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Abstract

Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to
personalised treatment and care. This transition has been greatly facilitated through new high-
throughput sequencing technologies that can provide the unique molecular profile of each
individual patient, along with the rapid development of targeted therapies directed to the
Achilles heels of each disease. To implement precisionmedicine approaches in healthcare, many
countries have adopted national strategies and initiated genomic/precision medicine initiatives
to provide equal access to all citizens. In other countries, such as Sweden, this has proven more
difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders
from academia, healthcare, industry and patient organisations joined forces and formed Gen-
omic Medicine Sweden (GMS), a national infrastructure for the implementation of precision
medicine across the country. To achieve this, Genomic Medicine Centres have been established
to provide regionally distributed genomic services, and a national informatics infrastructure has
been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare
diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also
providing expertise in informatics, ethical and legal issues, health economy, industry collabor-
ation and education. In this review, we summarise our experience in building a national
infrastructure for precision medicine. We also provide key examples how precision medicine
already has been successfully implemented within our focus areas. Finally, we bring up chal-
lenges and opportunities associated with precision medicine implementation, the importance of
international collaboration, as well as the future perspective in the field of precision medicine.

Impact statement

Implementation of precision medicine in healthcare has been made possible thanks to the rapid
development in high-throughput sequencing technologies coupled with new types of targeted
drugs being introduced, hence realising personalised treatment and care. Genomic Medicine
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Sweden (GMS) was formed to enable an equal and resource-efficient implementation of precision medicine across the country. Through
regional centres for genomic medicine at all Swedish university hospitals and a common infrastructure for data sharing, GMS has built up
the capacity for precision diagnostics/medicine in rare diseases, cancer, infectious diseases and complex diseases. In this article, we
summarise our experience with implementing precisionmedicine at a national level, discuss remaining challenges and opportunities, as well
as future directions in this rapidly advancing field.

Introduction

The introduction of high-throughput sequencing (HTS) tech-
nologies at a broader scale more than 10 years ago provided
entirely new research tools for the discovery of molecular events
associated with disease (Koboldt et al., 2013). This led to a rapid
increase of novel disease genes associated with rare inherited
diseases (Gilissen et al., 2012; Stranneheim and Wedell, 2016),
but also unravelled the genomic landscape in major cancer types
(Ley et al., 2008; Stratton et al., 2009; Bailey et al., 2018; PCAWG-
Consortium, 2020). In parallel, new types of therapies were
developed that target disease-driving molecular alterations or
key cellular pathways and/or processes with higher precision
than before (Malone et al., 2020; Tsimberidou et al., 2020; Was-
terlid et al., 2022). These developments led to the fast introduc-
tion of genomic technologies, such as whole-exome (WES)/
genome (WGS) and gene panel sequencing, into clinical routine
diagnostics for rare diseases, cancer and infectious diseases
(Zehir et al., 2017; Lindstrand et al., 2019; Kobras et al., 2021;
van der Sanden et al., 2022; Walter et al., 2022). In this way,
genomic-based techniques paved the way for advancedmolecular
profiling as a basis for individualised treatment and follow-up,
that is, precision medicine (Stranneheim and Wedell, 2016; Mal-
one et al., 2020; Rosenquist et al., 2022; Wasterlid et al., 2022;
Yang et al., 2022).

One of the first national genomic initiatives, Genomics England,
was launched in 2013, with an ambition to sequence 100,000
genomes in patients with rare diseases or cancer (Turnbull, 2018;
Investigators et al., 2021; Degasperi et al., 2022). After successfully
finishing the project in 2018, genomic technologies were imple-
mented in routine healthcare within National Health Services
(NHS) through seven Genomic Medicine Services centres across
the country (Turnbull et al., 2018), while also embarking on new
pioneering projects, such as the new-born genome program and the
population screening program for early cancer detection using
liquid biopsy. Today, national precision medicine strategies/initia-
tives have been launched in many countries worldwide (more than
30 initiatives in Europe only), for example, the Danish National
Genome Center, Genomic Medicine France 2025, Australian Gen-
omics and Singapore’s National Precision Medicine program
(Lethimonnier and Levy, 2018; Turnbull et al., 2018; Saunders
et al., 2019; Stark et al., 2019; Kong et al., 2022; Stenzinger et al.,
2022). In other countries, such as Sweden and Germany, with
regionally organised healthcare, academia and healthcare have
instead joined forces to establish regionally distributed genomic/
precision medicine centres with a close national coordination
(Fioretos et al., 2022; Stenzinger et al., 2022).

In this review, we will describe our efforts in Sweden to build a
national infrastructure for the implementation of precision
medicine, while also highlighting key disease areas for which
precision medicine approaches are being implemented. Finally,
we will discuss important challenges that we need to address to
enable equal access to precision medicine nationally and inter-
nationally as well as future directions in this rapidly evolving
field.

