
Ergod. Th. & Dynam. Sys., (2023), 43, 1382–1432 © The Author(s), 2022. Published by Cambridge
University Press. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use,
distribution and reproduction, provided the original article is properly cited.
doi:10.1017/etds.2021.162

1382

Decay of correlations for certain isometric
extensions of Anosov flows

SALMAN SIDDIQI

University of Michigan, Ann Arbor, MI 48109, USA
(e-mail: siddiqis@umich.edu)

(Received 1 April 2020 and accepted in revised form 22 November 2021)

Abstract. We establish exponential decay of correlations of all orders for locally
G-accessible isometric extensions of transitive Anosov flows, under the assumption that
the strong stable and strong unstable distributions of the base Anosov flow are C1.
This is accomplished by translating accessibility properties of the extension into
local non-integrability estimates measured by infinitesimal transitivity groups used by
Dolgopyat, from which we obtain contraction properties for a class of ‘twisted’ symbolic
transfer operators.
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1. Introduction
One of the strongest characteristics of chaotic behaviour in dynamical systems is the
exponential decay of correlations, or exponential mixing; in addition to being of intrinsic
interest, this is typically accompanied by other strong statistical properties for regular
observables. Naturally, there has been substantial interest in understanding and charac-
terizing the dynamical systems with this property.

Hyperbolicity and the joint structure of the strong stable and strong unstable foliations
are among the most well-understood mechanisms driving chaotic behaviour in both
discrete-time and continuous-time dynamical systems. For continuous-time systems in
particular, the extent to which these foliations fail to be integrable is known to be especially
important.

Unfortunately, even among Anosov flows, there is no complete characterization of those
which are exponentially mixing. There have been many significant advances, however, and
we note only a few results that are relevant to our main result: we refer the reader to [9, §1]
for an excellent narrative.

Perhaps the most notable result was due to Dolgopyat, who showed in [11] that
smooth Anosov flows with C1 stable and unstable foliations were exponentially mixing,
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via a quantitative non-integrability estimate. Recently, [9]—following related work by
[3–5]—established exponential mixing for Anosov flows in the absence of any regularity
hypotheses on the unstable foliation.

Our attention will be restricted to the class of Anosov flows studied in [9, 11], which
are known to be exponentially mixing. We consider compact isometric extensions of these
flows, and give criteria for these extensions to be exponentially mixing. We prove the
following result.

THEOREM A. Let M, N and F be closed Riemannian manifolds, where π : M → N is
a fibre bundle with fibres isometric to F. Suppose that gt : N → N is a C2+ε transitive
Anosov flow preserving an equilibrium measure ν with a Hölder potential ς : N → R.
Moreover, suppose that either:
(i) the strong stable and strong unstable foliations are C1, and ν has unstable

conditional measures νu that are diametrically regular; or
(ii) the strong stable foliation is C1+ε′ for some ε′ > 0, and ν is the gt -invariant

Riemannian volume.
Let G be a closed, connected, normal subgroup of the isometry group Isom(F ) that acts

transitively on F, and equip F with the pushforward ω of the normalized Haar measure
on G. Let ft : M → M be a G-extension of gt . If ft is locally G-accessible, then it enjoys
exponential decay of correlations of all orders for the invariant product measure ν × ω.
(Here, the product measure ν × ω refers to the pushforward of the locally defined measure
ν × ω on trivialization charts, where the fibrewise measures are obviously compatible so
long as the trivializations are G-equivariant.)

In fact, the main portion of our argument, obtaining quantitative non-integrability
estimates for the extension in terms of the infinitesimal transitivity group described in
Definition 4.3, only requires that the strong stable distribution is C1. The additional
regularity hypotheses are merely required to obtain the necessary spectral bounds for the
symbolic transfer operator associated to the dynamical system on the base manifold. In
particular, (i) would allow us to invoke [11, Theorem 2], whereas (ii) would allow us to
instead invoke [9, Proposition 3.16].

Note that qualitative mixing in this context can be deduced quickly from very broad
theorems for partially hyperbolic systems; specifically, we note the general result of Burns
and Wilkinson in [8] that essentially accessible centre-bunched volume-preserving systems
are mixing of all orders. Quantitative results, on the other hand, seem to require a more
specialized approach.

Theorem A is analogous to a result of Dolgopyat, who showed in [12] that accessible
compact group extensions of discrete-time expanding dynamical systems are exponentially
mixing, and whose techniques we make heavy use of in our proof. Our approach follows
the strategy Winter used in [17] to establish exponential mixing for frame flows over convex
cocompact hyperbolic manifolds with Dolgopyat’s techniques. We begin by constructing
a symbolic model for the extension flow, establishing uniform local non-integrability
estimates for this symbolic model and using arguments employed by Dolgopyat in both
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[11, 12] to obtain bounds for the spectrum of certain ‘twisted’ transfer operators. Our main
technical result is the following bound.

THEOREM B. Fix notation as in Theorem A, and suppose that the potential ς is C1. Then
there are constants C > 0 and r < 1 so that we have

‖Lnz,ρϕ‖L2(νu) ≤ C‖ϕ‖C1r
n

for all ϕ ∈ C1(U , V ρ), all non-trivial irreducible representations ρ of G, and anyz ∈ C

with |Re(z)− P(ς)| < 1.

The principal novelty here, and our main point of divergence with [17], is that we use the
local G-accessibility (see Definition 2.4) of the extension flow ft to obtain the necessary
local non-integrability estimates. As in [17], we measure the local non-integrability of the
extension using Dolgopyat’s infinitesimal transitivity group.

Although we rely heavily on the techniques used in [12], translating these into our
setting presents several difficulties. Most notably, the non-integrability of the strong stable
and unstable foliations of the base flow gt and the non-triviality of the fibre bundle
π : M → N require some additional care to properly deal with, though we are ultimately
able to adapt many of the same arguments.

One of the most striking applications of quantitative mixing results in this setting has
been the recent work of Kahn and Markovic, using the exponential mixing of frame flows
on hyperbolic manifolds in their resolution of the surface subgroup conjecture in [14]. In
the specific case of the frame flow, Theorem A can be stated more succinctly.

COROLLARY C. Let N be the unit tangent bundle of a closed C2+ε n-manifold of
quarter-pinched negative curvature equipped with an invariant Riemannian volume ν,
and let M be the oriented full frame bundle over N equipped with the extension ν × ω

by the Haar measure on SO(n− 1). If the frame flow ft is locally accessible, then it enjoys
exponential decay of correlations of all orders.

2. Preliminaries
We fix some notation that we use throughout this paper: N will be a closed Riemannian
manifold equipped with a probability measure ν and gt : N → N a C∞ Anosov
flow preserving ν. Let M be a compact Riemannian fibre bundle π : M → N whose
fibres π−1(x) are each isometric to a fixed compact, Riemannian manifold F, and let
ft : M → M be an extension of gt satisfying π ◦ ft = gt ◦ π . We equip M with the
product measure μ of ν and a probability measure on F.

The motivating example for everything that follows is when N is the unit tangent
bundle for a closed n-manifold of quarter-pinched negative curvature, M is the oriented
orthonormal frame bundle, gt is the geodesic flow and ft is the frame flow. In this case,
we take ν to be the Liouville measure on N, and μ to be the local product of the Liouville
measure and the normalized Haar measure on SO(n− 1, R).

2.1. Dynamical preliminaries. Our goal is to show that, with appropriate hypotheses, ft
enjoys exponential decay of correlations or, equivalently, is exponentially mixing.
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Definition 2.1. A flow ft is said to be exponentially mixing of order k for Cα functions if
there are constants C > 0 and r < 1 so that∣∣∣∣

∫
M

ϕ0 · (ϕ1 ◦ ft1) · · · · · (ϕk ◦ ftk ) dν −
( ∫

M

ϕi dν

)
· · · · ·

( ∫
M

ϕk dν

)∣∣∣∣
< Cr

min
i 	= j

|ti−tj | · ‖ϕ0‖Cα · · · · · ‖ϕk‖Cα
for all ϕi ∈ Cα(M , C). Here, ‖ · ‖Cα denotes the usual α-Hölder norm

‖ϕ‖Cα := sup
x

|ϕ(x)| + sup
x 	=y

|ϕ(x)− ϕ(y)|
|x − y|α

on the space Cα(M , C) of α-Hölder complex-valued functions.

Actually, we prove that there are constants C > 0 and r < so that∣∣∣∣
∫
M

ϕ0 · (ϕ1 ◦ ft1) · · · · · (ϕk ◦ ftk ) dν
∣∣∣∣ < Crmax ti · ‖ϕ0‖Cα · · · · · ‖ϕk‖Cα

for all ϕi ∈ Cα(M , C) with
∫
M
ϕi dν = 0. It is an elementary exercise to show that this is

equivalent to Definition 2.1.
Although having some degree of regularity is critical, exponential mixing for Hölder

functions and exponential mixing for more regular functions are typically equivalent by a
standard approximation argument. We provide a brief outline of the proof here.

LEMMA 2.1. Suppose ft is exponentially mixing of order k for C1 functions. Then, ft is
exponentially mixing of order k for Cα functions, for any α > 0.

Proof. We perform the argument in the case k = 1. The general case can be obtained by
repeating this inductively.

It is well known that, given ϕ ∈ Cα(M , C), we can find smooth approximations ϕε to ϕ
with

∫
M
ϕε dμ = 0 satisfying

‖ϕε − ϕ‖C0 ≤ εα‖ϕ‖Cα and ‖ϕε‖C1 ≤ ε−dim(M)−1‖ϕ‖C0

for any ε > 0; a proof of this can be found, for instance, in [13, Lemma 2.4]. As ft is
exponentially mixing (at rate, say, rt ) for C1 functions by hypothesis, we can write∣∣∣∣

∫
M

ϕ · (ψ ◦ ft ) dμ
∣∣∣∣

≤
∣∣∣∣
∫
M

ϕ · (ψ ◦ ft ) dμ−
∫
M

ϕε · (ψ ◦ ft ) dμ
∣∣∣∣ +

∣∣∣∣
∫
M

ϕε · (ψ ◦ ft ) dμ
∣∣∣∣

≤
∣∣∣∣
∫
M

(ϕ − ϕε) · (ψ ◦ ft ) dμ
∣∣∣∣ + Crt‖ϕε‖C1‖ψ‖C1

≤ ‖ϕ − ϕε‖C0‖ψ‖C0 + Crtε−(dim(M)+1)‖ϕ‖C0‖ψ‖C1

≤ εα‖ϕ‖Cα‖ψ‖C0 + Crtε−(dim(M)+1)‖ϕ‖Cα‖ψ‖C1

= (εα + Crtε−(dim(M)+1))‖ϕ‖Cα‖ψ‖C1
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for any fixed t > 0. Note that the last line does not involve ϕε , so we can simply set ε = rkt

with k = 1/2(dim(M)+ 1). This leaves us with the inequality∣∣∣∣
∫
M

ϕ · (ψ ◦ ft ) dμ
∣∣∣∣ ≤ (rα(dim(M)+1)−1t + Crt r−(1/2)t )‖ϕ‖Cα‖ψ‖C1

≤ (1 + C)(rmin(1/2,α(dim(M)+1)−1))t‖ϕ‖Cα‖ψ‖C1

and, noting that the base of the exponential term is at most 1, we see that ft is
exponentially mixing for any ϕ ∈ Cα(M) and ψ ∈ C1(M). Now, set D := C + 1 and
s := rmin(1/2,α(dim(M)+1)−1) and consider ϕ, ξ ∈ Cα(M). Once again, we can find a smooth
approximation ξε to ξ with

∫
M
ξ dμ = 0 satisfying

‖ξε − ξ‖C0 ≤ εα‖ξ‖Cα and ‖ξε‖C1 ≤ ε− dim(M)−1‖ξ‖C0

for all ε > 0. By what we have just shown, we can now write∣∣∣∣
∫
M

ϕ · (ξ ◦ ft ) dμ
∣∣∣∣

≤
∣∣∣∣
∫
M

ϕ · (ξ ◦ ft ) dμ−
∫
M

ϕ · (ξε ◦ ft ) dμ
∣∣∣∣ +

∣∣∣∣
∫
M

ϕ · (ξε ◦ ft ) dμ
∣∣∣∣

≤
∣∣∣∣
∫
M

ϕ · ((ξ − ξε) ◦ ft ) dμ
∣∣∣∣ +Dst‖ϕ‖Cα‖ξε‖C1

≤ ‖ξ − ξε‖C0‖ϕ‖C0 +Dstε−(dim(M)+1)‖ϕ‖Cα‖ξ‖C0

≤ εα‖ξ‖Cα‖ϕ‖Cα +Dstε−(dim(M)+1)‖ϕ‖Cα‖ξ‖Cα
≤ (εα +Dstε−(dim(M)+1))‖ϕ‖Cα‖ξ‖Cα

for any fixed t > 0. Once again, we can set ε = skt with k = 1/2(dim(M)+ 1), leaving
us with the bound∣∣∣∣

∫
M

ϕ · (ξ ◦ ft ) dμ
∣∣∣∣ ≤ (sα(dim(M)+1)−1t +Dsts−(1/2)t )‖ϕ‖Cα‖ξ‖Cα

≤ (1 +D)(smin(1/2,α(dim(M)+1)−1))t‖ϕ‖Cα‖ξ‖Cα ,

which is independent of ε. Once again, we note that the base of the exponential term is at
most one and does not depend on ϕ or ξ , completing our proof.

Henceforth, we restrict our focus to establishing exponential mixing for C1 functions;
exponential mixing for Hölder functions then follows by Lemma 2.1. Of course, whether
a system is exponentially mixing depends on the measure under consideration: we are
interested in equilibrium measures for Hölder potentials.

Definition 2.2. For a continuous function ς : N → R, we call a measure ν an equilibrium
state for gt with potential ς if ν maximizes∫

N

ς dν + hν(g1)

among all gt -invariant probability measures on N. To emphasize the potential, we write νς
for the equilibrium state corresponding to ς when it exists and is unique.
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Of particular importance to us is the fact that equilibrium states admit a local product
structure with respect to the strong stable and unstable foliations, and that they are invariant
under the appropriate transfer operators; we expand on both of these properties in due
course.

When gt is an Anosov flow on a compact manifold, it is a classical result of Bowen and
Ruelle [7] that equilibrium states for Hölder potentials exist and are unique. Of course,
the measure of maximal entropy is always an equilibrium state for the trivial potential
ς = 0. In the case of the geodesic flow in negative curvature, the Liouville measure is the
equilibrium state for the geometric potential

ς(x) = − d

dt

∣∣∣∣
t=0
(log ‖dgt |Wu(x)‖)

on the unit tangent bundle.
We are interested in extensions of Anosov flows that act fibrewise by isometries.

Throughout, we assume that gt is a C2+ε flow whose strong stable and unstable
distributions are C1, so that the results of [11] apply.

Definition 2.3. We call a smooth flow ft : (M , μ) → (M , μ) on a closed Riemannian
manifold M a G-extension of gt : (N , ν) → (N , ν) if π : M → N is a smooth fibre bundle
where:
• the fibres π−1(x), with the induced metric, are all isometric to a closed Riemannian

manifold F;
• G is a closed, connected normal subgroup of the isometry group Isom(F );
• G acts transitively on F and has no proper transitive normal subgroups;
• π ◦ ft = gt ◦ π ;
• there is an atlas of trivializations of π : M → N for which all transition functions lie

in G;
• with respect to these trivializations, the isometries of F induced by the flow ft all lie

in G;
• ft preserves a measure μ satisfying π∗(μ) = ν; and
• the fibrewise disintegration of μ along the fibres of π : M → N is the pushforward of

the normalized Haar measure on G to each fibre.

The primary driver of exponential mixing in our case will be a stronger variant of local
accessibility.

Definition 2.4. Let ft : M → M be a G-extension of gt : N → N . We call ft locally
G-accessible if, for every ε > 0, any trivialization φ : π−1(Bε(x)) → Bε(x)× F defined
near x ∈ N and any isometry h ∈ G, there is a sequence of points x0, . . . , xk ∈ N for
which:
• x0 = xk = x;
• x0, . . . , xk ∈ Bε(x);
• we either have xi+1 ∈ Wsu

gt
(xi) or xi+1 ∈ Wss

gt
(xi) for each i; and
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• we have h = h0
k ◦ · · · ◦ h1

0, where hi+1
i : F → F is given (via φ) by the isometry

π−1(xi) → π−1(xi+1) induced by leaves of the strong stable or strong unstable
foliation of ft .

2.2. Symbolic dynamics. In this section, we build a discrete, symbolic model for ft : we
follow [17], and accomplish this by artificially extending a standard Markov partition for
the base flow. The results of [6, 16] on the existence of Markov partitions for hyperbolic
dynamical systems are classical and well-understood; as such, we recall some of the
important points but refrain from delving into the details.

THEOREM 2.2. (Bowen and Ratner) If gt is Anosov, then gt has a Markov partition of size
ε for any sufficiently small ε > 0.

Specifically, Bowen and Ratner constructed a Markov partition by taking local strong
stable and unstable segments and forming a Markov rectangle.

