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CONSTRUCTING MAXIMAL COFINITARY GROUPS

DAVID SCHRITTESSER

Abstract. Improving and clarifying a construction of Horowitz and Shelah, we

show how to construct (in ZF, i.e., without using the Axiom of Choice) maximal

cofinitary groups. Among the groups we construct, one is definable by a formula

in second-order arithmetic with only a few natural number quantifiers.

§1. Introduction

A cofinitary group is a subgroup of S∞ (the group of bijections from N to itself) each

nonidentity element of which leaves at most finitely many points fixed. A maximal cofinitary

group (MCG) is one which is maximal among cofinitary groups with respect to ≤, that is,

it is not a proper subgroup of a cofinitary group.

MCGs were so named by Cameron. In [3], [4] Cameron proposes the study of the class

of cofinitary groups, as a dual class to the finitary groups, that is, permutation groups

where every element moves only finitely many points. While the finitary groups already

possessed a well-developed structure theory, the class of cofinitary groups (which contains,

e.g., all Tarski monster groups) had to be much more complicated. For example, the group

of all finitary permutations is the unique maximal finitary group. Of course, every cofinitary

group can be enlarged to an MCG by Zorn’s lemma (a.k.a. the Axiom of Choice). Already

Truss and Adeleke had shown (see [1], [26]) that no MCG can be countable. Hjorth [10]

showed that any closed subgroup of S∞ is the continuous homomorphic image of a closed

cofinitary group (refuting a conjecture of Cameron, made in [3], as he says, with some

trepidation).

Set theorists have long been interested in MCGs (see, e.g., [18]). One long line of research

regards their size (see, e.g., [2], [8], [13], [16], [27]–[31]). Questions about MCGs on κ, where

κ is an uncountable cardinal, have also been studied by Fischer and Switzer [5], [7]. The

isomorphism types of MCGs have been investigated in [15].

The line of research to which this paper belongs concerns the definability of MCGs.

Many objects which were first constructed using the Axiom of Choice, can be shown to be

necessarily very irregular—much like the paradoxical decomposition of the sphere, which

has to consist of nonmeasurable pieces. Such objects then cannot have low definitional

complexity—such as, being Borel. This pattern was shown by Mathias to hold for so-called

MAD families (see [20], [21]), whose definition is superficially similar to MCGs.

So a natural question for MCGs arose: Does a Borel MCG exist? Can its existence be

ruled out? What is the least possible definitional complexity of an MCG? This is related
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CONSTRUCTING MAXIMAL COFINITARY GROUPS 623

to the question whether the Axiom of Choice is necessary for the construction of an MCG:

By a well-known argument using Levy–Shoenfield absoluteness, if a Borel MCG can be

constructed, then any use of the Axiom of Choice becomes spurious.

Let us give a quick review, for the nonexpert, of notions of definability from descriptive

set theory as they are used in this article. Some of these are of course merely topological:

the Borel sets are stratified into a hierarchy, with the open and closed sets at the bottom,

followed by the Fσ (countable unions of closed) sets and the Gδ (countable intersections

of open) sets. Open, closed, Fσ, and Gδ are also denoted by Σ0
1, Π

0
1, Σ

0
2, and Π0

2 sets,

respectively. Similarly, Σ0
3 denotes Gδσ, and so forth; Σ0

<ω denotes the finite level Borel sets.

Beyond the Borel sets, we speak of analytic sets (continuous images of NN, or equivalently,

projections of closed sets) denoted by Σ1
1 and their complements, the co-analytic sets or

Π1
1 sets. It is a classic fact that the Borel sets are precisely the sets in Δ1

1 :=Σ1
1∩Π1

1.

Finally, all these complexity classes have lightface (also called effective) counterparts. In

what follows, the reader will not loose much if they ignore the distinction and replace the

lightface classes by their boldface counterparts (which we have just described) everywhere.

For those interested, let me illustrate the distinction quickly by example: for example,

Σ0
1 is the collection of effectively open or computably open sets, that is, unions of basic open

neighborhoods, where the neighborhoods making up the union are listed (or, their codes

are listed) by a computable function. Likewise, the function enumerating the effectively

open sets (better: their codes) in the intersection forming a Π0
1 (or “computably Gδ”) set

is required to be computable.

It is a basic fact of descriptive set theory that the complexity of a set can be bounded

from above by counting quantifiers in (one of) its definition(s); for example, Σ0
n sets are

defined by formulas with at most n changes of quantifiers over natural numbers, starting

with “∃” (resp. starting with ∀), in the case of Π0
n. The same holds for Σ1

n and Π1
n where

one counts quantifiers over NN instead.

Moreover, the boldface classes arise from holding a parameter fixed. If {(x,y) | P (x,y)}
is Π1

n (say), then given any x, {y | P (x,y)} is Π1
n, and every Π1

n set arises in this way.

The same holds for all the Σ and Π classes mentioned above. Therefore, since the defining

formulas of the sets in this article are parameter-free, it is simply more precise to state the

complexity in terms of the lightface hierarchy.

For a deeper introduction, and as a general reference for descriptive set theory, we

recommend [17], [22], and [19].

We can now continue our short history of definability of MCGs. Kastermans showed in

[14, Th. 10] that no MCG can be contained in a Kσ set, that is, in a countable union of sets

which are compact. Gao and Zhang [9] showed that on the other hand, assuming the Axiom

of Constructibility, there is an MCG with a co-analytic (in fact, Π1
1) generating set. This

was improved by Kastermans’ theorem (see [14]) that under the Axiom of Constructibility,

there is a co-analytic (in fact, Π1
1) MCG.