Building a national infrastructure for precision medicine

One important development in Sweden was the establishment in
2010 of an infrastructure for molecular biosciences, Science for Life
Laboratory (SciLifeLab) that today provides a wide range of high-
throughput technologies through ten technology platforms at a
national level. One of these platforms, the Clinical Genomics plat-
form, is focusing on the development, adaptation and implementa-
tion of genomic technologies for translational research and clinical
utility. To secure national coverage, Clinical Genomics nodes are
located at all seven universities with medical faculties in Sweden
(Figure 1; Fioretos et al., 2022). In 2017, the Clinical Genomics
platform initiated the formation of a national infrastructure for
genomic medicine/precision medicine which was named Genomic
Medicine Sweden (GMS). A Swelife-funded pre-study phase allowed
for key stakeholders to lay the foundation of the overall organisation
of GMS and the establishment of national working groups coord-
inating activities in key areas relevant for precision medicine.
Funded by an implementation grant from the Swedish Innovation
Agency Vinnova, GMS was officially inaugurated in 2018.

In Sweden, the responsibility for healthcare is divided between
the national government, the 21 healthcare regions and the muni-
cipalities, where the regions have the responsibility to organise
healthcare in such a way that all citizens have access to good and
equal healthcare. To overcome any possible regional differences
and to be directly linked to healthcare, GMS is therefore organised
as a regionally distributed infrastructure. The implementation of
precisionmedicine is performed through the seven GenomicMedi-
cine Centres (GMCs) that have been established at each of the
university hospitals with close links to the technology-driven Sci-
LifeLab Clinical Genomics node at each site, which provides a
critical technological backbone for GMS (Fioretos et al., 2022).

The core partners of GMS are the seven university healthcare
regions and the seven universities with a medical faculty. In add-
ition, GMS works closely together with SciLifeLab, patient organi-
sations, industry and government agencies. GMS is led by a national
steering board, which consists of sevenmembers appointed by each
of Sweden’s seven university healthcare regions (usually the
research director), two members jointly appointed by the remain-
ing 14 regions, seven members appointed by each of seven univer-
sities with medical faculties (usually the dean of the faculty), two
members from industry, two members from patient organisations
as well as adjunct members from SciLifeLab and Biobank Sweden
(Stenzinger et al., 2022). The strong national anchoring of the
steering board, especially in regional healthcare, has been a key
success factor in the implementation of genomic medicine in
Swedish healthcare. The GMS operation is led by a director,
together with the GMS collaboration office and the GMS manage-
ment group with representations from all core partners.

The overarching aims of GMS are to (i) implement genome
sequencing in healthcare for improved diagnostics and provide
equal access to personalised treatment, (ii) establish a national
IT-infrastructure and associated knowledge-bases to advance pre-
cision medicine in Sweden, (iii) increase the use of genomics and
health data for research and innovation, (iv) increase participation
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in clinical trials and (v) implement genomics in prevention, diag-
nostics and patient stratification of complex diseases (inmore detail
in theGMS Strategy Plan 2021–2030). These goals are closely linked
to the ambitions of the Swedish government’s life science strategy.

GMS is organised in seven disease-specific national working
groups: rare diseases, solid tumours, haematological malignancies,
childhood cancer, infectious diseases/microbiology, complex dis-
eases, as well as pharmacogenomics (Figure 1). The disease-specific
working groups are in turn supported by working groups in data
management and informatics, health economy, ethical and legal
issues, industry collaboration and education.

The National Genomics Platform

Because of the regionalised IT infrastructures at the university
hospitals in Sweden, where information is kept in multiple non-
interconnected systems, GMS informatics working group is build-
ing a dedicated infrastructure for data handling and storage, that is,
the National Genomics Platform (NGP), also to standardise and
organise genomic data across the GMCs (Fioretos et al., 2022;
Stenzinger et al., 2022). The central part of the NGP is a data lake
for genomic data and associated clinical metadata. By creating a
unified infrastructure, it becomes feasible to enforce standards for
data structuring as well as creating national analysis pipelines.

Organising data within a joint national infrastructure also simpli-
fies data availability for research purposes, as well as data inter-
operability through a single standardised interface.

The platform is divided into three subparts for storage, indexing
and processing (Figure 2).

The central storage within the NGP consists of an advanced
object storage that is hosted in three separate geographic locations
within Region Västra Götaland (located southwest in Sweden). All
seven GMC are linked to the central storage through the Swedish
hospital network. Using the GMS-developed middleware NGPiris,
data and metadata can be culled from local LIMS and storage
systems and uploaded to the central platform using the S3 protocol,
ensuring data security and standardisation. Within the platform,
data is logically separated by a tenant system where each GMC/u-
niversity hospital has full control over their own data, including
access and user control. Access rights can be set on individual
objects, allowing targeted data sharing between GMCs.

