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Abstract. Twenty years ago, no planets were known outside our own solar system. Since then,
the discoveries of ∼1500 exoplanets have radically altered our views of planets and planetary
systems. This revolution is due in no small part to the Kepler Mission, which has discovered
>1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky
planets and planetary systems are quite common, the quest to find Earth’s closest cousins and
characterize their atmospheres presses forward with missions such as NASA Explorer Program’s
Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA’s PLATO
mission scheduled for launch in 2024.

These future missions pose daunting data processing challenges in terms of the number of
stars, the amount of data, and the difficulties in detecting weak signatures of transiting small
planets against a roaring background. These complications include instrument noise and sys-
tematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this
paper we review recent developments in the Kepler transit search pipeline improving both the
yield and reliability of detected transit signatures.

Many of the phenomena in light curves that represent noise can also trigger transit detection
algorithms. The Kepler Mission has expended great effort in suppressing false positives from its
planetary candidate catalogs. Over 18,000 transit-like signatures can be identified for a search
across 4 years of data. Most of these signatures are artifacts, not planets. Vetting all such signa-
tures historically takes several months’ effort by many individuals. We describe the application
of machine learning approaches for the automated vetting and production of planet candidate
catalogs. These algorithms can improve the efficiency of the human vetting effort as well as
quantifying the likelihood that each candidate is truly a planet. This information is crucial for
obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical
to the success of future missions such as TESS and PLATO.
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1. Transit Detection and Additional Statistical Tests
Jenkins (2002) introduced an adaptive, wavelet-based matched filter for detecting tran-

siting planet signatures against time-varying, non-white observation noise. The transit
detection is conducted in a joint-frequency domain through the wavelet transform, but
can more simply be represented in the time domain as a simple matched filter where the
whitened flux time series, x̃, is projected onto the whitened transit pulse waveform, s̃:

Z =
x̃ · s̃√
s̃ · s̃

=
∑p

i=1 x̃i · s̃i√∑p
i=1 s̃i · s̃i

, (1.1)

where Z is the detection statistic (thresholded at 7.1 σ for Kepler transit searches), and
the rightmost term is written in terms of the individual transits, of which we assume
there are p. Fig. 1 shows the light curve for one of Kepler’s stars along with the whitened
light curve. Fig. 2 shows a montage of the impulse response of the adaptive whitener,
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Figure 1. Scatter plot of a section of a flux time series for a Kepler star (top) and the
whitened flux time series for this same star (bottom).
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Figure 2. Montage of time-varying impulse response of the whitener applied in Fig. 1.

illustrating the fact that the whitener adapts to non-stationary noise. Eq. 1.1 explicitly
takes the non-stationary noise into account when formulating the detection statistic.

To help control the false alarm rate due to structured noise in the flux light curves,
Seader et al.(2013) added a robust version of the detection statistic, Zrobust based on an
iterative kernel-based weighting of the individual in-transit data points as per Holland &
Welsch (1977). Zrobust is thresholded typically at 6.8 σ. Seader et al.(2013) also formu-
lated two different χ2 metrics that examine the degree to which the scatter of the residual
in-transits points matches expectations after the transit model has been subtracted from
the data. χ2

(2) pursues this question at the level of the individual transits and has p − 1
degrees of freedom, while χ2

GOF handles this at the level of the in-transit points, and has
ntransit degrees of freedom, where ntransit is the number of points in transit.
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Figure 3. Ternary plot of the posterior probability of the classification of ‘planet candidate’
for ∼16,000 TCEs based on the vote fractions of a random forest. The color bar indicates the
posterior probability for each TCE.

If a transit-like feature exceeds the thresholds for all four tests, it is registered as a
Threshold Crossing Event (TCE) and subjected to a suite of diagnostic tests and physical
model fitting, and passed on the the Threshold Crossing Event Review Team (TCERT)
for dispositioning as a planet candidate, an astrophysical false positive, or an artifact.

2. Random Forests for Automated Classification of Transit-Like
Features

We are exploring supervised machine learning approaches to dispositioning TCEs that
leverage the extensive history of the TCERT in vetting previous sets of TCEs. Figure 3
shows the result of training a random forest on the TCEs resulting from a search through
the first 16 quarters of Kepler data and overlaying a Bayesian classification scheme on top
of the feature space defined by the vote fractions of the random forest for each of three
classes: planet candidate, astrophysical false positive, and non-transiting phenomena.
This allows us to construct posterior probabilities for each class based on the behavior of
the training sets. These posteriors can be used in occurrence rate calculations to reduce
the sensitivity to which objects are or are not included.
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