Definition 2.5. Given x ∈ N and ε > 0, consider the local strong and weak stable and
unstable manifolds of size ε through x given by

Wss
ε (x) := (Wss(x) ∩ Bε(x))◦, Wsu

ε (x) := (Wsu(x) ∩ Bε(x))◦,

Wws
ε (x) := (Wws(x) ∩ Bε(x))◦, Wwu

ε (x) := (Wwu(x) ∩ Bε(x))◦,

where in each case we have taken the connected component through x. For u ∈ Wsu
ε (x)

and s ∈ Wss
ε (x), we define the bracket of u and s to be the point of intersection

[u, s] = Wss
ε (u) ∩Wwu

ε (s),

which is necessarily unique when ε > 0 is sufficiently small. We define the Markov
rectangle [Wsu

ε (x), W
ss
ε (x)] to be the set

[Wsu
ε (x), W

ss
ε (x)] := {[u, s] | u ∈ Wsu

ε (x) and s ∈ Wss
ε (x)},

assuming ε > 0 is sufficiently small.

For now, fix ε > 0 chosen to be small enough that a Markov partition exists; we will
likely need to adjust our choice of ε as we proceed. We let R = {R1, . . . , Rk} be a Markov
partition of size ε for gt , where each rectangle Ri := [Ui , Si] is generated by local strong
stable and unstable manifolds Si := Wss

ε (zi) and Ui := Wsu
ε (zi) through points zi ∈ N .

Set R := ⋃
Ri , U := ⋃

Ui and S := ⋃
Si .

Remark 2.3. As we assumed that the strong stable and unstable foliations for gt were C1,
each Ri is naturally an open C1 submanifold of N. It is important to note that both the
Poincaré return map P and the return time map τ defined previously are the restrictions of
locally C1 functions on R, but both of these functions are discontinuous at points whose
image would lie on the boundary of a Markov rectangle.

To fix this, we remove any point of discontinuity for any iterate Pn and τ (n), and replace
R with the corresponding full-measure residual subset R∗. Note that P and τ are both
well defined on R∗, though we continue to reference R, U and S to make use of their C1

structure.
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A more extensive discussion of this can be found in [10, pp. 380–382]. We write (�, P)
for the Markov shift corresponding to the partition R of (N , gt ).

Definition 2.6. The suspension of (�, P) with roof function τ is the flow g′
t : � ×

R/ ∼→ � × R/ ∼ defined by g′
t (x, s) = (x, s + t), where we have declared (x, τ(x)) ∼

(P(x), 0).

Theorem 2.2 states exactly that the natural inclusion of R into N induces a
Hölder-continuous semi-conjugacy between gt and g′

t : this is precisely the result we
wish to extend to ft .

Fix a finite cover {Vi} that trivializes the fibre bundle π : M → N , with isometries
φi : π−1(Vi) → Vi × F . At this point, we may need to revisit our choice of ε: let us
assume that we have taken ε to be smaller than the Lebesgue number of the cover
{Vi}. By definition, this means that each Rj lies entirely in some Vk(j) and, hence, φk(j)
induces an isometry π−1(Rj ) → Rj × F . We can put these together to form an isometry
φ : π−1(R) → R × F .

It is worth noting that we have considerable freedom in our choice of isometries φi , and
this is something we want to exploit to simplify our arguments in §4. As the centre-stable
foliation of ft is C1, we can modify a given φi so that it is constant along the (local)
leaves of this foliation. Specifically, we assume that the projection of each φi : π−1(Vi) →
Vi × F onto F is constant on each connected component (Wsu

ft
(x) ∩ π−1(Vi))

◦ for each
x ∈ Vi .

We realize ft as a suspension flow on � × F with roof function τ . To do this, we need
information on the fibrewise action of gt .

Definition 2.7. For x ∈ Rj1 ∩ R∗ with P(x) ∈ Rj2 , we define the temporal holonomy
Hol(x) at x to be the isometry between φk(j1)(π

−1(x)) and φk(j2)(π
−1(P(x))) induced

by ft . This defines a function Hol : R∗ → G.
We often write Hol(n)(x) for Hol(Pn−1(x)) ◦ · · · ◦ Hol(x). Note that function compo-

sition is the multiplication operation in G.

Given the temporal holonomy function Hol : R∗ → G, we can, of course, recover ft
as a suspension flow on (� × F , P× Hol) with roof function τ . However, we push this a
step further.

We can define a projection along the leaves of the strong stable foliation projS : R → U

by setting projS([u, s]) = u. This allows us to construct a uniformly expanding model U
for gt , where the Poincaré return mapP : R∗ → R∗ descends to a map σ : U∗ → U∗ given
by σ := projS ◦P.

Remark 2.4. By construction, the return time map τ and the temporal holonomy function
Hol are both constant along the leaves of the strong stable foliation of gt and, hence,
descend to functions τ : U → R and Hol : U → G.

Set Uτ := U∗ × R/∼ and Uτ ,Hol := U∗ × R × F/∼, where we declare (u, τ(u)) ∼
(P(u), 0) and (u, τ(u), k) ∼ (P(u), 0, (Hol(u))(k)), respectively. We write f ′

t for the
suspension flow f ′

t (u, s, k) = (u, s + t , k) on Uτ ,Hol. It is not too difficult to show that
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the exponential mixing of ft is equivalent to exponential mixing for f ′
t , though we must

first fix a measure on Uτ ,Hol to make sense of this.

Remark 2.5. As ν is an equilibrium state for a Hölder potential φ, there are measures
νsi and νui on each of the strong stable and unstable segments Si and Ui so that ν is
absolutely continuous with respect to the product νui × νsi × dt . Moreover, these measures
can be chosen so that the Radon–Nikodym derivative of ν with respect to the product
νui × νsi × dt is uniformly bounded above by a constant K > 1 and below by K−1 < 1.
We write νu and νs for the corresponding measures on U and S, respectively, and suppose
that they have been normalized so that νU (U) = νS(S) = 1.

Remark 2.6. Up to replacing φ with a cohomologous function on (�, P), we can assume
that φ is the extension of a Hölder potential φU on U. As a consequence, we may as well
assume that νu is, in fact, an equilibrium state for a Hölder potential φU on (U , σ).

These are classical results in thermodynamic formalism: we refer the reader to [15]
and [18, pp. 87–91], respectively, for more details. We require, in addition, the conditional
measure νu to have a doubling property later on, in order to control the spectrum of our
transfer operators using Dolgopyat’s methods.

Definition 2.8. We say that a measure νu has the doubling or Federer property, or is
diametrically regular, if for any k > 1 there is a uniform constant C > 0 so that

νu(Bkr(x)) < Cνu(Br(x))

for all x ∈ U and r > 0.

It is important to note thatUτ ,Hol has no natural smooth structure, andU∗ may well have
infinitely many connected components. However, we understand C1(Uτ ,Hol, C) to mean
the class of functions on Uτ ,Hol, identified as a quotient of U∗ × R × F/∼, that arise as
the restriction of a smooth function on U × R × F . It is easy to see that the symbolic flow
f ′
t leaves invariant C1(Uτ ,Hol, C) defined in this way.

With the following lemma, we restrict ourselves to establishing exponential mixing for
the suspension flow f ′

t on the expanding model Uτ ,Hol.

LEMMA 2.7. If f ′
t is exponentially mixing of order k for functions in C1(Uτ ,Hol, C), then

ft is exponentially mixing of order k for functions in C1(M , C).

Proof. Once again, we perform the argument in the case k = 1. The general case can
be obtained by repeating this inductively. Given ϕ, ψ ∈ C1(M , C) with

∫
M
ϕ dμ =∫

M
ψ dμ = 0 and a fixed k ∈ F , we consider corresponding functions ϕt , ψt ∈

C1(Uτ ,Hol, C) given by

ϕt (u, h, r) :=
∫
S

ϕ(ft+r (φ−1([u, s], h(k)))) dνs ,

ψt(u, h, r) :=
∫
S

ψ(ft+r (φ−1([u, s], h(k)))) dνs ,

https://doi.org/10.1017/etds.2021.162 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.162


Decay of correlations for certain isometric extensions of Anosov flows 1391

for each t. Let C0q
t be the rate of contraction of S under gt . As ϕ is C1,

|ϕ(ft+r (φ−1([u, s], h(k)))− ϕ(ft+r (φ−1([u, s0], h(k)))| < C0q
t‖ϕ‖C1

for any s0 ∈ S. Of course, this yields∣∣∣∣
∫
S

ϕ(ft+r (φ−1([u, s], h(k))) dνs −
∫
S

ϕ(ft+r (φ−1([u, s0], h(k))) dνs
∣∣∣∣

< C0q
t‖ϕ‖C1ν

s(S)

after simply integrating both sides with respect to s. This can be rewritten as∣∣∣∣
∫
S

ϕ(ft+r (φ−1([u, s], h(k))) dνs − ϕ(ft+r (φ−1([u, s0], h(k))) · νs(S)
∣∣∣∣

< C0q
t‖ϕ‖C1ν

s(S)

because s0 is fixed. We then see quickly that the difference in the integrals∫
Uτ ,Hol

( ∫
S

ϕ(ft+r (φ−1([u, s], h(k)))) dνs(s)
)

·
( ∫

S

ψ(fr(φ
−1([u, s′], h(k)))) dνs(s′)

)
dω dr dνu (2.1)

and

νs(S)

∫
Uτ ,Hol

∫
S

ϕ(ft+r (φ−1([u, s0], h(k))))

· ψ(fr(φ−1([u, s′], h(k)))) dνs(s′) dω dr dνu (2.2)

is at most C1q
t‖ϕ‖C1‖ψ‖C0 . But now, the same argument shows that

ϕ(ft+r (φ−1([u, s0], h(k)))) · ψ(fr(φ−1([u, s′], h(k))))

and

ϕ(ft+r (φ−1([u, s′], h(k)))) · ψ(fr(φ−1([u, s′], h(k))))

must be within C2q
t‖ϕ‖C1‖ψ‖C0 of each other. Hence,

νs(S)

∫
Uτ ,Hol

∫
S

ϕ(ft+r (φ−1([u, s′], h(k))))

· ψ(fr(φ−1([u, s′], h(k))))dνs(s′) dω dr dνu

is within C3q
t‖ϕ‖C1‖ψ‖C0 of (2.2). From the local product structure of ν, we see that this

is within a constant multiplicative factor of K of the integral∫
M

ϕ(ft (x)) · ψ(x) dμ (2.3)

for any ϕ and ψ . To conclude, we simply observe that if
∫
M
ϕ dμ = ∫

M
ψ dμ = 0, then

we must have∫
Uτ ,Hol

ϕt (u, h, r) dω dr dνu =
∫
Uτ ,Hol

ψt(u, h, r) dω dr dνu = 0
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for any t ∈ R. Moreover, the regularity of ϕt and ψt is determined by the regularity of the
bracket operation [·, ·]: because we assumed that the foliations were C1, we see that ϕt and
ψt must also be C1. Hence, if f ′

t is exponentially mixing for functions in C1(Uτ ,Hol, C),
(2.1) must decay exponentially in t, from which we conclude that (2.3) must also decay
exponentially.

2.3. Representation theory. In this section, we recall some classical results from
the representation theory and harmonic analysis of compact Lie groups; our primary
references are [2, 19].

Following [17, §3.6], our strategy is to decompose functions on Uτ ,Hol into components
corresponding to irreducible representations of G. A function ϕ ∈ C1(Uτ ,Hol, C) can be
viewed as a C1 function ϕ̃ : Uτ → L2(G) by setting ϕ̃(u, r) := ϕ(u, ·, r).

As G is a compact, connected Lie group, we can decompose ϕ̃(u, r) ∈ L2(G) into
isotypic components corresponding to irreducible representations of G: this is, of course,
the classical Peter–Weyl theorem.

THEOREM 2.8. (Peter–Weyl) If G is a compact, connected Lie group, then there is a
decomposition

L2(G) =
⊕
ρ

(V ρ)⊕ dim ρ ,

where the sum is taken over pairwise non-isomorphic irreducible representations of G, and
the (V ρ)⊕ dim ρ associated with non-isomorphic irreducible representations are pairwise
orthogonal with respect to the standard inner product on L2(G).

We fix such a decomposition and write ϕ̃(u, r) = ∑
ρ ϕ̃

ρ(u, r) for the decomposition
of ϕ̃(u, r) obtained by projecting onto each (V ρ)⊕ dim ρ. Abusing notation, we use ϕ
to refer interchangeably to a function Uτ → L2(G) or to the function Uτ ,Hol → C; there
should be little ambiguity in either case.

For our later analysis, it is helpful to consider the derived representation dρ of the Lie
algebra g of G acting on L2(G), induced by the representation ρ of G on L2(G): see
[2, §2.5.1] for details. We always assume that we have a fixed Ad-invariant norm ‖ · ‖g
on g.

Definition 2.9. Given an irreducible representation ρ : G → GL(V ρ) of G (where we
view V ρ ⊂ L2(G)), we define the norm ‖ρ‖ of ρ to be the supremum

‖ρ‖ := sup
‖X‖g=1

‖dρ(X)‖L2(G)

where ‖dρ(X)‖L2(G) is the operator norm of dρ(X) viewed as an automorphism ofL2(G).

It is a classical fact that ‖ρ‖ is finite, and can be bounded in terms of the highest weight
associated with ρ. In the following propositions, let |λ| denote the norm of a weight λ
arising from a fixed adg-invariant inner product 〈·, ·〉 on the Lie algebra g.
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PROPOSITION 2.9. Let ρ be a non-trivial irreducible representation, and let λ(ρ) be its
highest weight. There are uniform constants C > 0 and m > 0 so that

‖ρ‖ ≤ C|λ(ρ)|m.

Proof. See [2, Theorem 3.4.1]; note that the Hilbert–Schmidt norm is an upper bound for
the operator norm.

We also require some particular results on the growth rate of ‖ρ‖.

PROPOSITION 2.10. There is a constant N > 0 so that the sum
∑
ρ ‖ρ‖−n taken over

non-trivial irreducible representations ρ of G converges for any n ≥ N .

Proof. By Proposition 2.9, we can bound∑
ρ

‖ρ‖−n ≤ C−n ∑
ρ

|λ(ρ)|−(m/n),

which, by [2, Theorem 3.2.1], converges so long as m/n exceeds the rank of G.

More generally, we can obtain decay estimates for the Fourier coefficients ϕρ associated
with irreducible representations ρ.

THEOREM 2.11. For every n > dim(G)/4, there is a C > 0 so that

‖ρ‖an‖ϕρ‖L2(G) ≤ C‖ϕ‖Cn
for all non-trivial irreducible representations ρ of G and all ϕ ∈ C2n(Uτ , L2(G)).

Proof. By [19, equations (1.5) and (1.11)], we have the inequality

‖λ(ρ)‖2k‖ϕρ‖L2(G) ≤ ‖ϕ‖Ck
for any ϕ ∈ C2k(Uτ , L2(G)) and 2k > dim(G)/2. By Proposition 2.9, we therefore have

‖ρ‖2k/m‖ϕρ‖L2(G) ≤ C2k/m‖ϕ‖Ck
for some uniform m > 0, from which the theorem follows.

3. Twisted transfer operators
In this section, we define Dolgopyat’s ‘twisted’ transfer operators, and show how the
spectral bounds we intend to obtain for these operators lead to correlation decay estimates
for the expanding suspension semi-flow f ′

t constructed in the previous section.
Recall that we can view a smooth function ψ ∈ C1(Uτ ,Hol, C) as a function ψ ∈

C1(Uτ , L2(G)). We can integrate out the time variable to obtain

ψ̃(u) :=
∫ τ(u)

0
ψ(u, r) dr

in C1(U , L2(G)); this is the space on which we would like to define our operators. The
advantages of working with smooth (as opposed to Hölder) functions will become clear
in §5, but we need to assume that ς is C1 for most of our arguments. We explain how to
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modify our proof to deal with the general case where ς is Hölder in Corollary 5.8, using a
standard approximation argument.

Let ρ be an irreducible representation of G acting on an isotypic component V ρ ⊂
L2(G), and fix z ∈ C. We define the transfer operator L̃z,ρ : C1(U , V ρ) → C1(U , V ρ) by

(L̃z,ρϕ)(u) :=
∑

σ(u′)=u
eςz(u

′)(ρ(Hol(u′)) · ϕ(u′)),

where ςz is the potential on the one-sided Markov model (�+, σ) obtained as the
restriction of the potential

∫ τ(u)

0
(ς ◦ p)(u, s, t) dt − z · τ(u, s)

defined on (�, P). Note that ςz is well-defined in light of Remark 2.6, where we assumed
that both α and τ are constant in s. It is also worth remarking that both τ and p are C1,
because we assumed that the strong stable and unstable foliations of gt were C1. As a
consequence, ςz and, hence, L̃z,ρϕ are both C1, because we have restricted ourselves to
the case where ς is smooth.

Let us recall some classical results of thermodynamic formalism; for a slightly more
detailed treatment, we refer the reader to [18, pp. 87–91]. Let P(ς) be the topological
pressure of ς for the map g1. By the Ruelle–Perron–Frobenius theorem, the operator
L̃P (ς),0 associated with the trivial representation ρ = 0 has a unique positive eigenvector
ϕς ∈ C1(U , R) with eigenvalue eP (ς).