For data to be utilised for interpretation and sharing, the NGP
platform contains a powerful indexing engine based around Apa-
che SOLR. Data is indexed in near real-time using multiple index-
ing pipelines, extracting information from various types of data
files. Data points from multiple files are combined into metadata
objects held within the index. Since the metadata object structure of
the NGP is non-static, new information can be retrieved and
indexed from the object store as new needs are identified. Access
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Figure 1. Regional distribution, key services and focus areas. Clinical Genomics (CG) units are located at the seven universities withmedical faculties, and GenomicMedicine Centres
(GMCs) at the seven university hospitals in Sweden. The National Genomics Platform (NGP), located in Western Sweden (Region Västra Götaland), is a highly competent data lake
linked to a dynamic scale out high performance computing cluster. CG provides expertise and services to the research and industrial community, and to GMS. GMS currently
encompasses seven diagnosis-specific working groups and five working groups supporting the GMS infrastructure.
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to the index can be tailored using index views that limit access to
certain metadata points and certain indexes for certain applica-
tions, creating fine-grained access control. In other words, searches
can be limited by what the respective user/application is allowed to
“see” within the index and sensitive information can be hidden.

The NGP uses a combination of existing on-prem compute
resources as well as cloud-based infrastructure to provide resource
scaling. This is achieved through a cloud scale-out engine, based on
the open-source Tortuga-project, and by engaging Swedish-owned
cloud providers for scale-out, ensuring high security and compli-
ance with Swedish law.

Implementation of precision diagnostics/medicine
in healthcare

In the following sections, we will describe our efforts in implement-
ing precision medicine within our focus disease areas, rare diseases,
cancer, infectious diseases and complex diseases.

Rare diseases

Rare diseases constitute a large number of different disorders, of
which the vast majority are severe genetic chromosomal or single-
gene disorders. Although individually rare, these disorders are
collectively common with an estimated population prevalence of
3.5–6% (Nguengang Wakap et al., 2020). The most important
factor for effective treatment and preventive measures is a molecu-
lar diagnosis. With an exact diagnosis, patients can be offered
personalised management, healthy relatives may receive carrier
testing and prenatal diagnosis is possible.

To identify the disease-causing pathogenic variants in rare
genetic diseases,WGS is emerging as a powerful first-line screening

test regularly used in routine diagnostics (Lionel et al., 2018; Inves-
tigators et al., 2021; Stranneheim et al., 2021). The diagnostic yields
vary between different disease categories and centres, depending on
inclusion criteria andwhether a trio or singleton approach was used
(Figure 3). For individuals with intellectual disability, WGS yields
diagnostic rates between 30 and 40% (Investigators et al., 2021;
Stranneheim et al., 2021; Lindstrand et al., 2022; van der Sanden
et al., 2022), which is comparable or even superior to the combined
yield after multiple genetic tests such asWES, chromosomal micro-
array and targeted gene panels (Lindstrand et al., 2022; van der
Sanden et al., 2022), while shortening the time to diagnosis sub-
stantially. Furthermore, WGS has the potential to improve the
clinical yield even more in the future by adding analysis of novel
genetic causes of disease, both coding and non-coding.

To maximise the diagnostic yield multiple variant types need to
be called and interpreted clinically. As such, there is a need to
optimise the analysis pipelines, databases and interpretation tools.
Furthermore, the diagnosis of patients is still dependent on linking
the genetic variants to clinical symptoms. This is reflected in the
need for multidisciplinary collaborative environments, where
laboratory specialists interact with both bioinformaticians and
clinical specialists, a necessary prerequisite to implement genomics
in healthcare (Investigators et al., 2021; Stranneheim et al., 2021).

For rare disease patients, the diagnostic work is executed at the
seven GMCs. As of 1 January 2022, more than 10,000 rare diseases
patients have been analysed byWGS in Sweden. Of those, 22%were
analysed as trios and 78% as singletons and the overall diagnostic
yield was 36% and 33%, respectively. The projection is that over
5,000 additional individuals will undergo testing in 2022 resulting
in a rapidly growing number of patients receiving a diagnosis.

One of the prioritised areas in the GMS rare diseases working
group is to improve diagnostics by building a clinical database for
genotype-phenotype matching within the NGP, as well as to
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establish classified variant databases and aggregated variant data-
bases for improved variant prioritisation. This would also provide
an important resource for Mendelian disease discovery as well as
understanding other types of inheritance such as digenic, and
mutational burden. To include as many individuals as possible
we are also working on an electronic informed consent process at
the national level.

