i t i ona l p r o p e r t y s a t i s f i ed in the cr-f ini te c a s e i s 

(*). F o r e a c h e € S wi th u(e) < oo f 

[L{e) = S u(e (1 e ) = sup S u(e PI e ) , 
^ a a 

a «£? 

the s u p r e m u m be ing t a k e n o v e r a l l f ini te s u m s of t h i s f o r m , a s 
in [3] « F o r e v e r y (ND) d e c o m p o s i t i o n (*) h o l d s , but t h e r e 
e x i s t m e a s u r e s p a c e s in wh ich t h e r e i s no (D) d e c o m p o s i t i o n 
wi th (*) s a t i s f i ed . In [3] it w a s no ted t ha t the e x i s t e n c e of a 

1 oo 
(D#) (i. e. , (D) p lus (*)) d e c o m p o s i t i o n i m p l i e s t ha t (L )* = L, . 

In the B o u r b a k i t h e o r y a (D*) d e c o m p o s i t i o n a l w a y s e x i s t s 

[2 . § 1 , 4 ] . 

To p r o v e T h e o r e m 1, l e t X ~ X U XL, X^ = (J e be an 
1 2 ù a 

a « <2 
a r b i t r a r y (ND) d e c o m p o s i t i o n of X and le t 
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X = U ({a} Xe ) . 
a c # a 

Let h denote the relation with domain X-XJ and range X 
1 

determined by the ordered pai rs (x,y) where, for each 
x« X-X , y runs through the points (a,x) of X with x* e , 

1 a 
a € Q, If the (ND)-decomposition is actually a (D)-decomposition, 
h will be a function, but in general this will not be the case . 
For a set e CZ X-X , h(e) will denote the image set in X. 

1 

We observe that h( U e ) = U h(e ), h( f) e ) = Ç] h(e ) 
a a a a 

for an a rb i t r a ry collection {e } . For each a, x€ e , set 
a a 

h (x) = (a ,x ) . The mappings h : e -* { a} X e a re bijective. 
a a a a 

If e C e , set h ( e ) = {a} X e . 
a a 

To i l lustrate the preceding definitions consider the 
example: X = { (x,y) : 0 < x < 1, 0 < y < l } , S the smallest 
<r-algebra containing al l the Lebesgue measurable subsets of 
every I = { (x, y) : 0 < y < 1} and every I = { (x, y) : 0 < x < 1} . 

(Compare [3], p. 222. ) Then 

x = ( u yu( u y 
0 £ x < 1 0 < y < 1 y 

is an (ND)»decomposition of X, and X can be represented as 

X = { (u, v) : 0 < u < 2, 0 < v < 1} 9 

where I is identified with I if u = x < 1 and I is 
x u y 

identified with I if y = u - 1, l < u < 2 . The image of 

(x, y) in X under the rejlation h consists of two points: 
(x, y) and (y + l , x ) in X ; the image of ï C X consis ts of 

two intervals : Î , u = x and { (u, v) : 1 < u < 2, v = x} . 
u — 

To re tu rn to the general case , we shall determine an 
outer measure on X by means of a covering c lass C 
([5], p. 91) consisting of X and, for each a « Cf 9 al l of the 
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s e t s h(e) , h (e) and h(e) - h (e) for e a c h m e a s u r a b l e subset 
a 4 _ 

e of e . We set v (X) = » and 
a 

v 1 ( h ( e » - v 4 ( h (e)) = jx(e), v 4 ( h ( e ) - h (e)) = 0 
a a 

for each such e in C, and define for each A CZ X 

v*(A) = inf 2 v d ( e . ) , 

where the infimum i s taken in the extended r e a l s for a l l c o l l e c 
t ions { e . } of s e t s in C cover ing A. 

i 

We note that if A i n t e r s e c t s m o r e than a countable 
co l l ec t ion of s e t s h(e ) , a € Q , then e v e r y cover ing m u s t 

i a 

contain X so that v (A) = oo. We note a l s o that the definition 
m a k e s e v e r y set of the form h(e ) -h (e) v *-nu!l . For the 

a 
example given above this i m p l i e s that e v e r y subset of a 
horizontal line in X i s v *-nul l . 

Let S denote the v * - m e a s u r a b l e subse t s of X, \i the 
re s t r i c t i on of v * to S. We shal l show that T h e o r e m 1 i s true 

for the m e a s u r e space (X, S,fi). The notation x , L. , T̂  , e , 
e tc . w i l l re fer to t \ e m e a s u r e space (X, S, JJL). 