Recall that νu is an equilibrium measure for the restriction of the potential ς to (�+, σ),
which by construction has the same topological pressure P(ς). By the Lanford–Ruelle
variational principle, this means that

eP (ς)
∫
U

ϕ dνu =
∫
U

L̃P(ς),0ϕ dνu

for all ϕ ∈ C1(U , V ρ). It will be convenient to normalize L̃P (ς),0ϕ so that it preserves the
measure νu: let Lz,ρ be the operator defined by

(Lz,ρϕ)(u) := ϕς(u)
(L̃z,ρ(ϕ · ϕ−1

ς ))(u)

eP (ς)

for all ϕ ∈ C1(U , V ρ).

Remark 3.1. With these renormalizations, we have∫
U

ϕ dνu =
∫
U

LP (ς),0ϕ dνu

for all ϕ ∈ C1(U , R).

We can alternatively write

(Lz,ρϕ)(u) =
∑

σ(u′)=u
eαz(u

′)(ρ(Hol(u′)) · ϕ(u′)),
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where we set

αz(u) :=
∫ τ(u)

0
(ς ◦ p)(u, s, t) dt − z · τ(u, s)

− log(ϕς (u))+ log(ϕς (σ (u)))− log P(ς)

for all u ∈ U : note that the positivity of ϕς is required to ensure that log(ϕς (u)) is
well-defined. It will be helpful to have a similar formulation for the iterates

(Lnz,ρϕ)(u) =
∑

σn(u′)=u
eα

(n)
z (u′)(ρ(Hol(n)(u′)) · ϕ(u′)),

with

α(n)z (u) :=
∫ τ (n)(u)

0
(ς ◦ p)(u, s, t) dt

− z · τ (n)(u, s)− log(ϕ(n)ς (u))+ log(ϕ(n)ς (σ (u)))− n log P(ς)

for all u ∈ U . Here, we write

ϕ(n)ς (u) :=
n−1∏
i=0

ϕς(ς
i(u))

for the nth ergodic product along σ .
Our overarching goal is to establish spectral bounds for these operators; in §5, we

ultimately prove the following theorem.

THEOREM 3.2. There are constants C > 0 and r < 1 so that

‖Lnz,ρϕ‖L2(νu) ≤ C‖ϕ‖C1r
n

for all ϕ ∈ C1(U , V ρ), all non-trivial irreducible representations ρ of G, and any z ∈ C

with |Re(z)− P(ς)| < 1.

The remainder of this section is devoted to showing how we obtain Theorem A from
Theorem 3.2.

Given ϕ0, . . . , ϕk ∈ C1(Uτ ,Hol, C) with
∫
Uτ ,Hol

ϕi dν
u dω dr = 0, let

βk(t1, . . . , tk) :=
∫
U

∫ τ(u)

0

∫
G

ϕ0(u, h, r)
( k∏
i=1

ϕi(u, h, r + ti )

)
dω dr dνu

be the kth correlation function βk : Rk+ → R. To show that βk decays exponentially
in t1, . . . , tk , we show that the integral defining its Laplace transform β̂(ξ1, . . . , ξk)
converges absolutely for some fixed values of ξ1, . . . , ξk . The following lemma expresses
the Laplace transform in terms of the transfer operators we have just defined, the proof of
which consists almost entirely of elementary integral manipulations.

We are somewhat cavalier in interchanging sums and integrals, though this is eventually
justified as the final expression we obtain is absolutely convergent.

LEMMA 3.3. Given ϕ0, . . . , ϕk∈C1(Uτ ,Hol, C) as previously with
∫
Uτ ,Hol

ϕi dν
u dω dr =

0, we can bound the Laplace transform of the kth-order correlation by
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|β̂k(ξ1, . . . , ξk)| ≤
∑
ρ

∞∑
n1,...,nk=1

∫
U

(Lmax nj
ρ,P(ς)+ξ |ϕ̂ρ0,−ξ |)(u)

( k∏
i=1

‖ϕ̂i,ξi‖C0

)
dνu

for Re(ξ1), . . . , Re(ξk) < 0. Here, we use ϕ̂i,ξi to denote the function

ϕ̂i,ξi (u, h) :=
∫ τ(u)

0
ϕi(u, h, ti )e−ξi ti dti

and β̂k to denote the Laplace transform

β̂k(ξ1, . . . , ξk) :=
∫ ∞

0
· · ·

∫ ∞

0
βk(t1, . . . , tk)e−(ξ1t1+···+ξktk) dt1 . . . dtk

for ξi ∈ R.

Proof. By definition, the Laplace transform β̂k(ξ1, . . . , ξk) of βk(t1, . . . , tk) is given by∫ ∞

0
· · ·

∫ ∞

0

∫
U

∫ τ(u)

max(0,τ(u)−ti )

∫
G

ϕ0(u, h, r)

·
( k∏
i=1

ϕi(u, h, r + ti )e
−ξi ti

)
dω dr dνu dt1 · · · dtk (3.1)

for ξ1, . . . , ξk ∈ C. As the systems of inequalities
⎧⎪⎨
⎪⎩

0 < r < τ(u)

τ(u)− ti < r

0 < ti

⎫⎪⎬
⎪⎭

and

⎧⎪⎨
⎪⎩

0 < r < τ(u)

τ(u) < r + ti

0 < ti

⎫⎪⎬
⎪⎭

are obviously equivalent, we can rewrite (3.1) as∫
U

∫
G

∫ τ(u)

0

∫ ∞

τ(u)

· · ·
∫ ∞

τ(u)

ϕ0(u, h, r)

·
( k∏
i=1

ϕi(u, h, ti )e−ξi (ti−r)
)
dt1 · · · dtk dr dω dνu

by reparametrizing the domain of integration. Let us focus on the k innermost integrals
over t1, . . . , tk , which can be broken up into a sum of integrals

∞∑
n1,...,nk=1

∫ τ (n1+1)(u)

τ (n1)(u)
· · ·

∫ τ (nk+1)(u)

τ (nk)(u)

ϕ0(u, h, r)
( k∏
i=1

ϕi(u, h, ti )e−ξi (ti−r)
)
dt1 · · · dtk

over intervals of the form [τ (n)(u), τ (n+1)(u)]. Of course, we can rewrite this as
∞∑

n1,...,nk=1

∫ τ(σn1 (u))

0
· · ·

∫ τ(σnk (u))

0

[
ϕ0(u, h, r)

·
( k∏
i=1

ϕi(u, h, ti + τ (ni )(u))e−ξi (ti−r+τ (ni )(u))
)]

dt1 · · · dtk
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by changing variables, replacing ti with ti + τ (ni )(u). We can rewrite the integrand here as

ϕ0(u, h, r)
( k∏
i=1

ϕi(σ
ni (u), (Hol(ni )(u))−1 ◦ h, ti )e−ξi (ti−r+τ

(ni )(u))

)
(3.2)

using the identifications we made in constructing Uτ ,Hol. Evaluating the integral of (3.2)
with respect to t1 through tk over the intervals [0, τ(σn1(u))] through [0, τ(σnk (u))] then
yields

ϕ0(u, h, r)erξ
( k∏
i=1

ϕ̂i,ξi (σ
ni (u), (Hol(ni )(u))−1 ◦ h)e−ξiτ (ni )(u)

)
, (3.3)

where we set ξ :=
k∑
i=1

ξi . Similarly, evaluating the integral of (3.3) with respect to r on
[0, τ(u)] yields

ϕ̂0,−ξ (u, h)
( k∏
i=1

ϕ̂i,ξi (σ
ni (u), (Hol(ni )(u))−1 ◦ h)e−ξiτ (ni )(u)

)

and so (3.1) becomes
∞∑

n1,...,nk=1

∫
U

∫
G

ϕ̂0,−ξ (u, h)
( k∏
i=1

ϕ̂i,ξi (σ
ni (u), (Hol(ni )(u))−1 ◦ h)e−ξiτ (ni )(u)

)
dω dνu

(3.4)

after interchanging the order of integration and summation.
As ω is bi-invariant, we can replace h with (Hol(max nj )(u)) ◦ h. Of course, we have the

identity (Hol(ni )(u))−1 ◦ Hol(max nj )(u) = Hol(ni−(max nj ))(σ ni (u)), and (3.4) becomes
∞∑

n1,...,nk=1

∫
U

∫
G

[
ϕ̂0,−ξ (u, Hol(max nj )(u) ◦ h)

·
( k∏
i=1

ϕ̂i,ξi (σ
ni (u), Hol(ni−(max nj ))(u) ◦ h)e−ξiτ (ni )(u)

)]
dω dνu

with this change of variables. This is equivalent to
∞∑

n1,...,nk=1

∫
G

∫
U

[
ϕ̂0,−ξ (u, Hol(max nj )(u) ◦ h)

·
( k∏
i=1

ϕ̂i,ξi (σ
ni (u), Hol(ni−(max nj ))(u) ◦ h)e−ξiτ (ni )(u)

)]
dνu dω

by simply reversing the order of integration. Applying LP (ς),0 to the integrand a total of
max nj times yields

∑
σ

max nj (u′)=u

[
ϕ̂0,−ξ (u′, Hol(max nj )(u′) ◦ h)

·
( k∏
i=1

ϕ̂i,ξi (σ
ni (u′), Hol(ni−(max nj ))(u′) ◦ h)e−ξiτ (ni )(u′)

)
e
α
(max nj )
P (ς)

(u′)
]
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for any given values of n1, . . . , nk ∈ N. Now, observe that e−Re(ξi )τ (ni )(u) is at most
e−Re(ξi )τ

(max nj )(u) so long as each Re(ξi) is negative. Hence, we can bound the magnitude
of the integrand from above by

∑
σ

max nj (u′)=u
|ϕ̂0,−ξ (u′, Hol(max nj )(u′) ◦ h)|

( k∏
i=1

‖ϕ̂i,ξi‖C0

)
e
−Re(ξ)τ (max nj )(u′)+α(max nj )

P (ς)
(u′)

using the triangle inequality. Rearranging this expression, we see that the magnitude of the
integrand is bounded above by

( k∏
i=1

‖ϕ̂i,ξi‖C0

)

·
( ∑
σ

max nj (u′)=u
|ϕ̂0,−ξ (u′, Hol(max nj )(u′) ◦ h)|e−Re(ξ)τ (max nj )(u′)+α(max nj )

P (ς)
(u′)

)
, (3.5)

which is reminiscent of the expression defining the transfer operator. To make this
concrete, recall that we have an L2(G)-invariant decomposition of the function ϕ̂0,−ξ ∈
C1(U , L2(G)) in terms of its isotypic components

ϕ̂0,−ξ (u′, Hol(max nj )(u′) ◦ h) =
∑
ρ

ϕ̂
ρ
0,−ξ (u

′, Hol(max nj )(u′) ◦ h),

where the sum is taken over irreducible representations ρ of G, including the trivial
representation. Once again, by the triangle inequality, we can bound (3.5) above by

( k∏
i=1

‖ϕ̂i,ξi‖C0

)

·
( ∑

ρ

∑
σ

max nj (u′)=u
|ϕ̂ρ0,−ξ (u

′, Hol(max nj )(u′) ◦ h)|e−ξτ (max nj )(u′)+α(max nj )
P (ς)

(u′)
)

where we quickly recognize the transfer operator Lmax nj
ρ,P (ς)+Re(ξ) applied to |ϕ̂ρ0,−ξ |, noting,

of course, that

|ϕ̂ρ0,−ξ (u
′, Hol(max nj )(u′) ◦ h)| = |ρ(Hol(max nj )(u′)) · ϕ̂ρ0,−ξ (u

′, h)|
for each ρ. Putting this back together, we see that (3.1) is bounded above by

∑
ρ

∞∑
n1,...,nk=1

∫
U

∫
G

(Lmax nj
ρ,P (ς)+Re(ξ)|ϕ̂ρ0,−ξ |)(u, h)

( k∏
i=1

‖ϕ̂i,ξi‖C0

)
dω dνu

in magnitude, as desired.

We now simply use the bounds in Theorem 3.2 to conclude that the Laplace transform
β̂ in Lemma 3.3 converges.
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THEOREM 3.4. With conditions as above, there are uniform constants C > 0 and r < 1
so that
∣∣∣∣
∫
Uτ ,Hol

ϕ0(u, h, r)
( k∏
i=1

ϕi(u, h, r + ti )

)
dνu dω dr

∣∣∣∣ ≤ Crmax tj (‖ϕ0‖C1 · · · · · ‖ϕk‖C1)

for all ϕ0, . . . , ϕk ∈ C1(Uτ ,Hol, C) with
∫
Uτ ,Hol

ϕi dν
u dω dr = 0.

Proof. We assume that Theorem 3.2 holds, and so we have

‖Lnz,ρϕ‖L2(νu) ≤ C‖ϕ‖C1r
n (3.6)

for all non-trivial irreducible ρ, all ϕ ∈ C1(U , V ρ) and for each z ∈ C with |Re(z)−
P(ς)| < 1. Up to choosing larger values of C and r, we can also assume that the same
inequality holds when ρ is trivial: this is precisely the main result of either [11, Theorem 2]
or [9, Proposition 3.16], depending on the regularity hypothesis we are using in Theorem A.

We show that the expression bounding β̂(ξ1, . . . , ξk) in Lemma 3.3 converges when-
ever the real parts of ξi simultaneously lie in the interval −1/k < Re(ξi) < 0. The decay
desired follows immediately from applying the inverse Laplace transform with the specific
bounds we obtain.

Fix ξ1, . . . , ξk with −1/k < Re(ξi) < 0. As before, we consider the function

ϕ̂i,ξi (u, h) =
∫ τ(u)

0
ϕi(u, h, t)e−ξi ti dti

and decompose ϕ̂0,−ξ into its isotypic components

ϕ̂0,−ξ =
∑
ρ

ϕ̂
ρ
0,−ξ ,

where ξ = ξ1 + · · · + ξk as before, noting that the decomposition of L2(G) into irre-
ducible subspaces commutes with the Laplace transform. By (3.6), whenever −(1/k) <
Re(ξi) < 0, we have∫

U

∫
G

(Lmax nj
ρ,P (ς)+Re(ξ)|ϕ̂ρ0,−ξ |)(u, h) dω dνu ≤ ‖(Lmax nj

ρ,P (ς)+Re(ξ)|ϕ̂ρ0,−ξ |)‖L2(νu)

≤ C‖ϕ̂ρ0,−ξ‖C1r
max nj

for each ρ. Combining this with Lemma 3.3, we are reduced to ensuring that

∑
ρ

∞∑
n1,...,nk=1

C‖ϕ̂ρ0,−ξ‖C1r
max nj

( k∏
i=1

‖ϕ̂i,ξi‖C0

)

<
∑
ρ

∞∑
n=1

k! nk−1C‖ϕ̂ρ0,−ξ‖C1r
n

( k∏
i=1

‖ϕ̂i,ξi‖C0

)
(3.7)

converges. Although this appears promising, note that we can only bound

‖ϕ̂ρ0,−ξ‖C1 ≤ D‖ρ‖( sup
u∈U

‖ϕ̂ρ0,−ξ (u, ·)‖L2(G)

)
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for some constant D > 0. To salvage this, we assume for the moment that we have chosen
ϕ0 ∈ C2N ′

(Uτ ,Hol, R) for a sufficiently large N ′ > 0 so that we can invoke Theorem 2.11
to bound

‖ρ‖‖ϕ̂ρ0,−ξ (u, ·)‖L2(G) ≤ D′‖ϕ̂0,−ξ (u, ·)‖
CN

′

‖ρ‖N
pointwise with a fixed constant D′ > 0, where N > 0 is the constant guaranteed by
Proposition 2.10. With this, it is clear that the expression on the right-hand side of (3.7)
converges absolutely, which says immediately that βk must decay exponentially fast in
t1, . . . , tk; this is almost what we wanted to show, but we need an explicit bound on β̂k to
obtain uniform estimates with the desired constants.

Integrating the defining expression for ϕ̂i,ξi (u, h) by parts, we have

ϕ̂i,ξi (u, h) = ϕi(u, h, ti )e−ξi ti
−ξi

∣∣∣∣
τ(u)

0
+ 1
ξi

∫ τ(u)

0

(
∂

∂ti
ϕi(u, h, ti )

)
e−ξi ti dti

for each u and h. Assuming that we choose ϕi ∈ C2(Uτ ,Hol, R), we can crudely bound

‖ϕ̂i,ξi‖C1 ≤ D′′‖ϕi‖C2

1 + |Im(ξi)|
for some constant D′′ that depends only on ‖τ‖C1 ; note that it is essential here that Re(ξi)
is confined to a bounded interval. We can similarly bound

‖ϕ̂0,−ξ‖CN ′ ≤ D′′‖ϕ0‖CN ′+1

1 + |Im(ξ)|
by choosing a larger value for D′′ if necessary. Putting this all together, we have

|β̂k(ξ1, . . . , ξk)| ≤ C′‖ϕ0‖CN ′+1

1 + |Im(ξ)|
( k∏
i=1

‖ϕi‖C2

1 + |Im(ξi)|
)

for all ξi ∈ C with −1/k < Re(ξi) < 0. Now, we simply take the inverse Laplace transform
in the variables ξ1 through ξk in succession to obtain

|βk(t1, . . . , tk)|

≤ eRe(ξ1)t1+···+Re(ξk)tk

(2π)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
‖ϕ0‖CN ′+1

1 + |s1 + · · · + sk|
( k∏
i=1

‖ϕi‖C2

1 + |si |
)
ds1 . . . dsk ,

where si is to be interpreted as the imaginary part of ξi . To complete our decay estimate,
we simply need to show that the integral

∫ ∞

−∞
· · ·

∫ ∞

−∞
1

1 + |s1 + · · · + sk|
( k∏
i=1

1
1 + |si |

)
ds1 . . . dsk

converges. Once the convergence of this integral has been established, we will have shown
that

|βk(t1, . . . , tk)| < Crmax tj ‖ϕ0‖CN ′+1

( k∏
i=1

‖ϕi‖C2

)
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for all ϕ0 ∈ CN ′+1(Uτ ,Hol, R) and ϕi ∈ C2(Uτ ,Hol, R). An identical argument to that given
in Lemma 2.1 extends this to C1 functions, using [13, Lemma 2.4] once again.