The strategy for WGS-based diagnostics of rare disease
patients has initially focused on well-known variant categories
such as single-nucleotide variants and insertions/deletions, fol-
lowedmore recently by detection of structural variants, including
copy-number variants (CNVs), repeat expansions and mtDNA
(Dolzhenko et al., 2019; Lindstrand et al., 2019; Stranneheim
et al., 2021; Ibanez et al., 2022). To develop the WGS-based
precision diagnostics further, two national projects are con-
ducted aiming at validating and implementing RNA-sequencing
for confirmation of WGS findings and to improve understanding
on regulatory, non-coding genomic variation and, secondly,
long-read sequencing for improved resolution and calling of
structural variants in challenging regions such as low-complexity
regions.

Solid tumours

Solid tumours make up around 90% of the 62,000 cancer cases
diagnosed yearly in Sweden (Socialstyrelsen, 2020). Of these,
roughly 10,000 cases are currently analysed with focused gene
panels, mainly for treatment-predictive purposes. Non-small cell
lung cancer is the leading indication with up front reflex testing at
all seven GMCs and almost 20 targeted drugs available. Patients

with colorectal carcinomas and malignant melanomas are also
commonly tested, along with a number of other solid tumours
tested in select cases.

Given the rapidly increasing number of biomarkers and the
need to assess structural variations and to generate assessments
of more complex biomarkers, such as microsatellite instability
(MSI), homologous recombination deficiency (HRD) and tumour
mutational burden (TMB) based onmutational signatures (Malone
et al., 2020;Mosele et al., 2020), a national gene panel (GMS560) for
comprehensive genomic profiling of routine clinical samples was
given the highest priority in the GMS solid tumour working group
(Figure 4). The need was also underscored by the tumour-agnostic
indications for MSI and NTRK fusions and ongoing clinical trials
on additional tumour-agnostic drugs targetingmainly gene fusions,
indicating an increased need for comprehensive genomic profiling
(Le et al., 2015; Hong et al., 2020).

During the design phase, a structured review of current indi-
cations and biomarkers relevant for clinical studies was supple-
mented with input from the national clinical consensus groups
for cancer treatment. In addition, variants relevant for tumour
biology identified in the TCGA consortium were added for
scientific purposes and for future-proofing of the design
(Sanchez-Vega et al., 2018). Finally, a number of pharmacoge-
nomic targets were included to enable identification of genetic
aberrations impacting drug susceptibility. The responsibility for
the development and validation of the various modules in the
panel has been divided between the seven participating sites,
using the combined resources of all involved clinical laboratories,
GMCs and SciLifeLab Clinical Genomics nodes. To ensure equity
of care and harmonised results for complex biomarkers, a
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Figure 4. Genomic profiling of solid tumours illustrating first- and second-generation gene panels. CNV, copy-number variant; indels, insertions and deletions; SNVs, single
nucleotide variants.
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modular bioinformatics solution has been developed as part of
the national effort.

The implementation of the panel has gained considerable
support via pilot projects for precision medicine funded by the
Swedish Ministry of Health and Social Affairs. Starting in 2021,
the pilots for solid tumours included the addition of a module for
HRD testing, gene panel testing for breast cancer patients with
stage 4 disease, as well as a pilot for tissue and liquid biopsy testing
in lung cancer as the latest addition. The pilots have served as a
valuable means to involve clinicians in each field and made it
possible to discuss priorities as well as important issues on how
best to convey results.

Liquid biopsies, the use of blood samples to test for biomark-
ers normally analysed in tissue samples, have the potential to
address several important clinical questions (Markou et al.,
2022). Currently used to detect resistance mutations, monitoring
of treatment response, molecular characterisation in cases with a
shortage of available material and a means to visualise molecular
heterogeneity, are all potential applications in the clinical set-
ting. A future next step includes early detection of cancer with
the potential to improve treatment outcomes (Crosby et al.,
2022).

With widened indications for targeted treatments in additional
malignancies and increased need to follow treatment response and
resistance development, the testing can be expected to double
within the coming years. Another important trend is the focus on
the diagnostic importance of molecular characterisation, mirroring
the increased weight given to molecular alterations in the WHO
classifications of malignant disease (WHO-Classification-of-
Tumours-Editorial-Board, 2021a, 2021b).

Another challenge has been to establish precisionmedicine trials
for cancer to ensure that the data generated from the comprehen-
sive molecular profiling can be translated into treatment and that
novel treatments can be evaluated. In this work, GMS and its
founding partners has joined forces with Zero Vision Cancer,
MEGALiT, SciLifeLab and several relevant authorities in the field
of life science in Sweden to form the “Test Bed Sweden for Clinical
Trials and Implementation of Precision Health in Cancer Care.”
Through this network, Nordic and European collaborations have
been established and support for joint projects have been secured,
allowing for work on setting up drug repurposing studies in

additional European countries and refining molecular diagnostics
and molecular tumour boards.