LEMMA. If e € S , e CZ e , a « Q , then h(e) and 
— — — a _ _ 

h (e) € S with |i(h(e)) = \i{h (e)) =p(e). If e € S 
a — a _ 

and e C { a } X e , then there e x i s t s e CZ e with e = h (e) 
a a a 

and s e t s e , e € S with e j CZ e C e . |i(e - e , ) = 0. In 
1 2 1 2 2 1 

part icular if the m e a s u r e space (X, S,^i) i s comple te e € S. 

Proof^ To show that h(e) € S we m u s t show that for 
e v e r y A C X with v *(A) < oo , 

v *(A) > v *(A H h(e)) + v *(A 0 C h(e)) . 

A s s u m e that e C e and that each cover ing se t e. i s of the 
a l 

f o r m h(e . ) . Then for e a c h i, 
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e = (e 0 e) U (e fi Ce), h(e ) = h(e 0 e) (J h(e 0 Ce) , 
i i i i i i 

v V f e . ) ) = v 1(h(e. fl e)) + v 1(h(e. fï Ce)) = u(e. (1 e) + u(e. fl Ce), 

1 
since v is additive if e . C e and u(e H e.) = 0 if e . C e , 

l a i I D 
b / a. Thus each covering of A can be replaced, without 

1 
changing 2 v (e.), by a covering that splits into coverings of 

A 0 h(e) and A H Ch(e), A standard argument then shows that 
h(e) € S. We have assumed above that the covering sets were 
all of the form h(e.). In the general case , sets of the form 

l 

h (e.) in the covering could be replaced by the sets h(e.) 
a l - l 

without changing the sum and sets of the form h(e.) - h (e ) 
i a i 

could be omitted by replacing A by AT C A, v *(A - A* ) =0. 

To prove that u{h(e)) = ji(e) we first observe that, since 
h(e) covers itself, 

v*(h(e))< v V ( e ) ) = u(e) . 

Assume that e C e • Again there is no loss of generality in 
a 

assumJTjq that coverings of h(e) a re of the form {h(e.)}. 
i 

Since h(e f i e ) = h(e) 0 h(e ), the sets e. can be replaced by 
i i i 

sets in e . Given e > 0 there is a covering {h(e.)} with 
a i 

v*(h(e ) )>2°° v V ( e . ) ) - « 
— 1 l 

Then 

S * v4(h(e.)) > 2 % V ( e 0 e.)) = Z* p(e fï e.) 
1 i — l l 1 i 

> n ( u ! % r i e . ) ) > | A ( e ) 
— • 1 1 "" 
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Since each set h (e) differs from h(e) by a null set each 
a 

h (e) € S with |i(h (e)) = |i.(e) * 

The proof of the las t part of the lemma is not difficult if 
we observe that covering sets for e can be assumed to be of 
the form h (e.) with e . C e , e. € S . 

a i i a i 

1 - —1 
Proof of Theorem 1. We identify f € -L and f € L and 

write f ~ f if 

(i) { x € X : f ( x ) ^ 0 } = (J e. , e . c S , e . e e , a. * Q , 
7 1 1 i a . i 
i î 

a. i a., e. 0 e. = 0 , i ^ j ; 
1 J i J 

(ii) f (x) ~ f (x), x - (a., x), x € e. , i = 1, 2, . . . ; 
i i 

= 0 elsewhere in X » 

Then 

(iii) { x : l ( x ) =0} = U h (e.) f h ( e . ) f l h (e.) = 0, i * j . 
. a . i a. i a . j 
i i i j 

We identify f € L, and f € L, and write f ^ f if these 
equivalence c lasses contain represen ta t ives f and f with 
f ** f. We shall show that this correspondence is bijective and 
p r e se rve s the vector operat ions and norm. That the sca lar 
multiplication and norm a r e preserved is immediate from the 

definition. If f. ^ f , f « f , f « f , i = 1, 2 and 
i i i i i i 

e (1 ({x : f (x) i 0} U { x : f (x) * 0} ), then clear ly 
a 1 ù 

(f + f )y ^ (f + f )y , % . 
1 2 x e v 1 2 xh(e ) 

Omitting at most a }x-null set e% , { x € X«e' : f (x) + f (x) ^ 0} 

can be expressed in the form (i) and this implies that 
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To show that the correspondence is bijective we first 

suppose that f € j}, V € f . Then if e(P ) = { x€ X : V (x) i 0} , 

e(f ) = U . , e . , » w i t h e. 0 e. = fl, i i j , u.(e.) < oo, i = l , 2 , . . . , 
i ^ l i i j i 

from integration theory. Since each set e. can intersect at 

most a countable collection of the sets e , a € Q[, 
a 

. . oo 
e(f ) = ert U ( N Â e.f ), with u(e) = 0 and where each e.* is 

O i l 0 i 
contained in some e , a € Cf. Forming unions of sets 

a 
contained in the same sets e we can assume that the sets 

a 
e. ! satisfy (i) above. Letting f denote the res t r ic t ion of ff 

y\ — — 

to e(ff )-e , f € f and determines f by (ii) with f ** f. Thus 
A 1 - - 1 * — 

to each f € JL corresponds f€ L with f^f. F rom the 
preceding paragraph it then follows that the correspondence 