We now indicate how to establish the convergence of the integral encountered in the
preceding proof.

LEMMA 3.5. The integral
∫ ∞

−∞
· · ·

∫ ∞

−∞
1

1 + |s1 + · · · + sk|
( k∏
i=1

1
1 + |si |

)
ds1 . . . dsk

converges.

Proof. We show, in fact, that the function defined by the integral

f (x) :=
∫ ∞

−∞
1

(1 + |x + y|)0.5−ε

(
1

1 + |y|
)
dy (3.8)

decays at a rate of

|f (x)| ≤ C

(1 + |x|)0.5−2ε

for all sufficiently small ε > 0; the statement of the lemma follows immediately by
direct successive integration. We work in the case when x > 0, and split the domain of
integration in (3.8) into regions where x + y, y < 0, where x + y > 0 but y < 0 and
where x + y, y > 0. In the first case, where x + y and y are both negative, we evaluate∫ −x

−∞
1

(1 − (x + y))0.5−ε

(
1

1 − y

)
dy

for a fixed x > 0. One can verify that the antiderivative of this expression is given by

((1 − (x + y))/(1 − y))0.5−ε
2F1(0.5 − ε, 0.5 − ε; 1.5 − ε; x/(1 − y))

(0.5 − ε)(1 − (x + y))0.5−ε

where 2F1(·, ·; ·; ·) is the principal branch of the analytic continuation of the Gaussian
hypergeometric function. Hence, the integral evaluates to∫ −x

−∞
1

(1 − (x + y))0.5−ε

(
1

1 − y

)
dy = 2F1(0.5 − ε, 0.5 − ε; 1.5 − ε; x/(1 + x))

(0.5 − ε)(1 + x)0.5−ε ,

which can be bounded above by C/(1 + x)0.5−ε for an appropriate choice of constant
C > 0, because by [1, 15.1.1] the defining series for 2F1(a, b; c; z) converges on the unit
disc in the complex plane when c − (a + b) > 0. Similarly, on the region where x + y is
positive and y is negative, we evaluate∫ 0

−x
1

(1 + (x + y))0.5−ε

(
1

1 − y

)
dy

=
(
(1 + (x + y))0.5+ε

2F1(0.5 + ε, 1; 1.5 + ε; (1 + (x + y))/(2 + x)

(0.5 + ε)(2 + x)

)∣∣∣∣
y=0

y=−x
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= (1 + x)0.5+ε
2F1(0.5 + ε, 1; 1.5 + ε; (1 + x)/(2 + x))

(0.5 + ε)(2 + x)

− 2F1(0.5 + ε, 1; 1.5 + ε; 1/(2 + x))

(0.5 + ε)(2 + x)
,

which can once again be bounded above by C/(1 + x)0.5−ε for the same reasons, though
with a possibly larger choice of C > 0. Finally, when both x + y and y are positive, we
evaluate∫ ∞

0

1
(1 + (x + y))0.5−ε

(
1

1 + y

)
dy

=
(
((1 + (x + y))/(1 + y))0.5−ε

2F1(0.5 − ε, 0.5 − ε; 1.5 − ε; −x/(1 + y))

(0.5 − ε)(1 + (x + y))0.5−ε

)∣∣∣∣
y=∞

y=0

= − 2F1(0.5 − ε, 0.5 − ε; 1.5 − ε; −x)
0.5 − ε

and we simply need to understand the asymptotics of 2F1(0.5 − ε, 0.5 − ε; 1.5 − ε; −x)
as x → ∞. By [1, 15.3.1], we have an integral representation given by

2F1(0.5 − ε, 0.5 − ε; 1.5 − ε; −x) = �(1.5 − ε)

�(0.5 − ε)�(1)

∫ 1

0

1
t0.5+ε(1 + tx)0.5−ε dt

(3.9)

for x > 1. Setting u = tx, we can rewrite
∫ 1

0

1
t0.5+ε(1 + tx)0.5−ε dt

= 1
x0.5−ε

∫ x

0

1
u0.5+ε(1 + u)0.5−ε du

= 1
x0.5−ε

( ∫ 1

0

1
u0.5+ε(1 + u)0.5−ε du+

∫ x

1

1
u0.5+ε(1 + u)0.5−ε du

)
,

at which point we note that the expression in parentheses can be bounded above by
C(1 + log x). Hence, (3.9) can be bounded above by C/(1 + x)0.5−2ε with a possibly
larger choice of C, as desired. The proof in the case when x < 0 is identical.

4. Uniform local non-integrability estimates
In this section, we use the local accessibility of ft to establish the uniform local
non-integrability estimates necessary to prove Theorem 3.2, drawing on techniques
introduced by Dolgopyat in [12] for group extensions of expanding maps. These arguments
require some additional care to adapt to our setting, the principal difficulty being the
non-triviality of the fibre bundle π : M → N which requires us to choose trivializations to
construct the infinitesimal transitivity group as in [12].

We want to translate the local accessibility of ft into an infinitesimal statement on the
Markov model we constructed in §2; we accomplish this in two main steps. The first step is
to define a subalgebra of the Lie algebra g of G that measures the ‘non-integrability’ of the
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fibre bundle over the weak stable and strong unstable foliations; this can be accomplished
before making any reference to our symbolic model. The second step is to translate this
into the symbolic model.

For most of what follows, we need to be careful to specify which chart V∗ of the
trivialization we are working with at any given point. This is a necessary complication
to many of our arguments, because many of the objects we are working with are highly
sensitive to the choice of trivialization. Fortunately, however, this will also afford us with
the flexibility later on to work with trivializations that are specially adapted to our needs.

To start, we want to measure and relate three different holonomies associated with ft :
namely, the holonomies induced by the leaves of the strong stable foliation, the leaves of
the strong unstable foliation and the flow.

Definition 4.1. Fix x, y ∈ N with y ∈ Wsu
gt
(x), along with trivializations φx , φy of

π : M → N at x and y corresponding to subsets Vx , Vy ⊂ N , respectively. We define the
unstable holonomy

�+
Vx ,Vy (x, y) : F → F

between x and y to be the isometry induced by the map π−1(x) → π−1(y) that takes
a ∈ π−1(x) to the (necessarily unique) point b ∈ π−1(y) ∩Wsu

ft
(a). The identifications of

π−1(x) and π−1(y)with F are obtained via the trivializations φx , φy . The stable holonomy
�−
Vx ,Vy (x, y) is defined analogously for y ∈ Wss

gt
(x).

Definition 4.2. Fix x, y ∈ N with gt (x) = y, along with trivializations φx , φy of π : M →
N at x and y corresponding to subsets Vx , Vy ⊂ N , respectively. We define the temporal
holonomy

Hol
φy
φx
(x, y, t) : F → F

between x and y to be the isometry induced by the map π−1(x) → π−1(y) that takes a ∈
π−1(x) to ft (a) ∈ π−1(y). The identifications of π−1(x) and π−1(y) with F are obtained
via the trivializations φx , φy .

By the end of this section, we only need to work with a fixed, finite collection of
trivializations that cover N. At this stage, however, the flexibility in these definitions is
crucial. Our first observation is that the unstable holonomy can be expressed in terms
of the temporal holonomies induced by the flow; this is made precise in the following
proposition, the proof of which is largely summarized in Figure 1.

PROPOSITION 4.1. Fix x, y ∈ N with y ∈ Wsu
gt
(x), along with trivializations φ0,x and φ0,y

defined at x and y, respectively. Let T = (tn) be a monotonic sequence of times with tn = 0
and tn → −∞, and let Ix = (φn,x) and Iy = (φn,y) be sequences of trivializations for
which φk,x = φk,y for all k ≥ N . Then we can write

�+
φ0,x ,φ0,y

(x, y) = lim
n→∞ Hol(n)Iy ,T (y)(Hol(n)Ix ,T (x))

−1, (4.1)
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•x

•y

•
gt1(x)

•gt1(y)
•
gt2(x)

•gt2(y)

(Holφ0,x
φ1,x
(gt1(x), x))

−1

(Holφ1,x
φ2,x
(gt2(x), gt1(x)))

−1

Hol
φ1,y
φ2,y
(gt2(y), gt1(y)) Hol

φ0,y
φ1,y
(gt1(y), y)

V0V1V2

FIGURE 1. Measuring the unstable holonomy between x and y along a sequence of times 0 > t1 > t2 > . . . with
respect to trivializations (φn,x) and (φn,y) defined over charts Vn, illustrated in the case when the trivializations
for x and y coincide. As the unstable leaf through x and y contracts under gtn , the remaining contribution to the

unstable holonomy decreases.

where

Hol(n)I∗,T (∗) := Holφn−1,∗
φn,∗ (gtn(∗), gtn−1(∗), tn−1 − tn) ◦ · · · ◦ Holφ0,∗

φ1,∗(gt1(∗), ∗, −t1)
is the n-step temporal holonomy measured with respect to the trivializations I· at times
given by T.

Proof. The convergence of the limit is simply a consequence of the fact that
d(gtn(x), gtn(y)) → 0 as n → ∞. More precisely, we can rewrite

Hol(n+1)
Iy ,T (y)(Hol(n+1)

Ix ,T (x))−1

as

Hol
φn,y
φn+1,y

(gtn+1(y), gtn(y), tn − tn+1)

◦ (Hol(n)Iy ,T (y)(Hol(n)Ix ,T (x))
−1)

◦ (Holφn,x
φn+1,x

(gtn+1(x), gtn(x), tn − tn+1))
−1,

and because ft is C1, we see that Holφn,x
φn+1,x

(gtn+1(x), gtn(x)) must also be locally C1

in gtn+1(x). Since dN(gtn+1(y), gtn+1(x)) decay exponentially fast as n → ∞ and the
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trivializations Ix and Iy eventually agree, we see that

dG(Hol
φn,y
φn+1,y

(gtn+1(y), gtn(y), tn − tn+1), Holφn,x
φn+1,x

(gtn+1(x), gtn(x), tn − tn+1))

must also decay exponentially fast. In particular, for any h ∈ G, this means that

dG(Hol
φn,y
φn+1,y

(gtn+1(y), gtn(y), tn − tn+1) ◦ h
◦ (Holφn,x

φn+1,x
(gtn+1(x), gtn(x), tn − tn+1))

−1, h)

decays exponentially fast and, hence,

dG(Hol(n+1)
Iy ,T (y)(Hol(n+1)

Ix ,T (x))−1, Hol(n)Iy ,T (y)(Hol(n)Ix ,T (x))
−1)

decays exponentially fast as n → ∞. As G is complete, the limit must exist. A similar
argument shows that this limit is, in fact, equal to �+

φ0,x ,φ0,y
(x, y): because the unstable

foliation of ft is invariant under the flow, we can rewrite

�+
φ0,x ,φ0,y

(x, y)

as

Hol(n)Iy ,T (y) ◦�+
φn,x ,φn,y

(gtn(x), gtn(y)) ◦ (Hol(n)Ix ,T (x))
−1 (4.2)

for any n > 0 and any sequences Ix , Iy and T as previously. As tn → −∞,
dN(gtn(x), gtn(y)) decreases exponentially fast, and so�+

φn,x ,φn,y
(gtn(x), gtn(y)) converges

to the identity in G. Of course, this means that, as n → ∞, (4.2) converges to the
limit in (4.1). As the expression in (4.2) is constant at �+

φ0,x ,φ0,y
(x, y), this proves the

proposition.

We need to understand the infinitesimal behaviour of the stable and unstable foliations:
rather than working with the unstable holonomy as defined, we instead consider its
derivative along a leaf of the unstable foliation.

PROPOSITION 4.2. The unstable holonomy �+
φ1,φ2

(x, y) is simultaneously C1 in x and y,
as x and y vary in a fixed leaf of the strong unstable foliation of gt , and within charts
associated with fixed C1 trivializations φ1 and φ2.

Proof. This follows immediately from our hypotheses on the regularity of ft , which imply
that the leaves of the strong unstable foliation of ft are C1.

Definition 4.3. Fix x ∈ N , a trivialization φ defined near x and a vector w ∈ T 1
x W

su
gt
(x).

We define the infinitesimal holonomy at x in the direction of w to be the element

Xφw(x) :=
(
d

du

∣∣∣∣
u=x

(�+
Vx ,Vx (x, u))

)
(w)

of the Lie algebra g of G. Let ε > 0 be small enough that φ is defined over Bε(x). The
ε-infinitesimal transitivity group at x is defined to be the linear span

hφε (x) := span
y,w

(Xw′(y)−Xw(x))
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taken over all y ∈ Wss
ε (x) and w ∈ T 1

x W
su
gt
(x). Here, w′ denotes the pushforward of w to

T 1
y W

su
gt
(y) along the leaves of the centre stable foliation of gt .

We soon verify that hφ(x) is largely independent of the choice of trivialization φ, but it
is worth making a few comments first.

Remark 4.3. Under our hypotheses, the foliation Wws
gt

is C1, and so the holonomy it
induces between the leaves of the foliation Wsu

gt
is also C1. This is necessary for the

pushforward of w ∈ T 1
y W

su
gt
(y) in Definition 4.3 to make sense.

Remark 4.4. It is necessary to consider the relative infinitesimal holonomy, as we did in
Definition 4.3. As we show in the course of proving Proposition 4.6, the vector Xφw(x) in
Definition 4.3 is extremely sensitive to the choice of trivialization φ. For instance, it is
certainly possible forXφw(x) to be zero for all w ∈ T 1

x W
su
gt
(x) if the trivialization φ is built

to be constant along the leaves of the strong unstable foliation, and the existence of such
trivializations will be extremely helpful in the course of proving Theorem 4.11.

Remark 4.5. The vectors X
φ
w(x) and X

φ

w′(y) vary continuously in x and w, by
Proposition 4.2. However, because hε(x) is defined as the linear span of continuously
varying vectors, it is only lower semi-continuous. In particular, there can be singular sets
where the dimension of hε(x) jumps down.

It turns out that hφε (x) will typically be independent of ε, though we do not prove
this directly. We show instead that, if ft is locally G-accessible, then hε(x) is generically
equal to g. For most of what follows, we treat ε > 0 as a fixed constant with no particular
restrictions. Our first important calculation is that the conjugacy class of hφε (x) does not
depend on the trivialization φ, if the trivializations are chosen appropriately.

PROPOSITION 4.6. Fix ε > 0, x ∈ N and trivializations φi : π−1(Vi) → Vi × F for
i = 1, 2. If Bε(x) ⊂ Vi , then

hφ2
ε (x) = Ad

id
φ2
φ1
(x)
(hφ1
ε (x))

so long as φ1 and φ2 have constant projection to F along each leaf of the strong stable
foliation of ft and each flowline of ft .

Here, idφ2
φ1
(x) : F → F is used to denote the isometry induced by the identity map

π−1(x) → π−1(x)with the domain and target identified with F via φ1 and φ2, respectively.

Proof. We can relate the unstable holonomies between x and u ∈ Wsu
gt
(x) with respect to

φ1 and φ2 by

�+
φ2,φ2

(x, u) = idφ2
φ1
(u) ◦�+

φ1,φ1
(x, u) ◦ (idφ2

φ1
(x))−1 (4.3)

by definition. We now simply take the derivative of each side of (4.3) with respect to u at
u = x; in the notation of Definition 4.3, this becomes

Xφ2
w (x) = Ad

id
φ2
φ1
(x)
(X

φ1
w
(x))+ ((dR)

(id
φ2
φ1
(x))−1 ◦ d(idφ2

φ1
)x)(w) (4.4)
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for any w ∈ T 1
x W

su
gt
(x), where dR denotes the derivative of right multiplication in G.