Haematological malignancies

Haematologic malignancies represent highly molecularly hetero-
geneous disorders with an increasing number of disease-driving
alterations being described and incorporated into classification and
treatment guidelines (Alaggio et al., 2022; Arber et al., 2022; de
Leval et al., 2022; Dohner et al., 2022; Khoury et al., 2022). Trad-
itionally, these disorders are divided into myeloid and lymphoid
neoplasms depending on the cellular lineage affected by the disease-
driving alterations.

Early on, GMS recognised that in an evolving landscape with
new genomic markers being described at a rapid pace in haemato-
logical malignancies, the design of a comprehensive and highly
flexible gene panel was needed. Apart from allowing the detection
of a high number of single nucleotide variants (SNVs), smaller
insertions/deletions and CNVs, there was a need to seamlessly
incorporate new diagnostic markers in the gene panel design.
GMS decided to use a targeted capture-based approach, allowing
an even and deep coverage of disease variants, as well as the
detection of smaller insertions/deletions (Figure 5). The first gene
panel introduced in clinical diagnostics was the GMS-Myeloid
Gene Panel (GMS-MGP), which allows the detection of variants
in 199 genes together with a backbone of single nucleotide poly-
morphisms (SNPs), allowing the detection of CNVs at a 10-Mb
resolution, as chromosomal imbalances form an important basis
for risk-stratification and treatment prediction in haematological
malignancies. The gene panel also includes genes that are associated
with hereditary predisposition to haematological malignancies, as
well as pharmacogenetic genes of importance for drug susceptibil-
ity. The analytical and clinical performance of the GMS-MGP was
recently investigated in a national interlaboratory study, showing a
high concordance of the results between the participating GMCs
(Orsmark-Pietras et al., manuscript in preparation). To date,
>5,000 tests have been performed in a clinical diagnostic setting
using the GMS-MGP.

Using a similar capture-based protocol as the GMS-MGP, a
lymphoid gene panel (GMS-LGP) was designed allowing the detec-
tion of variants in 252 genes. The design of the second version is

National haematology panels

 199 myeloid
genes
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genes

SNVs IndelsCNV

 AML, MDS, MPN, CLL, Lymphoma

Transcriptome analysis

Fusion transcripts

 Acute leukaemias

RNA-sequencing

Whole-genome sequencing

Digital karyotyping

SNVs IndelsCNVs Structural variants

Gene fusions

Acute leukaemias and 
 germline predisposition  
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Figure 5.National strategy for precision diagnostics in haematological malignancies. ALL, acute lymphoblastic leukaemia; AML, acutemyeloid leukaemia; CLL, chronic lymphocytic
leukaemia; CML, chronic myeloid leukaemia; indels, insertions and deletions; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasias; SNVs, single nucleotide
variants.
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ongoing for improved detection of CNVs relevant for lymphoid
malignancies, and will also include structural variation and
immunoglobulin/T-cell receptor genes.

In a national study, GMS is currently also evaluating if WGS in
combination with whole-transcriptome sequencing (WTS) can
replace current standard of care (SoC), including multiple, often
time-consuming and costly diagnostic genetic tests (Figure 5; Ber-
glund et al., 2022). In this study, 700 cases of adult and paediatric
acute myeloid leukaemia (AML) and acute lymphoblastic leukae-
mia (ALL) are subjected to WGS and WTS and the results are
compared to SoC using chromosome banding, fluorescence in situ
hybridization (FISH), SNP-arrays, directed molecular tests and the
GMS myeloid and lymphoid gene panels. In parallel to evaluating
the ability of WGS and WTS to replace SoC as a diagnostic tool,
health-economy studies are performed within the study. Other
upcoming studies within GMS will include the evaluation of
single-cell technologies for clinical applications, a rapidly advan-
cing field (Pfisterer et al., 2021), as well as methods allowing
ultrasensitive detection of measurable residual disease of critical
importance for monitoring treatment effects and to predict disease
relapse at an earlier stage (Chen et al., 2022; de Leval et al., 2022).

Childhood cancer

In children, leukaemia is themost commonmalignancy, while CNS
tumours dominate among solid neoplasms. However, there is also a
myriad of rare childhood cancers. Many of these rare entities have
diagnostic markers at the genomic level, such as somatic gene
fusions, point mutations or characteristic patterns of copy-number
imbalances. Also, within diagnostic entities, genetic profiling is
often used for prognostication and risk stratification. The diversity
of diagnostic entities combined with the many types of clinically
relevant genomic aberrations have made it difficult to set up
comprehensive gene panel-based approaches for childhood cancer.
The situation is further complicated by the constant discovery of
new genomic markers that have to be included in diagnostic
platforms. Taken together, this situation prompted a broad tech-
nical approach when considering a standardised clinical genomics
pipeline for children with cancer.

