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Let [Pn
{k)] be the class of all subsets Pn

{k) of the ^-dimensional Euclidean 
space consisting of n distinct points and having diameter 1. Denote by dk(n, r) 
the maximum number of times a given distance r can occur among points of a 
setP»<*>.Put 

Dk{n) = maxrdk(n, r). 

In other words Dk(n) denotes the maximum number of times the same distance 
can occur between n suitably chosen points in ^-dimensional space. 

Lenz showed that D±(n) > \n2 + en, and by using the method of Lenz and 
a graph-theoretic result of Stone and myself (1)1 proved (2) that 

(1) l imP t (») 
1 
2 2[\k] ' 

Denote by G(n; I) a graph of n vertices and / edges and denote by m(n; p) 
the largest integer for which there exists a G(n\m(nyp)) which contains no 
complete graph of p vertices Kp. Turân (6) proved that 

™>(n\ p) = 2 , _ jv (n - r2) + y2) itn = r (mod p - 1). 

In this note we prove the following sharpening of (1) : 

THEOREM 1. Let k = 2/, n = 0 (mod 2k), n > n0(k). Then 

(2) Dk(n) = m(n; I) + n = Jl~~ + n. 

Further, for every n > n0(k), 

m(n; / ) + « — / < Dk(n) < m(n; I) + n. 

For odd k I cannot substantially improve the results stated in (2). I have 
not been able to disprove that for every k and n 

(3) ^ " 4 - 2 i | * i ) + 0 W 
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holds. (3) is certainly false unless the following result holds. Let there be given n 
points on the surface of the two-sphere; then the same distance can occur at 
most en times between them. 

Denote by (xu x3) the distance between xt and Xj. We outline the proof of the 
following theorem. 

THEOREM 2. To every s there is a cs so that if xi, . . . , xn (n > n0(s)) are n 
distinct points in four-dimensional Euclidean space. Then there are at least s 
distinct numbers amongst any \n2 + csn of the (xit x3). 

Theorem 2 has some interest in view of the fact that, by Theorem 1, for 
cs = 1 all the distances can be equal. 

It seems to be very difficult to obtain a good estimation for D2(n) and Dz(n). 
It is known (3) that 

( 4 ) ^l+c/loglogrc < 2 ) 2 ( w ) < n 3 / 2 > 

The lower bound in (4) is probably close to being best possible, but I could 
not even prove that D2 (n) = o(nz'2). 

First we prove that 

(5) Dk(n) < m(n\ I) + n. 

Denote by Kr(pi, . . . , pr) the complete r-chromatic graph which has pt 

vertices of the ith colour. To prove (5) we need the following lemma. 

LEMMA. Every G(n\ m(n\ I) + n + 1) contains a Ki+i(l, 3, . . . , 3) for 
n > n0(l). 

This lemma is due to Simonovits and myself (5). 
Now let be n points in ^-dimensional space for which 

à^{n\r) > m(n\l) + n + 1 

for some r. Define a graph G whose vertices are xi, . . . , xn\ we join two vertices 
Xi and Xj if their distance is r. By our lemma this G(n\ dk(n; r)) contains a 
Ki+i(l, 3, . . . , 3), i.e. there are 3/ + 1 points 

xi(1), and x/ s ) (2 < 5 < I + 1, i = 1, 2, 3) 

so that the distance between any two xt
(s) for different values of 5 is always r. 

But this is easily seen to be impossible in k = 2/-dimensional space since the 
points xt

{s) (2 < 5 < I + 1, i = 1, 2, 3) determine I planes which must be 
mutually orthogonal, and then clearly Xi(1) cannot be equidistant from all 
these points (the x/ s ) , i = 1, 2, 3, for 2 < 5 < I + 1, must all lie on circles 
with equal radius and common centre, which is the intersection of the orthog
onal planes). This completes the proof of (5). 

Next we show that for n = 0 (mod 2k) 

(6) Dk(n) > m(n; I) + n. 
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Our proof is substantially identical with that of Lenz. 
Consider I mutually orthogonal planes in k = 2/-dimensional space. In each 

of these planes consider a circle of radius | and assume that all these circles 
have a common centre. On each of these circles choose n/l = 4r points which 
form r squares of side 1/V2. Clearly the distance between any two of these 
points which are on different circles is l/y/2 and this gives 

m(n;l) = n2(l - l)/2l 

pairs of points whose distance is 1/V2; the points on the circles clearly give the 
remaining n pairs of points at distance l / \ / 2 . This completes the proof of (6). 
(5) and (6) prove (2). The same method which proved (6) gives 

Djc(n) > m(n\l) + n — I. 

This completes the proof of Theorem 1. 

Now we outline the proof of Theorem 2. We define a [G(n; \n2 + cs n] as 
follows: The vertices are our xi, . . . , xn. xt and Xj are joined if and only if xt 

and Xj belong to the \n2 + csn selected pairs. Let / = l(k) be sufficiently 
large; it will be determined later. It follows from (5) that for sufficiently large 
cs our graph contains a 2C3(1, /, /). Denote the vertices of this KZ{1, /, /) 
by Xi] 3>i, . . . , yù %u • • • , Zi- If there are at least 5 distinct numbers amongst 
the (yu zf), Theorem 2 is proved. If not, then the same distance—say r—occurs 
at least l2/s times. Join yt and Zj if and only if (yu Zj) = r. I t easily follows 
from a theorem of Kôvâri, Sos, and Turân (4) that for / > l0(s) this graph 
contains K2(2s — 1,2s — 1). Without loss of generality, denote the vertices 
of this graph by yx, . . , y2s-i î *i , . • . , «2*-i. Since 

(yu Zj) = r (1 < i,j <2s - 1), 

it easily follows that the x's and y's are on two orthogonal planes, and on these 
planes they are on circles which have a common centre—the intersection of the 
two planes. Xi is in the 4-dimensional space spanned by these two planes; 
hence if we drop a perpendicular from x± onto these planes, the foot of at least 
one of them cannot be the intersection of these planes (i.e. the common centre 
of our two circles). Without loss of generality we can assume that the foot of 
the perpendicular dropped from x± onto the plane of the y's is not the centre 
of the circle containing the y's. But then at most two y's are equidistant from 
X\\ hence there are at least s distinct distances amongst the (xi, yj), j = 1, . . . , 
2 ^ — 1 . This completes the proof of Theorem 2. 

Finally we state the following without proof. 

THEOREM 3. Let there be given n points Xi, . . . , xn in ^-dimensional space. 
Then there is an absolute constant c and an no = no(e} c) so that for n > n0(e, c) 
there are more than nc distinct numbers amongst any \n2(l + e) of the (xi, xf). 
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The proof of Theorem 3 is similar to that of Theorem 2; no doubt both are 
special cases of a more general theorem which gives an estimation of the number 
of distinct numbers among \n2 + nf(n) numbers (xiy Xj). 
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