Given any y ∈ Wss
ε (x) and w′ corresponding to w as in Definition 4.3, exactly the same

calculation yields

X
φ2
w′ (y) = Ad

id
φ2
φ1
(y)
(X

φ1
w′ (y))+ ((dR)

(id
φ2
φ1
(y))−1 ◦ d(idφ2

φ1
)y)(w

′), (4.5)

assuming, of course, that y is sufficiently close to x that we are able to use the same
trivializations φ1, φ2. As both trivializations are constant along the strong stable foliation
of ft and we chose y ∈ Wss

ε (x), we clearly have idφ2
φ1
(x) = idφ2

φ1
(y) and, hence,

(dR)
(id

φ2
φ1
(x))−1 = (dR)

(id
φ2
φ1
(y))−1

as functions T 1G → T 1G. Moreover, because the trivializations are also constant along
the flowlines of ft , we see that idφ2

φ1
must be constant along the leaves of the centre stable

foliation of gt . Hence, we must have

(d(idφ2
φ1
)x)(w) = (d(idφ2

φ1
)y)(w

′)

for all w ∈ T 1
x W

su
gt
(x). Subtracting (4.4) from (4.5) and using the fact that idφ2

φ1
(x) =

idφ2
φ1
(y), we then obtain

X
φ2
w′ (y)−Xφ2

w (x) = Ad
id
φ2
φ1
(y)
(X

φ1
w′ (y))− Ad

id
φ2
φ1
(x)
(X

φ1
w
(x))

as desired.

There is an analogous relation between the ε-infinitesimal transitivity groups at points
along a flowline of gt , though the expansion of the unstable leaves prevent us from obtain
an equality in this case.

PROPOSITION 4.7. Fix ε > 0, x ∈ N and t > 0. Let φx and φgt (x) be trivializations near
x and gt (x) for which Bε(x) ⊂ Vx and Bε(gt (x)) ⊂ Vgt (x), and write h for the temporal
holonomy

h(x) := Hol
φgt (x)
φx

(x, gt (x), t)

measured with respect to φx and φgt (x). We then have

Adh(x)(hφxε (x)) ⊂ h
φgt (x)
ε (gt (x))

so long as φx and φgt (x) have constant projection to F along each leaf of the strong stable
foliation of ft and each flowline of ft .

Proof. By Proposition 4.1, we have

�+
φ2,φ2

(gt (x), gt (u)) = h(u) ◦�+
φ1,φ1

(x, u) ◦ (h(x))−1

so long as u is sufficiently close to x. Noting the resemblance to (4.3), simply repeating our
calculations in Proposition 4.6 yields

X
φgt (x)
w′ (gt (y))−X

φgt (x)
w (gt (x)) = Adh(x)(X

φx
w′ (y))− Adh(x)(X

φx
w
(x))
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for all y ∈ Wss
ε (x) and all w ∈ T 1

x W
su
gt
(x). This completes the proof; note that we do not

obtain equality this time because the strong stable leaves for gt contract, and there will be
y′ ∈ Wss

ε (gt (x)) that are not of the form gt (y) for y ∈ Wss
ε (x).

Note that Proposition 4.7 only yields an inclusion of the ε-infinitesimal transitivity
groups, and only in forward time. Our goal is to show that hφε (x) is exactly g at every
x ∈ N ; unfortunately, the proof of Proposition 4.7 suggests that even the dimension of
hε(x) may fail to be constant in general. Fortunately, given the topological transitivity of
gt , what we have proven so far is enough to show that the dimension is constant on a large
set.

In light of Proposition 4.6, we can be somewhat cavalier in specifying the trivialization
φ used in defining hφε (x), if we are solely concerned with the dimension and restrict our
attention to trivializations that satisfy the hypotheses of the proposition. We henceforth
always assume that every trivialization we work with has constant projection to F along
the strong stable leaves and flowlines of ft .

COROLLARY 4.8. Fix a collection of trivializations φ1, . . . , φk defined over a cover
V1, . . . , Vk of N, and let ε > 0 be the Lebesgue number of this cover. Then dim h∗

ε (·)
attains its maximum value on an open, dense subset of full measure.

Proof. Let x ∈ N be a point at which h∗
ε (x) has maximal dimension. As h∗

ε (·) is lower
semi-continuous, it has maximal dimension on an open neighbourhood W containing x.
By Proposition 4.7, h∗

ε (·) therefore has maximal dimension on an open set containing the
forward orbit of gt . This is a dense set if gt is topologically transitive.

As gt is ergodic and dim h∗
ε (·) is measurable, it must be constant almost everywhere.

The measure ν is an equilibrium measure with a Hölder potential and therefore has full
support; hence, the open and dense set on which dim h∗

ε (·) has maximal dimension must
also have full measure.

Our next objective is to relate the ε-infinitesimal transitivity groups between points
along a leaf of the strong unstable foliation of gt . If we indeed had equality in
Proposition 4.7, this would be a relatively straightforward application of Proposition 4.1.
The lack of equality makes such an approach impossible, but we can still argue as in
Corollary 4.8.

LEMMA 4.9. Fix ε > 0, x ∈ N and y ∈ Wsu
gt
(x), along with trivializations φx and φy for

which we have B2ε(x) ⊂ Vx and Bε(y) ⊂ Vy . If x is backwards-recurrent under gt and
dim h∗

ε (x) is maximal, then

h
φy
ε (y) = Ad�+

φx ,φy (x,y)(h
φx
ε (x))

and, in particular, dim h∗
ε (·) is constant on Wsu

gt
(x).

Proof. As dim h∗
ε (·) is lower semi-continuous, there is an open setW ⊂ Bε(x) on which it

is maximal. Because x is backwards recurrent, we can find a monotonic sequence of times
T = {tn} with tn → −∞ for which gtn(x) ∈ W for each n > 0. Moreover, we can suppose
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that t1 is large enough that we also have gtn(y) ∈ W for each n > 0. Now, write

h(n)(x) := Holφxφx (gtn(x), gtn−1(x), tn−1 − tn) ◦ · · · ◦ Holφxφx (gt1(x), x, −t1)
and

h(n)(y) := Holφxφx (gtn(y), gtn−1(y), tn−1 − tn) ◦ · · · ◦ Hol
φy
φx
(gt1(y), y, −t1)

for the n-step holonomies at gtn(x) and gtn(y). As we have gtn(x), gtn(y) ∈ W by
construction, we have

Adh(n)(x)(h
φx
ε (gtn(x))) = hφxε (x)

and

Adh(n)(y)(h
φx
ε (gtn(y))) = h

φy
ε (y)

by Proposition 4.7; note that we have implicitly used the fact that B2ε(x) ⊂ Vx in writing
hφxε (gtn(x)) and hφxε (gtn(y)), where Vx is the chart over which φx is defined. By rearranging
these equations, we see that

dGr(dim h∗
ε (x),g)(h

φy
ε (y), Adh(n)(y)(h(n)(x))−1(hφxε (x)))

is equal to

dGr(dim h∗
ε (x),g)(h

φx
ε (gtn(y)), h

φx
ε (gtn(x))),

where the distances are measured in the standard metric on the Grassmannian of
(dim h∗

ε (x))-dimensional subspaces of g. As hφxε (·) is lower semi-continuous and has
maximal dimension on W, it must be continuous on W. Up to passage to the interior of
a compact subset of W, we can assume that hε(·) is uniformly continuous on W. Because
dN(gtn(y), gtn(x)) → 0 as n → ∞, we must then have

dGr(dim h∗
ε (x),g)(h

φx
ε (gtn(y)), h

φx
ε (gtn(x)))

as n → ∞. This yields

h
φy
ε (y) = lim

n→∞ Adh(n)(y)(h(n)(x))−1(hφxε (x)),

at which point we simply observe that Adg(·) is continuous in g and that h(n)(y)(h(n)(x))−1

converges to �+
φx ,φy (x, y) by Proposition 4.1.

In addition to the preceding lemma, we require its analogue for the stable holonomies.
The proof is identical, and we do not repeat it.

LEMMA 4.10. Fix ε > 0, x ∈ N and y ∈ Wss
gt
(x), along with trivializations φx and φy

for which we have B2ε(x) ⊂ Vx and Bε(y) ⊂ Vy . If x is forwards-recurrent under gt and
dim h∗

ε (x) is maximal, then

h
φy
ε (y) = Ad�−

φx ,φy (x,y)(h
φx
ε (x))

and, in particular, dim h∗
ε (·) is constant on Wss

gt
(x).
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Now that we have Lemmas 4.9 and 4.10 to connect the ε-infinitesimal transitivity groups
to the unstable and stable holonomies, respectively, we can achieve the first major goal of
this section: translating the local accessibility of ft into an infinitesimal statement about
h∗
ε (·). To begin, we show that if ft is G-accessible, then hφε (x) must be AdG-invariant for

any bi-recurrent x ∈ N .

THEOREM 4.11. Fix ε > 0, x ∈ N and a trivialization φx for which Bε(x) ⊂ Vx . Suppose
that 2ε is smaller than the Lebesgue number of a finite cover {Vi} of N corresponding
to trivializations {φi}. If x is bi-recurrent under gt , dim hφxε (x) is maximal and ft is
G-accessible, then hφxε (x) is AdG-invariant.

Proof. Suppose that x is bi-recurrent. Fix an isometry g ∈ G and consider a
stable–unstable sequence x0, x1, . . . , xk , xk+1 = x0 in N with x0 = x and whose total
holonomy is g, where xi+1 is either on the strong stable or strong unstable leaf through xi
for gt . As g is the total holonomy, we can write g as the composite

id
φx0
φxk
(x0) ◦�±

φxk ,φxk
(xk , x0) ◦ . . . id

φx2
φx1
(x2)

◦�±
φx1 ,φx1

(x1, x2) ◦ id
φx1
φx0
(x1) ◦�±

φx0 ,φx0
(x0, x1),

where we can freely assume that each consecutive pair xi , xi+1 has a common trivialization
φxi for which Bε(xi), Bε(xi+1) ⊂ Vxi ; this is true up to refining the sequence (Figure 2).
Suppose, moreover, that we have chosen φx0 = φx .

We would like to now invoke Proposition 4.6 and Lemmas 4.9 and 4.10 to show that
hφxε (x) is Adg-invariant for the g corresponding to the total holonomy along this sequence.
The xi we have chosen, however, may fail to be forwards- or backwards-recurrent as

necessary. However, note that id
φxi+1
φxi

(·), �+
φxi ,φxi

(·, ·) and �−
φxi ,φxi

(·, ·) are all locally
continuous in all of their arguments. As bi-recurrent points are dense in N, given any
δ > 0, we can find a sequence of bi-recurrent points x ′

0, x′
1, . . . , x′

k , x
′
k+1 = x′

0 near
x0, x1, . . . , xk , xk+1 = x0 with x′

0 = x whose total holonomy g′ is given by

id
φx0
φxk
(x′

0) ◦�±
φxk ,φxk

(x′
k , x

′
0) ◦ · · · ◦ id

φx2
φx1
(x′

2)

◦�±
φx1 ,φx1

(x′
1, x′

2) ◦ id
φx1
φx0
(x′

1) ◦�±
φx0 ,φx0

(x′
0, x′

1)

so that we have dG(g′, g) < δ. As each x′
i is bi-recurrent, successive applications of

Proposition 4.6 and Lemmas 4.9 and 4.10 show that we have

hφxε (x) = Adg′(hφxε (x))

for g′ arbitrarily close to G. As Adg′ is continuous in g′, we then obtain

hφxε (x) = Adg(hφxε (x))

as desired.

It is worth remarking that, under our standing assumption that trivializations must
have constant projection to F along strong stable leaves of ft , the stable holonomies
�−
φxi ,φxi

(xi , xi+1) that appeared in the preceding proof must all be trivial.
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FIGURE 2. A refined stable–unstable sequence x0, x1, . . . , xk , xk+1 = x0. Any stable–unstable sequence can be
refined so that for each 0 ≤ n ≤ k, there is a trivialization φxn over a chart Vxn containing both xn and xn+1. This

refinement has the same total holonomy.

We want to show that h∗
ε (·) is equal to the full Lie algebra g, and the local G-accessibility

of the extension will be crucial at this point. In fact, with Theorem 4.11, we can show that
local G-accessibility at a point x ∈ N is roughly equivalent to having hφε (x) = g.

THEOREM 4.12. Fix ε > 0, x ∈ N and a trivialization φx defined over Vx ⊂ N for which
we have B3ε(x) ⊂ Vx . Moreover, suppose that hφxε (·) is continuous and has maximal
dimension on B3ε(x), and that the forwards orbit of x under gt is dense in B2ε(x). If
ft is locally G-accessible at x, then hφxε (x) = g.

Proof. Without loss of generality, suppose that we have chosen φx so that �+
φx ,φx (x, u)

is trivial for all u ∈ (Wsu
gt
(x) ∩ B2ε(x))

◦, and so that �−
φx ,φx (s1, s2) is trivial whenever s1

and s2 lie on the same (local) leaf of the strong stable foliation of gt in B2ε(x).
We write h := hφxε (x) and suppose for the sake of contradiction that h � g is a proper

subalgebra. By Proposition 4.9 and our choice of φx , we must have hφxε (u) = h for all
u ∈ Bε(x) lying on the local leaf through x of the strong unstable foliation of gt . Hence,
for any u1 ∈ Bε(x), each vector Xφx

w′ (u1) used in the definition of hφxε (u) must lie in the
Lie algebra h. Integrating this, we see that the unstable holonomies �+

φx ,φx (u1, u2) are
constrained to exp(h) for all u1, u2 ∈ Bε(x) that lie on the same local leaf of the strong
unstable foliation of gt .
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Now, consider H := exp(h) and consider an element g ∈ G \H that lies in the
complement. By our construction of φx , all unstable holonomies are constrained to H
and all stable holonomies are trivial; hence, no local sequence of stable and unstable
holonomies along a sequence of points x, x1, x2, . . . xk , x lying in Bε(x) can result
in a total holonomy of g. Moreover, because h is an ideal by Theorem 4.11, H is a
normal subgroup of G; hence, we cannot obtain a total holonomy of g for any choice
of trivialization. As ft is locally G-accessible at x, this is a contradiction.

It is worth noting that accessibility within a single, fixed trivialization φx at a given x ∈
N is vital here. Indeed, if we only had global rather than local accessibility, the unstable
holonomies could be constrained to exp(h) as in the proof of Theorem 4.12 without any
contradiction, because the transition functions between different trivialization charts need
not act by exp(h).

With Theorem 4.12, all that remains in this section is to verify that this translates
properly into the symbolic model we are working with. In principle, the difficulty is
that unstable leaves for the discrete dynamical system (R, P) are typically not unstable
leaves for gt ; fortunately, our choice of trivializations will circumvent almost all of these
problems.

Recall that (R, P) is a Markov partition associated with gt , which descends to a C1

expanding model (U , σ) by projecting along leaves of the strong stable foliation of gt . We
want to define unstable holonomies entirely within the symbolic model; a natural candidate
for a definition comes from Proposition 4.1. For everything that follows, we assume that
each Ri ⊂ N has been assigned a fixed trivialization φi defined on a neighbourhood
Bε(Ri), with the property that φi has constant projection to F along each leaf of the strong
stable foliation of ft and each flowline of ft . By choosing and fixing trivializations at each
point in R, we no longer need to specify which trivialization we are using, at least when
dealing with the symbolic model.

Definition 4.4. Fix x ∈ R and y ∈ Wsu
P (x). The symbolic unstable holonomy�+

symb(x, y)
is defined to be the limit

�+
symb(x, y) := lim

n→∞ Hol(n)(P−n(y))(Hol(n)(P−n(x)))−1,

where we write

Hol(n)(u) := Hol(Pn−1(u)) ◦ · · · ◦ Hol(u)

for the nth holonomy under the Poincaré return map.

It is straightforward to verify that this limit exists. Moreover, our choice of trivializations
ensures that the symbolic unstable holonomies agree with the appropriate (non-symbolic)
unstable holonomies.

PROPOSITION 4.13. Fix x ∈ R and y ∈ Wsu
P (x). There is a (possibly negative) t so that

gt (y) ∈ Wsu
gt
(x) for which we have

�+
symb(x, y) = �+

φx ,φy (x, gt (y)),
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assuming x and y are sufficiently close, where φx , φy are trivializations corresponding to
the respective parts of the Markov partition.

Proof. The existence of such a t satisfying |t | < τ(y), τ(P−1(y)) follows immediately
from the construction of the Markov partition (R, P). We then clearly have

�+
symb(x, y) = Hol

φy
φy
(gt (y), y, −t) ◦�+

φx ,φy (x, gt (y))

by Proposition 4.1 and Definition 4.4. By our choice of trivialization and the fact that t does
not exceed the return time of y, Hol

φy
φy
(gt (y), y, −t) is the identity in G, as desired.

Now, we can analogously define the symbolic infinitesimal transitivity group.

Definition 4.5. Fix x ∈ Ui and a vector w ∈ T 1
x Ui . We define the symbolic infinitesimal

holonomy at x in the direction of w to be the element

X
symb
w (x) :=

(
d

du

∣∣∣∣
u=x

(�+
symb(x, u))

)
(w)

of the Lie algebra g of G. The symbolic infinitesimal transitivity group at x is defined to be
the linear span

hsymb(x) := span
s,s′,w

(Xw′([x, s′])−Xw([x, s])),

where we take the span over s, s′ ∈ Si , w ∈ T 1
x Ui and let w′ be the projection of w to

[x, s′] via centre-stable leaves followed by the flow.

With very little work, we can now prove the following result.

THEOREM 4.14. Fix a bi-recurrent x ∈ Ui at which dim hε(x) is maximal, and suppose
that ft is G-accessible. Then hsymb(x) = g.