The GMS Childhood Cancer working group resolved this issue
by nationwide implementation of WGS coupled with WTS as part
of the routine clinical work-up of paediatric malignancies. To
achieve unbiased geographic coverage, patients from all of Sweden’s
six paediatric oncology centres, of which some are very small, were
included from the start of implementation in 2021. To create
resilience by redundancy and to disseminate expertise though the
country, WGS and WTS for childhood cancers was established at
the GMCs at the large university hospitals in Stockholm, Gothen-
burg and Lund, as well as for leukaemia inUppsala. The nationwide
coverage and the fact that all paediatric malignancies are includible,
makes our effort distinct from previous studies having focused on
high-risk patients or large tertiary care centre cohorts (Wong et al.,
2020; Newman et al., 2021; Trotman et al., 2022).

Irrespective of where the patient was diagnosed and cared for
primarily, the same steps were taken from inclusion to clinical
reporting (Figure 6). In a parallel project, germline variants of
clinical importance are identified from normal sample WGS data
(peripheral blood leukocytes for solid tumours, skin biopsies for
leukaemias). Also, for CNS tumours, DNA methylation classifica-
tion is performed on a regular basis. At the date of writing, around
150 children in Sweden have gone through this clinical pipeline. In
the vast majority of cases, WGS and RNA sequencing provided
information that corroborated, revised or refined the original diag-
nosis (manuscript in preparation).

Microbiology/infectious diseases

The importance of implementing precision medicine in healthcare
to prevent and treat infectious diseases is underscored by the drastic
emergence of both antimicrobial resistance (AMR) and pandemics
that affects and kills millions of people globally every year (Marani
et al., 2021; Antimicrobial-Resistance-Collaborators, 2022; Fink
et al., 2022). A functional infrastructure for pandemic prepared-
ness, including AMR monitoring, should encompass a broad port-
folio of genetic technologies that can be employed into the
healthcare system. This requires new technical solutions and IT
structures for data processing. The SARS-CoV-2 pandemic has
accelerated this, where GMS has been setting up a joint automated

Figure 6. Infographics of the GMSChildhoodCancer pipeline. The upper panel outlines themain steps for each patient’s sample and the resulting information: (1) inclusion based on
informed consent and tumour cell content in biopsy >40%, (2) WGS of tumour DNA (minimum 90�), normal sample DNA (30�), and tumour RNA-sequencing, (3) filtering of tumour
WGS data against normal sampleWGS data to identify somaticmutations, (4) further filtering of non-synonymous coding variants against a flexible gene list of somaticmutations of
clinical importance in childhood cancer, also including potential druggable targets, (5) fusion gene capture fromRNA-sequencing data, (6) creation of whole genome profiles of copy
numbers and allelic states, (7) discussion of findings at amolecular tumour board and (8) formulation of a written report, added as a complement to the standard pathology report.
The bottom panel itemises passed milestones and future plans.
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workflow for bioinformatics analysis of SARS-CoV-2 on the NGP.
The platform will also be the basis for other pathogenic micro-
organisms in future, where a nationwide implementation of WGS
enables fast and reliable identification and typing of microorgan-
isms, that is, bacteria, viruses, parasites and fungi. Methods and
results can easily be shared in real time between regions affected by
outbreaks, both to map the spread of infectious diseases but also to
detect emergent spread of antibiotic resistance. International com-
parisons can thus be facilitated, which has been shown to be of great
importance during the pandemic (Pires et al., 2022).

Putting the genetics into clinical practice to identify SNPs
related to the severity of disease or antibiotic resistance will also
pave the way for precisionmedicine in themanaging and treatment
of infectious diseases. The work within GMS has started with the
bacterium multi-resistant methicillin Staphylococcus aureus
(MRSA) where sequencing data from nine laboratories, generated
with different sequencing technologies, have been compared
regarding quality and different analysis pipelines to guide further
harmonisation with the ultimate aim to set up one joint workflow
on the NGP.

Genomic techniques such as metagenomics (sequencing of all
DNA or RNA within a sample) is one way to identify and charac-
terise a microorganism directly in a sample. The metagenomic
approach offers rapid diagnostics and a possibility to detect
unknown pathogens without culturing (Purushothaman et al.,
2022). As part of the pandemic preparedness in Sweden, GMS
has in collaboration with the SciLifeLab Pandemic Laboratory
Preparedness capability, worked on establishing an assay and ana-
lysis pipeline for clinical metagenomics that is currently being
established nationally and will be available on the NGP.

The same metagenomics technique is also used to characterise
the human microbiome that will be of great importance to predict
risk and treatment outcomes in various diseases including chronic
inflammation and cancer. An integrative approach combining data
sources will provide taxonomic profiles, diversity and functional
annotations in such samples. The implementation of machine
learning is needed to increase our capacity to classify and predict
clinical outcomes and will be an important tool in precision medi-
cine and infectious disease management (Peiffer-Smadja et al.,
2020).