- 1 
is one-one, norm preserving but perhaps into L -

J^et f € L, , f € f. Then if e(f) = { x € X : f(x) = 0} , 

e(f) =U e , with e H e = 0, i f j , ê € S, jl(e~ ) < oo, i = 1, 2, ... 
, 1 i i J i i 

There is no loss of generality in assuming that each set e. 

is contained in a set h(e ), a € Q and that a 4 a if i # j r. 
a. i i j 

— — i _ _ _ J 

If e.? = e. 0 ({ a.} X e ) , u.(e.~e/ ) = 0 . Thus we can assume 
i i i a . i i 

i 
that each e. is contained in {a.} X e . By the last part of 

i i a 
i 

the l emma, again omitting at most a null set, we can suppose 
that each ê. is h (e.) with e. € S. Replacing the sets e 

i a . i i i 
i 

by disjoint sets e * = e , e.* = e. - U e.*, h (e ) by 
1 1 i i . . j a . i 

J < i i 
oo —. 

h ( e .* ) , S j {j.(h (e.) - h (e.*)) = 0 so tha t the r e s t r i c t i o n of 
a. i 1 a. i a. i 

i i i 
«~ OO ~ 

f to U h (e.*) is in f and we can suppose that (iii) holds 
i a, i 

i 

for f with the sets {e.} disjoint. There then exists f , 
i oo 

defined on X and vanishing outside U e. with (i) and (ii) 
i = l X 
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holding and with f ~ f. Thus to each f € L cor responds 

f € L wi th . f <- f. 

Finally the sets {a} X e , a * <̂  , form a (D^)-decompositior 

for X so that (L )* = L°°(X, S,"jl). 

1 
3. The space L (X, S,|j.) with the na tura l order ing, 

modulo null functions is a vector lat t ice that is an AJL-space a s 
defined by Kakutani [6]. In addition his Axiom IX is satisfied. 
This suggests the following extension of Theorem 1, the details 
of the proof being s imilar to Kakutani' s proof of his Theorem 7. 

1 
THEOREM 2. Every L, (X, S,jx) is i somet r ic and 

la t t ice- isomorphic to a space L, (X, S, JJL) with X a locally 
compact, totally disconnected topological space such that 

(E1)*=L*(X,S,^). 

We outline the par t of his argument needed here . If 
(X, S,|±) is a measu re space with p.(X) < oo and S is the space 
of equivalence c l a s ses of measurab le sets modulo p.-null se t s , 
S is a Boolean algebra with fundamental operat ions U , f) and 
complementation (-) (modulo }jL-nulI sets) . The Stone r ep re sen t a 
tion theorem [7, p. 22] then gives the existence of a compact 
topological space X with the points of X corresponding to the 
ul t raf i l ters (maximal ideals) on S and with S corresponding 
to the Boolean algebra 0* of al l se ts of X that a r e both open 
and closed. 

For each e € S let e denote the image of e in 0* and 
define 

v(e) = \i(e) . 

Then v is a countably additive m e a s u r e on \} that can be 
extended to a countably additive measu re v on S, the smal les t 
or-algebra containing & ([4], p. 54). Every A c S can be wri t ten 

.*- *- * — — 1 — — — 
4 , ç e U n with e € J- and v(n) =0 . Then L. (X,S,JJL) i s i so -

1 
me t r i c and latt ice isomorphic to L» (X, S,{A). 
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In the general c a s e f ix an (ND) decomposi t ion wi th 
X = (J e and let (e ,S , jx ) denote the m e a s u r e space 

Ù »̂ a a a a 
a € < ^ 

induced on e by (X, S ,u) . The p r e c e d i n g two p a r a g r a p h s 
a 

then give the e x i s t e n c e of a topo log ica l m e a s u r e space (e , S , u ) 
— \ _ a a a 

wi th e c o m p a c t and with Lr (e ) i s o m e t r i c and l a t t i ce 
a 1 a 

i s o m o r p h i c to L (e ) for each a € Q . Set 
a 

X = U ( { a } X e a ) 
a € # 

and give X the topo log ica l se t s u m of the topo log ies on the s e t s 
e [ l ] . F o r th i s topology e a c h e i s c o m p a c t and both open 

a a 
and c l o s e d so tha t X is loca l ly c o m p a c t . A m e a s u r e space 
s t r u c t u r e on X can then be in t roduced a s in T h e o r e m 1. It is 
e a s y to ve r i fy tha t the l a t t i ce o p e r a t i o n s a r e p r e s e r v e d . 
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