Proof. By Proposition 4.13, the unstable holonomies used in Definitions 4.3 and 4.5 are
the same. Hence, the regular and symbolic transitivity groups agree, and so by Theorem
4.11, we have hsymb(x) = g.

This is almost the result we want, but we need to use some Lie theory to extract the
explicit estimates that we use in the next section. We want to phrase this in terms of σ ,
which means minor notational changes in the preceding theorems. Recall that σ : U → U

is not actually invertible; to make sense of the inverse, we must choose branches of σ−n
locally.

Definition 4.6. A consistent past for u ∈ Ui is a sequence of maps {v(n) : Ui → Uj(n) |
n ≥ 0} where v(0) = id |Ui and σ ◦ v(n) = v(n−1).

Remark 4.15. A consistent past for u ∈ Ui corresponds exactly to a choice of stable
element s ∈ Si : we can recover the maps {v(n)} by projecting the Poincaré return map
P(−n) along leaves of the strong stable foliation.
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Finally, we can establish the main estimate; this is fundamentally the same estimate as
[12, Lemma 3.17] and [17, Lemma 5.5], the primary difference being in the analysis of the
infinitesimal transitivity group needed to arrive at it.

THEOREM 4.16. Let ρ be an isotypic component of the representation of G on L2(G).
There is an open subset Ulni ⊂ U and constants ε, δ, n0 > 0 so that, for any x ∈ Ulni and
any ϕ ∈ C1(U , V ρ), there are consistent pasts v1 = {v(n)1 } and v2 = {v(n)2 } defined near x
and a C1 vector field w : Ulni → T 1Ulni satisfying

‖(dρ(Xsymb
w(u),v1

(u)−X
symb
w(u),v2

(u)))(ϕ(u))‖L2(G) ≥ ε‖ρ‖
for all u ∈ Bδ(x).
Proof. By definition, we have

X
symb
w,vi (x) = d

du

∣∣∣∣
u=x

( lim
n→∞ Hol(n)(v(n)i (u))(Hol(n)(v(n)i (x))−1)

for all u ∈ Bδ(x). The derivatives of the terms in the sequence converge exponentially fast
in n, so we can interchange the limit and the derivative to obtain

X
symb
w,vi (x) = lim

n→∞

(
d

du

∣∣∣∣
u=x

(Hol(n)(v(n)i (y))(Hol(n)(v(n)i (x)))−1)

)

for any consistent past vi . As the Xsymb
w(u),vi

−X
symb
w(u),vj

taken over pasts vi , vj and vectors w
form a basis of g, there is a finite n0 so that the approximations

X
symb

w,v
(n0)
i

(x) := d

du

∣∣∣∣
u=x

(Hol(n0)(v
(n0)
i (y))(Hol(n0)(v

(n0)
i (x)))−1)

can also be used to form a basis Xsymb

w(u),v
(n0)
i

(x)−X
symb

w(u),v
(n0)
j

(x), taken again over pasts

vi , vj and vectors w. Hence, we have a Casimir

� =
∑

(gij )
−1(X

symb

w,v
(n0)
i

(x)−X
symb

w,v
(n0)
j

(x))(X
symb

w,v
(n0)
i

(x)−X
symb

w,v
(n0)
j

(x))

for some finite collection of pasts vi , vj and a given vector w. This acts on V ρ by scalar
multiplication by ‖ρ‖2, and so we obtain

dρ

( ∑
(gij )

−1(X
symb

w,v
(n0)
i

(x)−X
symb

w,v
(n0)
j

(x))2
)
(ϕ(x)) = ‖ρ‖2ϕ(x)

for this collection of pasts, and the same vector w. Now, there is a uniform constant ε > 0,
depending only on the gij and g, so that

‖dρ(Xsymb

w,v
(n0)
i

(x)−X
symb

w,v
(n0)
j

(x))(ϕ(x))‖L2(G) ≥ ε‖ρ‖ϕ(x)

for some choice of vi , vj and w. As Xsymb
w,v (u) varies continuously in w and u, there is a

neighbourhood Bδ(x) of x in U and a C1 vector field w : Bδ(x) → T 1Bδ(x) for which

‖dρ(Xsymb

w(u),v
(n0)
i

(u)−X
symb

w(u),v
(n0)
j

(u))(ϕ(u))‖L2(G) ≥ ε

2
‖ρ‖ϕ(u)

holds for all u ∈ Bδ(x), as desired.
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5. Spectral bounds for Lnz,ρ
In this section, we establish bounds for the twisted transfer operators Lnz,ρ acting
on C1(U , V ρ) with respect to the L2(νu)-norm. The key ingredients are the local
non-integrability estimate in Theorem 4.16, the diametric regularity of the measure νu

and the C1 regularity of αz from the definition of the transfer operators.
The strategy adopted in this section is by now classical, dating back to Dolgopyat in

[11, 12]; an account of this almost completely adapted to our setting was given by Winter
in [17]. The reader already familiar with these arguments should find few surprises in this
section, but we feel it necessary to include them given their delicate nature and the minor
differences in our contexts.

We begin by recalling the definition of the twisted transfer operator

(Lnz,ρϕ)(u) :=
∑

σn(u′)=u
eα

(n)
z (u′)ρ(Hol(n)(u′))ϕ(u′)

associated with an irreducible representation ρ of G on V ρ ⊂ L2(G). For the triv-
ial representation ρ = 0, Dolgopyat [11] established contraction by using the uniform
non-integrability of the strong stable and unstable foliations for gt to establish cancellation
in the terms defining the transfer operator. In principle, the difficulty in obtaining
contraction for ‖Lnz,ρϕ‖L2(νu) as n → ∞ lies in the possibility that the rotation introduced
by the action of ρ may ‘undo’ any cancellation between the vectors ϕ(u′) ∈ V ρ that we
might obtain from the dynamics on the base, and that this may happen on a set of large
measure.

The local non-integrability estimate provided by Theorem 4.16, however, suggests that
we should typically be able to find u′

1, u′
2 with σn(u′

1) = σn(u′
2) ∈ Ulni so that

ρ(Hol(n)(u′
1))ϕ(u

′
1) and ρ(Hol(n)(u′

2))ϕ(u
′
2)

are ‘uniformly’ non-parallel. The main argument in the section boils down to verifying that
this can be accomplished on an adequately large set, with explicit uniformity estimates.

Throughout this section, we work with a fixed isotypic component V ρ of the regular
representation of G on L2(G). However, it is worth noting that most of the intermediate
constants will fundamentally depend on ρ, and keeping track of these dependencies is
essential to obtaining a final bound in Theorem 5.7 that is independent of ρ.

Though we need to deal with Lnz,ρϕ for any ϕ ∈ C1(U , V ρ), it will be helpful to work
instead with slightly more regular real-valued functions � ∈ C1(U , R+) with bounded
logarithmic derivative; in other words, we require

sup
w∈T 1

u U

|(d�)u(w)| < C�(u)

for all u ∈ U . We use KC to denote the class of such functions

KC := {� ∈ C1(U , R+) | log � is C-Lipschitz}
for any constant C > 0.

As gt is Anosov, the expansion rates of gt on U are bounded away from 1. As the return
times τ : R → R are bounded away from zero, the slowest expansion rates of dσn on U are
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therefore also bounded away from 1. For what follows, let f κn and bKn with 1 < κ < K

be the slowest and fastest expansion rate of any unit vector in T 1U under dσn.
We are interested in functions � ∈ KC with bounded logarithmic derivative because

they can be used to control less-regular functions ϕ ∈ C1(U , R). The following lemma
makes this precise, and is analogous to [11, Lemma 14] and [17, Lemma 6.5].

LEMMA 5.1. Fix C > 0, ϕ ∈ C1(U , V ρ) and � ∈ KC . There is a δ > 0 so that, if

‖ϕ(u)‖L2(G) < �(u),

sup
w∈T 1

u U

‖(dϕ)u(w)‖L2(G) < C�(u)

for all u ∈ U , then for any u0 ∈ U ,

‖ϕ(v(n)(u))‖L2(G) ≤ 3
4�(v

(n)(u))

or

‖ϕ(v(n)(u))‖L2(G) ≥ 1
4�(v

(n)(u))

for all u ∈ Bδ(u0), each n > 0 and each consistent past v = {v(n)} defined near u0.
Moreover, for any u0 ∈ U ,

�(v(n)(y)) ≤ 2�(v(n)(x))

for all x, y ∈ Bδ(u0). The choice of constant δ > 0 can be made so that we have δC = A

for some uniform constant A, which does not depend on ρ, �, ϕ, u0, v or n.

Proof. As we chose � ∈ KC , log � is C-Lipschitz and we therefore have

| log(�(v(n)(y)))− log(�(v(n)(x)))| ≤ C

f κn
d(x, y)

≤ C

f
d(x, y)

for any x, y ∈ U . Exponentiating both sides, this means

�(v(n)(y)) ≤ e(C/f )d(x,y)�(v(n)(x)) (5.1)

for any x, y ∈ U . Now, suppose that d(x, y) ≤ 2δ for some δ > 0, and fix a unit speed
path γ : [0, 2δ] → U0 with γ (0) = y and γ (2δ) = x. We then have

|‖ϕ(v(n)(x))|L2(G) − ‖ϕ(v(n)(y))‖L2(G)| ≤
∫ 2δ

0
|〈grad(ϕ ◦ v(n))(γ (t)), γ ′(t)〉T 1N | dt

≤ C

f κn

∫ 2δ

0
(� ◦ v(n))(γ (t)) dt

≤ C

f κn
2δe(C/f κ

n)d(x,y)�(v(n)(y))

≤ C

f
δe(C/f )2δ�(v(n)(y))
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by the fundamental theorem of calculus and our bounds on ϕ. Fix δ small enough to ensure

C

f
2δe(C/f )2δ ≤ 1

8

and

e(C/f )2δ ≤ 2

hold simultaneously; note that we really only require that Cδ is sufficiently small, and so δ
can be chosen inversely proportional to C. We therefore have

�(v(n)(y)) ≤ 2�(v(n)(x)) (5.2)

and

‖ϕ(v(n)(x))‖L2(G) ≤ ‖ϕ(v(n)(y))‖L2(G) + 1
8�(v

(n)(y)) (5.3)

whenever d(x, y) < 2δ. To conclude, suppose that we had

‖ϕ(v(n)(y))‖L2(G) ≤ 1
4�(v

(n)(y))

at some y ∈ Bδ(u0), for a given u0 ∈ U and n. Then by (5.3) and (5.2), we must have

‖ϕ(v(n)(x))‖L2(G) ≤ 1
4�(v

(n)(y))+ 1
8�(v

(n)(y))

≤ 2
4�(v

(n)(x))+ 2
8�(v

(n)(x))

≤ 3
4�(v

(n)(x))

for any x ∈ Bδ(u0), as desired.

LEMMA 5.2. Fix C > 0, ϕ ∈ C1(U , V ρ) and � ∈ KC . Take δ > 0 as in Lemma 5.1 and
suppose that we have

‖ϕ(u)‖L2(G) < �(u),

sup
w∈T 1

u U

‖(dϕ)u(w)‖ < C�(u)

for all u ∈ U . If v(n) is a past defined on Bδ(u0) satisfying

‖ϕ(v(n)(u))‖L2(G) ≥ 1
4�(v

(n)(u))

for all u ∈ Bδ(u0), and some given u0 ∈ U , then we have

sup
w∈T 1

u Bδ(u0)

∥∥∥∥
(
d

(
ϕ ◦ v(n)

‖ϕ ◦ v(n)‖L2(G)

))
u

(w)

∥∥∥∥
L2(G)

≤ 8C
f κn

for all u ∈ Bδ(u0).

Proof. Differentiating the fraction, we see that we need to bound the supremum of
∥∥∥∥(d(ϕ ◦ v(n)))u(w)‖ϕ(v(n)(u))‖L2(G) − ϕ(v(n)(u))(d(‖ϕ ◦ v(n)‖L2(G)))u(w)

‖ϕ(v(n)(u))‖L2(G)

∥∥∥∥
L2(G)

(5.4)
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for any u ∈ U and w ∈ T 1
u Bδ(u0). Note that we always have

(d(‖ϕ ◦ v(n)‖L2(G)))u(w) ≤ ‖(d(ϕ ◦ v(n)))u(w)‖L2(G)

and so (5.4) is at most

sup
w∈T 1

u Bδ(u0)

2‖ϕ(v(n)(u))‖L2(G)‖(d(ϕ ◦ v(n)))u(w)‖L2(G)

‖ϕ(v(n)(u))‖2
L2(G)

(5.5)

by the triangle inequality. Cancelling terms, we can reduce (5.5) to

sup
w∈T 1

u Bδ(u0)

2‖(d(ϕ ◦ v(n)))u(w)‖L2(G)

‖ϕ(v(n)(u))‖L2(G)

,

which is at most

sup
w∈T 1

u Bδ(u0)

w′∈T 1
v(n)(u)

Bδ(u0)

2‖(d(ϕ))v(n)(u)(w′)‖L2(G)‖(dv(n))u(w)‖T 1N

‖ϕ(v(n)(u))‖L2(G)

(5.6)

by the chain rule. As f κn is the slowest expansion rate of any vector in T 1U under dσn,
we can bound

sup
w∈T 1

u U

‖(dv(n))u(w)‖T 1N ≤ 1
f κn

for all u ∈ U . By hypothesis, we also have

sup
w′∈T 1

v(n)(u)
U

‖(dϕ)v(n)(u)(w′)‖L2(G) ≤ C�(v(n)(u))

for all u ∈ U , and so (5.6) can be bounded above by

2C�(v(n)(u))
f κn‖ϕ(v(n)(u))‖L2(G)

,

which is, in turn, at most

8C�(v(n)(u))
f κn�(v(n)(u))

by hypothesis. Cancelling �, we obtain the result desired.

We need a simple lemma before proceeding to the main argument of the section; the
proof is a straightforward application of the polarization identity.

PROPOSITION 5.3. Let (V , ·) be an inner product space, and suppose that we have

‖v̂ − ŵ‖ ≥ ε
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for v, w ∈ V and ε < 1, where v̂, ŵ denote the unit vectors in the directions of v and w,
respectively. If ‖v‖ ≤ ‖w‖, then

‖v + w‖ ≤
(

1 − ε2

4

)
‖v‖ + ‖w‖.

We might be tempted to argue that, if ϕ ∈ C1(U , V ρ) is controlled by � ∈ KC as in
Lemma 5.1, then we can similarly bound ‖(Lnz,ρϕ)(u)‖L2(G) by (LnRe(z),0�)(u) pointwise;
however, although this turns out to be true, it is not particularly helpful because LnP (ς),0�
fails to contract as n → ∞. Indeed, because � is strictly positive by definition, LnP (ς),0�
will converge to

∫
U
� dνu > 0.

The solution is to artificially introduce contraction into the transfer operators, and
Theorem 4.16 is precisely what ensures that we can do this while maintaining a point-
wise bound. In the next lemma, we show that we can uniformly and explicitly bound
‖(Lnz,ρϕ)(u)‖L2(G) away from (LnRe(z),0�)(u) on a measurable portion of any sufficiently
small set.

The following lemma establishes the key cancellation mechanism in our setting, and
mirrors [17, Lemma 6.6] and, together with Lemma 5.5, is analogous to [11, §8].

LEMMA 5.4. Fix C > 0, ϕ ∈ C1(U , V ρ) and � ∈ KC with

‖ϕ(u)‖L2(G) < �(u),

sup
w∈T 1

u U

‖(dϕ)u(w)‖L2(G) < C�(u)

for all u ∈ U . Let Ulni ⊂ U be the open subset given by Theorem 4.16 and let δ > 0 be
the constant given by Lemma 5.1. There are constants n0 > 0, ε > 0 and s < 1 so that, for
any x ∈ Ulni with Bδ(x) ⊂ Ulni , we can find
• a point y ∈ Ulni with Bsδ(y) ⊂ Bδ(x); and
• a pair of pasts v(n0)

1 , v(n0)
2 defined on Bδ(x);

for which we can bound

‖eα(n0)
z (v

(n0)
1 (u))ρ(Hol(n0)(v

(n0)
1 (u)))ϕ(v

(n0)
1 (u))

+ eα
(n0)
z (v

(n0)
2 (u))ρ(Hol(n0)(v

(n0)
2 (u)))ϕ(v

(n0)
2 (u))‖L2(G)

above by
(

1 − (εδ(1 + |Im(z)|)‖ρ‖)2
4096

)
e
α
(n0)
Re(z)(v

(n0)
1 (u))

�(v
(n0)
1 (u))+ e

α
(n0)
Re(z)(v

(n0)
2 (u))

�(v
(n0)
2 (u))

for all u ∈ Bsδ(y) and all z ∈ C with |Re(z)− P(ς)| < 1. The constant ε can be chosen
independently of ρ and C, whereas n0 depends only on C/‖ρ‖. The constant s can be
chosen uniformly in C and ρ.