Complex diseases

While progress has beenmade in precision medicine approaches in
cancer and rare diseases, most common diseases, including aller-
gies, asthma, cardiovascular disease, diabetes, neurologic diseases,
psychiatric disorders and rheumatic diseases, pose more of a chal-
lenge. These diseases are referred to as complex because most
patients do not carry established single-gene mutations with large
effect sizes, and the disease risk is instead explained by a complex set
of genomic variations in combination with lifestyle and environ-
mental factors (Wheelock and Rappaport, 2020; Franks et al.,
2021). For instance, while a strong genome-wide genetic correlation
has been identified between asthma and allergic diseases (Lionel
et al., 2018), attempts to explain the incidence of obstructive lung
disease or allergy solely by genetics have not been successful.
Collectively, complex diseases account for ~70% of global deaths
and the majority of healthcare costs (GBD-Disease-Injury-
Incidence-Prevalence-Collaborators, 2017). To address this chal-
lenge, GMS has formed a working group to identify common
complex diseases where a genetic link has been identified, but where
this information is not yet used optimally in clinical practice.

During the last few years, the possibility of combining genetic
associations across the genome into a polygenic risk score (PRS)
has been investigated for many complex diseases (O’Sullivan
et al., 2022). For example, in coronary artery disease, it has been
shown that a high PRS confers an equal risk as monogenic effects
(Khera et al., 2018), and a higher risk than conventional risk
factors. For preventive purposes, many international organisa-
tions already recommend to estimate the 10-year cardiovascular
risk for adult patients 40 to 75, and including the PRS will
contribute to increased accuracy of the current risk prediction
tools (O’Sullivan et al., 2022). PRS has also been used to further
refine risk assessment among women with suspected predispos-
ition to breast cancer (Mavaddat et al., 2019; Lakeman et al.,
2020), and a web-based risk assessment tool, CanRisk Web Tool,
based on PRS, family history and rare pathogenic variants in
cancer susceptibility genes has been developed (Carver et al.,
2021).

However, for most PRS the precision is too low to be clinically
relevant for individual patients and there are no clear guidelines
available on how to translate PRS to the benefit of individual
patients. For example, the variance in asthma liability explained
by 22 distinct genome-wide-significant variants is estimated to
be as low as 3.5% (Demenais et al., 2018), and 12 common genetic
variants associated with airflow obstruction and risk of chronic
obstructive pulmonary disease only explain about 1.5% of the
phenotypic variance (Hobbs et al., 2017). For many complex
traits (Yengo et al., 2022), a dramatically larger sample size is
therefore needed in the GWAS studies before a PRS will be of
high enough precision to identify high- or low-risk individuals of
complex diseases. However, it is worth highlighting that envir-
onmental risk factors, and environmental exposure, remain the
predominant drivers for development of several complex dis-
eases, including, for example, obstructive lung disease.

It is clear that substantially more research is required to be able
to take genomic precision medicine into the clinic and many such
initiatives are underway. There is a need to include other omics
technologies, such as proteomics and metabolomics (Beger et al.,
2016; Duarte and Spencer, 2016), which offers the advantage of
being closest to the current phenotype of the patient, into precision
medicine efforts to predict, diagnose and ultimately treat and
prevent complex diseases. Following this approach, there have been
recent efforts to investigate the utility of biomarker-based
approaches to stratify asthmatics for treatment with biologics and
patients with atrial fibrillation to receive oral anticoagulation (Benz
et al., 2021; Israel et al., 2021).

In summary, while the healthcare organisation of Sweden is
conducive to expanding precision medicine treatment approaches
into the area of complex diseases, there remains a general lack of
knowledge about howmolecular information can be used to benefit
the diagnosis, prevention and treatment of patients with complex
diseases. It is most probable that eventual precision treatment
efforts for complex diseases will involve a combination of genetic
and other molecular information to create biomarker panels for
optimising patient treatment strategies.

Challenges and opportunities working at a national level

In a regionally distributed healthcare setting, aligning work habits,
analytical methods and processes and bioinformatic pipelines is
essential to harmonise data generation nationally and fully enable
the utilisation of the potential in the data. As an example, for
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cancer diagnostics, where molecular profiling of solid tumours,
haematological malignancies and childhood cancer has evolved as
separate fields, work has been initiated to create molecular assays
utilising a common technical approach, as well as establish a
modular bioinformatic framework addressing the needs of each
disease area.