Proof. We deal with a fixed n > 0 throughout the proof, and specify how large n needs to
be as we proceed; it is important to note that we cannot deal with arbitrarily large n without
foregoing the uniformity of the bounds we wish to obtain. We proceed in cases depending
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on which alternative of Lemma 5.1 holds. For any pasts v(n)1 and v(n)2 , if we have

‖ϕ(v(n)1 (u))‖L2(G) ≤ 3
4�(v

(n)
1 (u))

for all u ∈ Bδ(x), then because ρ is unitary we can clearly bound

‖eα(n)z (v
(n)
1 (u))ρ(Hol(n)(v(n)1 (u)))ϕ(v

(n)
1 (u))

+ eα
(n)
z (v

(n)
2 (u))ρ(Hol(n)(v(n)2 (u)))ϕ(v

(n)
2 (u))‖L2(G)

above by

3
4 (e

α
(n)
Re(z)(v

(n)
1 (u))

�(v
(n)
1 (u))+ e

α
(n)
Re(z)(v

(n)
2 (u))

�(v
(n)
2 (u)))

for all u ∈ Bδ(x). In this case, we are done by simply setting y := x. Similarly, if we had

‖ϕ(v(n)2 (u))‖L2(G) ≤ 3
4�(v

(n)
2 (u))

for all u ∈ Bδ(x), then we are again done by setting y := x, up to interchanging our choice
of v1 and v2. So we may as well assume that the second alternative of Lemma 5.1 holds
for both v(n)1 and v(n)2 , and that we therefore have

‖ϕ(v(n)� (u))‖L2(G) ≥ 1
4�(v

(n)
� (u)) (5.7)

for all u ∈ Bδ(x). We temporarily abbreviate

g�(u) := Hol(n)(v(n)� (u)),

ϕ̂�(u) := ϕ(v
(n)
� (u))

‖ϕ(v(n)� (u))‖L2(G)

and

ψ̂�(u) := eIm(z)τ (n)(v(n)� (u))i ϕ(v
(n)
� (u))

‖ϕ(v(n)� (u))‖L2(G)

for the sake of clarity. Note that ϕ̂� and ψ̂� are well-defined on Bδ(x) as an immediate
consequence of (5.7). Now, by reversing the triangle inequality,

‖ρ(g1(x))ψ̂1(x)− ρ(g2(x))ψ̂2(x)‖L2(G) (5.8)

is at least

‖ρ(g1(x))ψ̂1(y)− ρ(g2(x))ψ̂2(y)‖L2(G)

− ‖ρ(g1(x))ψ̂1(y)−ρ(g1(x))ψ̂1(x)‖L2(G)− ‖ρ(g2(x))ψ̂2(x)− ρ(g2(x))ψ̂2(y)‖L2(G)

(5.9)

for any y ∈ Bδ(x). As group elements act by isometries with respect to the L2(G) norm,
(5.9) is equal to

‖ρ(g2(y)g
−1
2 (x)g1(x))ψ̂1(y)− ρ(g2(y))ψ̂2(y)‖L2(G)

−‖ψ̂1(y)− ψ̂1(x)‖L2(G) − ‖ψ̂2(x)− ψ̂2(y)‖L2(G),
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which we can bound below by

‖ρ(g2(y)g
−1
2 (x)g1(x))ψ̂1(y)− ρ(g1(y))ψ̂1(y)‖L2(G)

− ‖ψ̂1(y)− ψ̂1(x)‖L2(G) − ‖ψ̂2(x)− ψ̂2(y)‖L2(G)

− ‖ρ(g2(y))ψ̂2(y)− ρ(g1(y))ψ̂1(y)‖L2(G) (5.10)

using the reverse triangle inequality once again. We can rewrite (5.10) as

‖ρ(g1(x)g
−1
1 (y)g1(y))ψ̂1(y)− ρ(g2(x)g

−1
2 (y)g1(y))ψ̂1(y)‖L2(G)

− ‖ψ̂1(y)− ψ̂1(x)‖L2(G) − ‖ψ̂2(x)− ψ̂2(y)‖L2(G)

− ‖ρ(g2(y))ψ̂2(y)− ρ(g1(y))ψ̂1(y)‖L2(G) (5.11)

by replacing ψ̂1(y) with g−1
1 (y)g1(y)ψ̂1(y) in the first term of the first line, and

multiplying both terms on the first line by g2(x)g
−1
2 (y). Hence, (5.8) is bounded below

by (5.11), and we see that

‖ρ(g1(x))ψ̂1(x)− ρ(g2(x))ψ̂2(x)‖L2(G) + ‖ρ(g2(y))ψ̂2(y)− ρ(g1(y))ψ̂1(y)‖L2(G)

is at least

‖ρ(g1(x)g
−1
1 (y)g1(y))ψ̂1(y)− ρ(g2(x)g

−1
2 (y)g1(y))ψ̂1(y)‖L2(G)

− ‖ψ̂1(y)− ψ̂1(x)‖L2(G) − ‖ψ̂2(x)− ψ̂2(y)‖L2(G) (5.12)

after rearranging. By Theorem 4.16, there is an N > 0, ε > 0, a choice of pasts v(n)1 and
v
(n)
2 , and a y with d(x, y) = δ/2 for which we have

‖ρ(g1(x)g
−1
1 (y)g1(y))ψ̂1(y)− ρ(g2(x)g

−1
2 (y)g1(y))ψ̂1(y)‖L2(G)

≥ ε(1 + |Im(z)|)‖ρ‖ δ
2

(5.13)

for all n ≥ N ; note that we have applied the theorem to

eIm(z)τ (n)(u)iρ(Hol(n)(u))
ϕ(u)

‖ϕ(u)‖L2(G)

,

which is certainly a smooth function in C1(U , V ρ). On the other hand, by Lemma 5.2,
ϕ̂�(u) is at worst 8C/f κn-Lipschitz in u on Bδ(x), and we can estimate

|(d(eIm(z)(τ (n)◦v(n)� )i ))u(w)|L2(G) = (|Im(z)eIm(z)(τ (n)◦v(n)� )i |)
∣∣∣∣

n∑
i=1

(d(τ ◦ vi�))v(n)� (u)
(w′)

∣∣∣∣

≤ |Im(z)|
( n∑
i=1

‖τ‖C1

f κi

)

≤ |Im(z)| ‖τ‖C1

f (κ − 1)
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for all u ∈ U , w ∈ T 1
u Bδ(x) and w′ ∈ T 1

v�(u)
Bδ(x). Hence, we can bound

‖ψ̂�(x)− ψ̂�(y)‖ ≤
(

8C
f κn

+ |Im(z)| ‖τ‖C1

f (κ − 1)

)
d(x, y)

because we chose y ∈ Bδ(x). Suppose that n and ‖ρ‖ are large enough so that we have(
8C
f κn

+ |Im(z)| ‖τ‖C1

f (κ − 1)

)
<
ε

8
(1 + |Im(z)|)‖ρ‖

for some constant K > 0. Note that we can make this choice of n so that it depends only
on C/‖ρ‖ and not ‖ρ‖ directly; moreover, the requirement that ‖ρ‖ be sufficiently large
can be made absolute, and in particular is independent of z. This ensures

‖ψ̂�(x)− ψ̂�(y)‖L2(G) ≤ ε

8
(1 + |Im(z)|)‖ρ‖δ (5.14)

because d(x, y) ≤ δ. Note that our choice of n here depends only on C/‖ρ‖. Plugging
(5.13) and (5.14) into (5.12), we conclude that

‖ρ(g1(x))ψ̂1(x)− ρ(g2(x))ψ̂2(x)‖L2(G) + ‖ρ(g1(y))ψ̂1(y)− ρ(g2(y))ψ̂2(y)‖L2(G)

≥ ε

4
δ(1 + |Im(z)|)‖ρ‖

and so

‖ρ(g1(x))ψ̂1(x)− ρ(g2(x))ψ̂2(x)‖L2(G) >
ε

8
δ(1 + |Im(z)|)‖ρ‖ (5.15)

or

‖ρ(g1(y))ψ̂1(y)− ρ(g2(y))ψ̂2(y)‖L2(G) >
ε

8
δ(1 + |Im(z)|)‖ρ‖ (5.16)

must hold. Without loss of generality, suppose (5.16) holds. Using the Lipschitz estimate
on ϕ̂�, we can bound

sup
w∈T 1

u Bδ(x)

‖(d(ρ(g�)ψ̂�))u(w)‖L2(G)

by

sup
w∈T 1

u Bδ(x)

‖(((dρ)g�(u) ◦ (dg�)u)(w))ψ̂�(u)+ ρ(g�(u))(dψ̂�)u(w)‖L2(G) (5.17)

for all u ∈ Bδ(x). A straightforward calculation shows that

sup
w∈T 1

u Bδ(x)

‖(dg�)u(w)‖ ≤ sup
w∈T 1

u Bδ(x)

n∑
i=1

‖(d(Hol ◦v(i)))u(w)‖T 1G

≤
n∑
i=1

‖ Hol ‖C1

f κi

≤ ‖ Hol ‖C1

f (κ − 1)
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and we have

sup
w′∈T 1

g�(u)
G

‖(dρ)g�(u)(w′)‖L2(G) ≤ ‖ρ‖

by Definition 2.9; note that because ρ is a homomorphism, the operator norm of dρ at
g�(u) is equivalent to the norm at the identity. Hence, (5.17) is at most

‖ρ‖ ‖ Hol ‖C1

f (κ − 1)
+ ε

8
(1 + |Im(z)|)‖ρ‖

by our choice of δ, because ρ acts by L2(G)-isometries. We can make a uniform choice of
s < 1 so that

s

(
‖ρ‖ ‖ Hol ‖C1

f (κ − 1)
+ ε

8
(1 + |Im(z)|)‖ρ‖

)
<

ε

32
(1 + |Im(z)|)‖ρ‖ (5.18)

and we then have

‖ρ(g1(y))ψ̂1(y)− ρ(g1(u))ψ̂1(u)‖L2(G) <
ε

32
δ(1 + |Im(z)|)‖ρ‖ (5.19)

and

‖ρ(g2(y))ψ̂2(y)− ρ(g2(u))ψ̂2(u)‖L2(G) <
ε

32
δ(1 + |Im(z)|)‖ρ‖ (5.20)

for all u ∈ Bsδ(y). Combining (5.19) and (5.20) with (5.15), we now have

‖ρ(g1(u))ψ̂1(u)− ρ(g2(u))ψ̂2(u)‖L2(G) >
ε

16
δ(1 + |Im(z)|)‖ρ‖

for all u ∈ Bsδ(y). Now, fix u ∈ Bsδ(y). By Proposition 5.3, we can then bound

‖eα(n)z (v
(n)
1 (u))ρ(Hol(n)(v(n)1 (u)))ϕ(v

(n)
1 (u))

+ eα
(n)
z (v

(n)
2 (u))ρ(Hol(n)(v(n)2 (u)))ϕ(v

(n)
2 (u))‖L2(G)

above by(
1 − (εδ(1 + |Im(z)|)‖ρ‖‖)2

1024

)
e
α
(n)
Re(z)(v

(n)
1 (u))

�(v
(n)
1 (u))+ e

α
(n)
Re(z)(v

(n)
2 (u))

�(v
(n)
2 (u))

(5.21)

assuming without loss of generality that

‖eα(n)Re(z)(v
(n)
1 (u))

ϕ(v
(n)
1 (u))‖L2(G) ≤ ‖eα(n)Re(z)(v

(n)
2 (u))

ϕ(v
(n)
2 (u))‖L2(G) (5.22)

held for this particular u; this is true up to interchanging v(n)1 and v(n)2 . It simply remains to
ensure that a similar inequality extends to Bsδ(y) for this particular choice of v(n)1 and v(n)2 :
this is not immediate because (5.22) could certainly fail to hold on the entire ball Bsδ(y).

This requires some extra work. Note that we have

sup
w∈T 1

u U

∥∥∥∥
(
d

(
e
α
(n)
Re(z)�

))
u

(w)

∥∥∥∥
L2(G)

≤ sup
w∈T 1

u U

|(deα(n)Re(z) )u(w)|‖�(u)‖L2(G) + e
α
(n)
Re(z)(u)‖(d�)u(w)‖L2(G)
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≤ ‖α(n)Re(z)‖C1e
α
(n)
Re(z)(u)‖�(u)‖L2(G) + Ce

α
(n)
Re(z)(u)�(u)

≤
( n∑
i=1

bKi‖αRe(z)‖C1

)
e
α
(n)
Re(z)(u)‖�(u)‖L2(G) + Ce

α
(n)
Re(z)(u)�(u)

≤
(
b‖αRe(z)‖C1

Kn+1 −K

K − 1
+ C

)
e
α
(n)
Re(z)(u)‖�(u)‖L2(G)

for all u ∈ U . By making s smaller if necessary, we can ensure that, in addition to (5.18),
we also have

sδ(b‖αRe(z)‖C1
Kn+1 −K

K − 1
+ C) < δC = A,

where A is the uniform constant guaranteed by Lemma 5.1. Note that this can be
accomplished by a uniform choice of s, because n is fixed and z is required to satisfy
|Re(z)− P(ς)| < 1. As a consequence, we see by Lemma 5.1 that

1
2e
α
(n)
Re(z)(v

(n)
� (u′))

�(v
(n)
� (u′)) ≤ e

α
(n)
Re(z)(v

(n)
� (u))

�(v
(n)
� (u)) ≤ 2eα

(n)
Re(z)(v

(n)
� (u′))

�(v
(n)
� (u′))

(5.23)

for all u, u′ ∈ Bsδ(y). Now, suppose that

‖eα(n)z (v
(n)
1 (u′))ρ(Hol(n)(v(n)1 (u′)))ϕ(v(n)1 (u′))

+ eα
(n)
z (v

(n)
2 (u′))ρ(Hol(n)(v(n)2 (u′)))ϕ(v(n)2 (u′))‖L2(G)

were bounded above by

e
α
(n)
Re(z)(v

(n)
1 (u′))

�(v
(n)
1 (u′))+

(
1 − (εδ(1 + |Im(z)|)‖ρ‖)2

1024

)
e
α
(n)
Re(z)(v

(n)
2 (u′))

�(v
(n)
2 (u′))

(5.24)

for some u′ ∈ Bsδ(y); this is in contrast to the bound by (5.21) that we have at u ∈ Bsδ(y).
If we had

e
α
(n)
Re(z)(v

(n)
2 (u′))

�(v
(n)
2 (u′)) ≤ e

α
(n)
Re(z)(v

(n)
1 (u′))

�(v
(n)
1 (u′)),

then (5.24) is, in turn, bounded above by(
1 − (εδ(1 + |Im(z)|)‖ρ‖)2

1024

)
e
α
(n)
Re(z)(v

(n)
1 (u′))

�(v
(n)
1 (u′))+ e

α
(n)
Re(z)(v

(n)
2 (u′))

�(v
(n)
2 (u′)),

which is consistent with (5.21). If, on the other hand, we had

e
α
(n)
Re(z)(v

(n)
1 (u′))

�(v
(n)
1 (u′)) ≤ e

α
(n)
Re(z)(v

(n)
2 (u′))

�(v
(n)
2 (u′)),

then we can invoke (5.23) twice to see that

e
α
(n)
Re(z)(v

(n)
1 (u))

�(v
(n)
1 (u)) ≤ 2eα

(n)
Re(z)(v

(n)
1 (u′))

�(v
(n)
1 (u′))

≤ 2eα
(n)
Re(z)(v

(n)
2 (u′))

�(v
(n)
2 (u′))

≤ 4eα
(n)
Re(z)(v

(n)
2 (u))

�(v
(n)
2 (u))
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for any other u ∈ Bsδ(y). Hence, (5.21) is at most

e
α
(n)
Re(z)(v

(n)
1 (u))

�(v
(n)
1 (u))+

(
1 − (εδ(1 + |Im(z)|)‖ρ‖)2

4096

)
e
α
(n)
Re(z)(v

(n)
2 (u))

�(v
(n)
2 (u))

and so we can make a consistent choice of v(n)1 , v(n)2 on the entire ball Bsδ(y). Note that
if (5.15) held instead, everything that followed would have been identical, with Bsδ(x)
instead of Bsδ(y).

The point of Lemma 5.4 is that, in any ball Bδ(x) of radius δ, we can always find a
uniformly smaller ball Bsδ(y) ⊂ Bδ(x) on which Lnz,ρϕ is strictly and uniformly bounded
away from LnRe(z),0(�). This means that we can ‘bump’ � down on any such ball Bδ/4(y)
without affecting our inequality. Moreover, using the diametric regularity of the measure
νu, we can ensure that we are able to do this on a set of uniformly large measure.

LEMMA 5.5. Fix C > 0, ϕ ∈ C1(U , V ρ) and � ∈ KC . Suppose we have

‖ϕ(u)‖L2(G) < �(u),

sup
w∈T 1

u U

‖(dϕ)u(w)‖L2(G) < C�(u)

for all u ∈ U , and let δ > 0 be the constant guaranteed by Lemma 5.1 and n0 > 0,
ε > 0 and s < 1 be the constants guaranteed by Lemma 5.4. For a given ρ and z ∈ C

with |Re(z)− P(ς)| < 1, we can find a function β ∈ C1(U , R) for which we have

‖(Ln0
z,ρϕ)(u)‖L2(G) ≤ (Ln0

Re(z),0(β�))(u)

for all u ∈ U , as well as

‖Ln0
P (ς),0(β�)‖L2(νu) ≤

(
1 − r

(εδ(1 + |Im(z)|)‖ρ‖)2
4096

νu(Ulni)

)
‖�‖L2(νu)

for some uniform constant r < 1. The constant r depends on n0 and C, but not on ρ, z, ϕ
or �; the function β may depend on all of these.