The NGP is of key importance to enable national data sharing,
including databases of genetic variation, and real-time analysis for
healthcare professionals, but will also create a trusted research
environment for secondary use of genomic data for the research
community and other stakeholders in the life science sector. How-
ever, to fully use and benefit from the technical solutions for data
sharing established in the NGP, the current Swedish legislation
relating to the secondary use of health data requires changes. To
address this, an inquiry was recently initiated by the Swedish
government.

Strategic collaboration with industry and other societal stake-
holders is crucial to achieve the long-term goals of GMS and thus to
enable the development and implementation of precisionmedicine.
The core partners of GMS and the national trade associations of the
life science industries have agreed on a framework for collaboration
to provide guidance on legal issues and create improved conditions
for collaboration for the mutual benefit of the partners, thus con-
tributing to accelerate the transformation of the healthcare system
towards precision diagnostics/medicine with the patient at centre
stage. Industry collaboration is challenged by the organisational
structure of GMS constituting 14 partners within academia and
healthcare, partly governed by different laws and regulations. The
rapid development of knowledge, and making research and health-
care intertwined, may also be challenging with respect to the format
of collaboration. In the short-term perspective, increased collabor-
ation with industry will accelerate development and innovation,
based on joint learnings and active knowledge sharing between
organisations.

Another important area concerns education and training, as
well as increasing awareness. Here, all relevant stakeholders across
the precision medicine ecosystem need education about genomic/
precision medicine, including healthcare professionals, patients
and the society at large. As a consequence of the fast technological
development and shift in healthcare, an increased dialogue con-
cerning patient/individual integrity and ethical issues, for
example, in sharing healthcare data will be important. GMS is
actively collaborating with the medical profession and patient
associations to provide different types of educational activities,
including webinars, workshops and online courses. Moving for-
ward cooperation with patient representatives, from planning and
design to evaluation and follow-up, will increasingly be important
parts of GMS’ work. There is also a need to incorporate the
precision medicine concept into undergraduate and graduate
programs as well as to start new educational programs, for
example, in clinical bioinformatics. Here, GMS will be an import-
ant partner.

Finally, to build a sustainable infrastructure for precision
medicine, a strong national commitment is necessary in order
to secure long-term financing. In Sweden, a roadmap for preci-
sion medicine and advanced therapy medicinal products was
recently released by one of the government’s strategic cooper-
ation programs that proposed the establishment of a national
infrastructure for precision medicine where the state and health-
care regions join forces in a long-term partnership which in turn
will enable equal access to precision medicine for all citizens
across the country.

Future directions

Currently, a main driver of precision medicine is high-throughput
sequencing and there is a substantial potential for additional clinical
benefit from further developing these techniques. Additional indi-
cations and complex biomarkers can be expected to make their way
into clinical routine (Alexandrov et al., 2013). New analyses are
expected to be added both for blood with fractionation of, for
example, thrombocytes, extracellular vesicles and circulating
tumour cells as well as cerebrospinal fluid, urine and other body
fluids in which nucleic acids can be enriched. Themethods used for
analysing circulating tumour cells can also be expected to be useful
for single-cell analyses, adding new dimensions of molecular het-
erogeneity (Lin et al., 2021; Pfisterer et al., 2021).

In the coming years, other types of information and technolo-
gies can be expected to become increasingly clinically relevant, such
as long-read sequencing, optical mapping of structural variations,
multimodal single cell and spatial omics and genome-wide methy-
lation analyses. All these newmodalities need to be taken all the way
from discovery to clinical implementation and routine diagnostics.
To facilitate this, the SciLifeLab Clinical Genomics platform and
GMS have established a research implementation framework
(Fioretos et al., 2022), and other high-end technology platforms
within SciLifeLab are likely to further promote Swedish precision in
the near future using a similar strategy.

Regardless of the informationmodality, the vast amounts of data
generated necessitates new approaches, includingmachine learning
and artificial intelligence, to be able both to discern patterns and to
find the individual details of future clinical relevance. The data from
diagnostics and clinical studies also need to be linked to and cross-
referenced with health data in quality registries and electronic
health records, adding to the complexity and need for new data
processing solutions. Here, a recently established large-scale
national initiative in Data-Driven Life Sciences by SciLifeLab,
funded by the Knut and Alice Wallenberg Foundation, is likely to
promote the capability in Sweden to harness the massive amounts
of data being generated for improved precision medicine research
and diagnostics.

Furthermore, the in-depth data and targeted drugs of precision
medicine stratify patients in smaller groups than handled by trad-
itional clinical trials, calling for novel approaches to clinical study
design. This is an important task, involving clinicians and diagnos-
tic people alike, and the development of the field is driven by
international collaborations to pool the data needed.

Finally, as evidenced by ongoing active collaboration between
European precision medicine initiatives, the best way forward will
be to form cross-border and cross-disciplinary collaborative net-
works to foster and create the healthcare of tomorrow for the
benefit of our patients and the society at large.
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