Proof. By the Vitali covering lemma, we can find a finite collection of points x1, . . . , xk ∈
Ulni so that the balls Bδ(x1), . . . , Bδ(xk) ⊂ Ulni of radius δ are pairwise disjoint, whereas
the balls B3δ(x1), . . . , B3δ(xk) of radius 3δ cover Ulni . By Lemma 5.4, for each i we can
find a ball Bsδ(yi) ⊂ Bδ(xi) and pasts v(n0)

1,i , v(n0)
2,i so that

‖eα
(n0)
z (v

(n0)
1,i (u))ρ(Hol(n0)(v

(n0)
1,i (u)))ϕ(v

(n0)
1,i (u))

+ e
α
(n0)
z (v

(n0)
2,i (u))ρ(Hol(n0)(v

(n0)
2,i (u)))ϕ(v

(n0)
2,i (u))‖L2(G)

is bounded above by
(

1 − (εδ(1 + |Im(z)|)‖ρ‖)2
4096

)
e
α
(n0)
Re(z)(v

(n0)
1,i (u))�(v

(n0)
1,i (u))+ e

α
(n0)
Re(z)(v

(n0)
2,i (u))�(v

(n0)
2,i (u))
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for all u ∈ Bsδ(yi). For each i, define a C1 radially decreasing bump function ηi centred at
v
(n0)
1,i (yi) by

ηi(v
(n0)
1 (u))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(εδ(1 + |Im(z)|)‖ρ‖)2
4096

if d(u, yi) ≤ sδ

2
,

(εδ(1 + |Im(z)|)‖ρ‖)2
4096

· exp
(

1 + 1
((1/sδ) d(u, yi)− (1/2))2 − 1

)
if
sδ

2
< d(u, yi) < sδ,

0 if sδ ≤ d(u, yi),

for all u ∈ Bδ(xi). We can smoothly extend ηi to all of U by setting ηi = 0 outside
v
(n0)
1 (u)(Bδ(xi)). To define β, we simply set

β(u) := 1 −
∑
i

ηi(u)

and by Lemma 5.4 we clearly have

‖(Ln0
z,ρϕ)(u)‖L2(G) ≤ (Ln0

Re(z),0(β�))(u)

for all u ∈ U . It simply remains to estimate ‖Ln0
P (ς),0(β�)‖L2(νu).

In principle, we have only introduced contraction into a single term in Ln0
P (ς),0(β�) at

any given point; we need to argue that this was significant enough for our purposes. The
regularity of � is essential here. As in (5.1), note that the ratio between �(v(n0)

a (u)) and
�(v

(n0)
b (u)) cannot exceed

�(v
(n0)
a (u))

�(v
(n0)
b (u))

≤ e(C/f ) diam(N)

for any pair of pasts va , vb. As a consequence, we must have

(εδ(1 + |Im(z)|)‖ρ‖)2
4096(�0e(C/f ) diam(N))

∑
v
(n0)
a

�(v(n0)
a (u)) ≤ (εδ(1 + |Im(z)|)‖ρ‖)2

4096
�(v

(n0)
1,i (u)) (5.25)

where �0 is the number of pasts v(n0)
a of length n0, and the sum is taken over all such

pasts. Of course, we can find a uniform D > 0 so that D−1 ≤ e
α
(n0)
Re(z)(v

(n0)
a (u)) ≤ D for all

pasts and all u ∈ U ; note that D can be chosen independently of z so long as we require
|Re(z)− P(ς)| < 1. From this, we can bound

(εδ(1 + |Im(z)|)‖ρ‖)2
4096D2(�0e(C/f ) diam(N))

∑
v
(n0)
a

e
α
(n0)
Re(z)(v

(n0)
a (u))

�(v(n0)
a (u))

≤ (εδ(1 + |Im(z)|)‖ρ‖)2
4096

e
α
(n0)
Re(z)(v

(n0)
1,i (u))�(v

(n0)
1,i (u))
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following (5.25). This leads immediately to obtaining the pointwise bound

(Ln0
P (ς),0(β�))(u) ≤

(
1 − (εδ(1 + |Im(z)|)‖ρ‖)2

4096D2(�0e(C/f ) diam(N))

)
(Ln0

P (ς),0�)(u)

for all u ∈ ⋃
Bsδ/2(yi) by construction. On the other hand, because Ln0

P (ς),0 is monotonic,
we of course have

(Ln0
P (ς),0(β�))(u) ≤ (Ln0

P (ς),0�)(u)

for all u ∈ U − ⋃
Bsδ/2(yi). Taken together, these inequalities mean that we can bound

‖(Ln0
P (ς),0(β�))‖L2(νu)

from above by

( ∫
⋃
Bsδ/2(yi )

(
1 − (εδ(1 + |Im(z)|)‖ρ‖)2

4096D2(�0e(C/f ) diam(N))

)2

((Ln0
P (ς),0�)(u))

2dνu
)1/2

+
( ∫

U−⋃
Bsδ/2(yi )

((Ln0
P (ς),0�)(u))

2dνu
)1/2

for our particular choice of ρ and z. As the operator Ln0
P (ς),0 preserves the measure νu (by

our renormalization), this is exactly

‖�‖L2(νu)

(
1 − (εδ(1 + |Im(z)|)‖ρ‖)2

4096D2(�0e(C/f ) diam(N))
νu

( ⋃
Bsδ/2(yi)

))
.

By the diametric regularity of the measure νu, there is a uniform constant r < 1 for which

νu(Bsδ/2(yi)) ≥ rνu(B3δ(yi))

for all i. Hence, we have

νu
( ⋃

Bsδ/2(yi)

)
≥ rνu

( ⋃
B3δ(yi)

)
≥ rνu(Ulni),

completing the proof.

It is important to recognize that many of the estimates so far do, in fact, depend on ρ,
Im(z) or C; this is problematic for the spectral bounds we want to obtain. To isolate some
of these dependencies, we restrict our attention to control functions � ∈ KC(1+|Im(z)|)‖ρ‖,
where we hope to be able to make a uniform choice of an appropriate C. In particular, we
want to find a C so that KC(1+|Im(z)|)‖ρ‖ is invariant under Lnz,ρ , at least for z with Re(z)
sufficiently close to P(ς).

PROPOSITION 5.6. There is a uniform choice of constant C > 0 so that, for all ϕ ∈
C1(U , V ρ) and � ∈ KC(1+|Im(z)|‖ρ‖, if we have
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‖ϕ(u)‖L2(G) ≤ �(u),

sup
w∈T 1

u U

‖(dϕ)u(w)‖L2(G) ≤ C(1 + |Im(z)|)�(u)

for all u ∈ U , then we can bound

sup
w∈T 1

u U

‖(d(Lnz,ρϕ))u(w)‖L2(G) ≤ C(1 + |Im(z)|)‖ρ‖(LnRe(z),0�)(u)

for all u ∈ U , and all n > 0.

Proof. Fix u ∈ U . By definition, the transfer operator can be expressed as the sum

(Lnz,ρϕ)(u) =
∑
i

eα
(n)
z (v

(n)
i (u))ρ(Hol(n)(v(n)i (u)))ϕ(v

(n)
i (u)) (5.26)

over pasts v(n)i . We need to control

sup
w∈T 1

u U

‖d(Lnz,ρ(ϕ))u(w)‖L2(G),

which we will accomplish by differentiating (5.26) term-by-term. For a fixed i, the
derivative

d(eα
(n)
z (v

(n)
i (u))ρ(Hol(n)(v(n)i (u)))ϕ(v

(n)
i (u)))u(w)

can be bounded by the sum

‖eα(n)z (v
(n)
i (u))(ρ(Hol(n)(v(n)i (u)))ϕ(v

(n)
i (u)))(d(α(n)z ◦ v(n)i ))u(w)‖L2(G) (5.27)

+ ‖eα(n)z (v
(n)
i (u))((d(ρ(Hol(n) ◦v(n)i )))u(w))ϕ(v

(n)
i (u))‖L2(G) (5.28)

+ ‖eα(n)z (v
(n)
i (u))ρ(Hol(n)(v(n)i (u)))(d(ϕ ◦ v(n)i ))u(w)‖L2(G) (5.29)

for all w ∈ T 1
u U . We bound each of these terms individually, beginning with (5.27).

Observe that

(d(α(n)z ◦ v(n)i ))u(w) =
n∑
j=1

|(d(αz ◦ v(j)i ))u(w)|

≤
n∑
j=1

‖αz‖C1

f κj

≤ ‖αz‖C1

f (κ − 1)

and so (5.27) is at most

‖αz‖C1

f (κ − 1)
e
α
(n)
Re(z)(v

(n)
i (u))‖ϕ(v(n)i (u))‖L2(G)

for all u ∈ U and w ∈ T 1
u U . Exactly the same calculations show us that
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‖(d(Hol(n) ◦v(n)i ))u(w)‖T 1G ≤
n∑
j=1

‖(d(Hol ◦v(j)i ))u(w)‖T 1G

≤
n∑
j=1

‖ Hol ‖C1

f κj

≤ ‖ Hol ‖C1

f (κ − 1)

and, hence, that (5.28) is at most(
‖ρ‖ ‖ Hol ‖C1

f (κ − 1)

)
eαRe(z)(v

(n)
i (u))‖ϕ(v(n)i (u))‖L2(G)

by the definition of ‖ρ‖ and the chain rule. Finally, we can bound (5.29) by

C(1 + |Im(z)|)‖ρ‖
f κn

eαRe(z)(v
(n)
i (u))�(v

(n)
i (u))

by hypothesis. Combining all of these with the pointwise bound on the norm of ϕ, we see
that so long as we have

‖αz‖C1

f (κ − 1)
+ ‖ρ‖ ‖ Hol ‖C1

f (κ − 1)
+ C(1 + |Im(z)|)‖ρ‖

f κn
< C(1 + |Im(z)|)‖ρ‖, (5.30)

we obtain the bounds desired. Note that ‖ Hol ‖C1 is a uniform constant and ‖αz‖C1 is at
most ‖αRe(z)‖C1(1 + |Im(z)|). As ‖αRe(z)‖C1 is uniformly bounded when Re(z) is confined
to the bounded interval |Re(z)− P(ς)| < 1, we can clearly choose a C > 0 so that (5.30)
holds for all n > 0.

We are now in a position to prove Theorem 3.2; the strategy is entirely analogous to that
outlined in [11, §6] or [17, Theorem 6.8].

THEOREM 5.7. Fix a non-trivial isotypic representation ρ > 0 and z ∈ C with |Re(z)−
P(ς)| < 1. There are uniform constants D > 0 and r0 < 1 so that

‖Lnz,ρϕ‖L2(νu) ≤ Drn0 ‖ϕ‖C1

for all ϕ ∈ C1(U , V ρ). Neither D nor r0 depends on ρ, ϕ or z.

Proof. Fix C > 0, N > 0 as in Lemma 5.6 and n0 > N as in Lemma 5.5. We begin by
setting

ϕ0(u) := ϕ(u),

�0(u) := ‖ϕ‖C1

for which we clearly have �0 ∈ KC(1+|Im(z)|)‖ρ‖ as well as the bounds

‖ϕ0(u)‖L2(G) ≤ �0(u),

sup
w∈T 1

u U

‖(dϕ0)u(w)‖L2(G) ≤ C(1 + |Im(z)|)‖ρ‖�0(u)
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assuming that C > 0 is large enough so that C‖ρ‖ > 1 for all ρ. By Lemma 5.5, we can
find a function β0 ∈ C1(U , R) for which we have

‖(Ln0
z,ρϕ0)(u)‖L2(G) ≤ (Ln0

Re(z),0(β0�0))(u)

and

‖Ln0
Re(z),0(β0�0)‖L2(νu) ≤ r0‖�0‖L2(νu)

for a uniform choice of n0 > 0. Moreover, r0 and ‖β0‖C1 can be made uniform in ρ, ϕ and
z by choosing δ so that C(1 + |Im(z)|)‖ρ‖ · δ is constant, as in Lemma 5.1.

We want to iterate this, for which it will be crucial that we can find a uniform C0 so
that we have β0�0 ∈ KC0(1+|Im(z)|)‖ρ‖ for all �0 ∈ KC0(1+|Im(z)|)‖ρ‖. For any given �0 ∈
KC(1+|Im(z)|)‖ρ‖, we have

sup
w∈T 1

u U

|(d(�0β0)u(w)| ≤ β0(u)( sup
w∈T 1

u U

|(d�0)u(w)|)+�0(u)( sup
w∈T 1

u U

|(dβ0)u(w)|)

≤ sup
w∈T 1

u U

�0(u)(C(1 + |Im(z)|)‖ρ‖β0(u)+ (dβ0)u(w))

for all u ∈ U . From the construction of β0, and by our earlier remarks on our choice of δ,
it is clear that we can choose a uniform C0 large enough so that

sup
w∈T 1

u U

C(1 + |Im(z)|)‖ρ‖β0(u)+ (dβ0)u(w) ≤ C0β0(u)

for any choice of β0 as in Lemma 5.5. We then clearly have β0�0 ∈ KC0(1+|Im(z)|)‖ρ‖, and,
hence, by Lemma 5.6 we obtain

sup
w∈T 1

u U

‖(d(Ln0
z,ρϕ))u(w)‖L2(G) ≤ C0(1 + |Im(z)|)‖ρ‖(LnRe(z),0�0)(u)

for all u ∈ U .
Now, we can repeat what we have done so far and inductively choose βi−1 as in

Lemma 5.5, setting

ϕi(u) := (Ln0
z,ρϕi−1)(u),

�i(u) := (Ln0
Re(z),0(βi−1�i−1))(u)

for i ≥ 1. Note that we have just shown that �1 ∈ KC0(1+|Im(z)|)‖ρ‖ and that we have

‖ϕ1(u)‖L2(G) ≤ �1(u),

sup
w∈T 1

u U

‖(dϕ1)u(w)‖L2(G) ≤ C0(1 + |Im(z)|)‖ρ‖�1(u)

for all u ∈ U . As before, we obtain

‖ϕi(u)‖L2(G) ≤ �i(u),

sup
w∈T 1

u U

‖(dϕi)u(w)‖L2(G) ≤ C0(1 + |Im(z)|)‖ρ‖�i(u)
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inductively for all i ≥ 1 and, moreover,

‖�i‖L2(νu) ≤ r0‖�i−1‖L2(νu)

by construction. Chaining these inequalities together, we have

‖Li·n0
z,ρ ϕ‖L2(νu) ≤ ri0‖ϕ‖C1 ,

which is almost what we need. To conclude, observe that we have

‖(Li·n0+k
z,ρ ϕ)(u)‖L2(νu) ≤ ri0‖ϕ‖C1‖Lkz,ρ‖L2(G),

where ‖Lkz,ρ‖L2(G) denotes the operator norm ofLkz,ρ . If k < n0 and |Re(z)− P(ς)| < 1,
then we can find a uniform bound D > 0 so that ‖Lkz,ρ‖L2(G) ≤ D, as desired.

The differentiability of the potential ς was essential to much of what we have done so
far in this section; to extend our results to the case when ς is only Hölder, however, is a
relatively straightforward approximation argument, identical to that given in [11, §4(II)].
We sketch this in the following.

COROLLARY 5.8. With notation as in Theorem 5.7, we have

‖LnRe(z),ρϕ‖L2(νu) ≤ Drn0 ‖ϕ‖C1

when the potential ς is only Hölder continuous.

Proof. Suppose that ς is Hölder continuous. As in [11], we can find a sequence of smooth
potentials ς(Im(z)) ∈ C1(U , R) indexed by Im(z) for which we have

sup
u∈U

|ς0(u)− ς(Im(z))(u)| ≤ ‖ς0‖Cα
(

1
|Im(z)|

)α/2
(5.31)

and

‖ς(Im(z))‖C1 < C
√|Im(z)| (5.32)

for some uniform constant C > 0. We consider the alternatively defined transfer operator

(L̂z,ρϕ)(u) :=
∑

σ(u′)=u
eα̂z(u

′)(ρ(Hol(u′)) · ϕ(u′)),

where we set

α̂z(u) := ς(Im(z))(u)− Re(z) · τ(u, s)− log(ϕς(x) (u))+ log(ϕς(x) (σ (u)))− log P(ς(x))

for u ∈ U . By (5.31), α̂z converges uniformly to αRe(z) as Im(z) → ∞ and, hence, L̂z,ρϕ
must converge to LRe(z),ρϕ in the L2(νu) norm.

Now, we simply observe that the spectral bound in Theorem 5.7 holds for the
operator L̂z,ρ , because the main properties required of α̂z, namely that ‖α̂z‖C1 ≤ C(1 +
|Im(z)|) for large |Im(z)| when |Re(z)− P(ς)| ≤ 1, are guaranteed by (5.32) and [11,
Lemma 1]. Moreover, note that all the constants, and particularly those originating from
Proposition 5.6, can be chosen uniformly in Im(z). As the inequality in Theorem 5.7 holds
with the same constants for L̂z,ρ for each Im(z), it must hold in the limit, as desired.
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