In 2016, just after Vera Fischer, Asger Törnquist and the present author had constructed

a Π1
1 MCG in the constructible universe which (has size ω1 but) remains maximal after

adding Cohen reals (see [6]), and Horowitz and Shelah [11] gave a construction of an MCG

without using the Axiom of Choice or any similar choice principle. Not only did they work in

(choice-less) Zermelo–Fraenkel set theory (ZF), moreover, their construction yields a Borel

MCG (it would be enough to present an analytic such group; by the maximality property

of such groups, being analytic implies being Borel).
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624 D. SCHRITTESSER

In this article, we present a simpler construction of definable MCGs in ZF. This

construction takes some important ideas from the earlier work of Horowitz and Shelah,

but also differs substantially in places; similarities and differences are discussed below

in Remark 3.13. The present version of this article also corrects a mistake present in

an earlier version, discovered by Severin Mejak, for which the author is very thankful

(cf. Remark 2.11).

In fact, the present paper describes more than one construction of MCGs. The first

is a construction of an MCG in ZF, based on a combinatorial sufficient condition

for cofinitariness and maximality (Proposition 2.8). Second, we show how to alter the

construction (using the same sufficient condition) to obtain an MCG whose definitional

complexity is low: namely first, an MCG which is Borel, and then, with just a little more

attention to detail and a tiny change in the construction, one which is arithmetical, that

is, can be defined in second-order arithmetic by a formula which uses only quantifiers over

natural numbers.

Theorem 1. There is an MCG which is finite level Borel; in fact, it is definable by a Σ0
n

formula for some n ∈N, that is, by an arithmetical formula (one involving only quantifiers

over natural numbers).

This leaves open the question of what is the optimal (i.e., lowest possible) definitional

complexity of an MCG. In particular, the following obvious question remains open: Does

there exist a closed, or even an effectively closed (i.e., Π0
1) MCG? I do not know the answer.

A closed MCG would have a genuine claim to being obtained by concrete computation

(precisely, as the complement of an effectively open set) which would be quite surprising for

this type of object, defined, as it is, through a maximality condition. Note here that there

do indeed exists maximal eventually different families (“MCGs without group structure”)

which are closed, and in certain spaces, even ones which are compact (see [24]). The current

best result is that of Kastermans [14] that no MCG can be contained in a Kσ set. The

methods in this paper can, with a some effort, be pushed to yield a Σ0
2 MCG.

1.1 Some notation

We write AB for the set of functions from A to B. Likewise, write NA when A ∈ {N,2}
for Baire space (resp. Cantor space) and ωA (resp. <ωA) for the set of infinite (resp. finite)

sequences from A. We use X [∞] for the set of infinite subsets of X, S(X) for the group of

permutations of X (bijections from X to X ) and S∞ for S(N). This group carries a (unique)

Polish topology, but our statements about complexity of sets refer to NN.

We shall have opportunity to work with intervals in Z/lZ, the integers modulo l, which

are defined as follows: given a,b ∈ Z (or equivalently, a,b ∈ Z/lZ), let

[a,b] = {a+k | k ∈ N,0≤ k ≤ k′ for the least k′ ∈ N s.t. a+k′ ≡ b (mod l)}.

We will later work with a sequence �I = (In)n∈N of intervals in N which form a partition

of N. We will write I(M) for the saturation of M ⊆ N with respect to �I,

I(M) :=
⋃

{In | n ∈ N, In∩M 	= ∅}.

We identify n ∈N with {k ∈N | k < n} as it allows us to use notation such as (∀k ∈N\n)
for the longer “(∀k ∈ N) if k ≥ n then . . ..”
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CONSTRUCTING MAXIMAL COFINITARY GROUPS 625

§2. An Axiom-of-Choice-free recipe for maximal cofinitary groups

In this section, I give a construction in ZF (i.e., without using the Axiom of Choice) of a

group Ċ and then show it to be maximal cofinitary. In fact, I will give sufficient conditions

for when similar constructions yield a cofinitary and MCG, which will be useful when in

the following section, an MCG of lower definitional complexity is constructed.

I first sketch the rough, overall idea of the construction(s). In [23], building on work of

Horowitz and Shelah on maximal eventually different families in [12], I gave a simple recipe

for constructing such a family (and the reader may find it useful to take a look at the much

simpler argument in [12]). In the following, I shall follow a similar strategy to construct an

MCG. Here are the main ideas.

[S1] Construct a perfect subset of S∞ which freely generates a cofinitary subgroup C of

S∞. This allows us to associate (by a continuous map) to any f ∈ S∞ a generator ξ(f)

of C. The map ξ is emphatically not a homomorphism; rather, one should think of

ξ(f) as coding f. We do demand additional properties of C, most notably, the orbits of

C are finite but the sequence of cardinalities of orbits grows sufficiently quickly. This

additional property is needed for [S3].

[S2] We describe a way to alter each ξ(f) to agree with f itself on an infinite set D, obtaining

a new permutation without fixed points, denoted by

ξ(f)�D f ∈ S∞.

We call this ternary operation (with inputs ξ(f), D, and f ) surgery; the argument D,

that is, the set where this new permutation agrees with f, is called the transmutation

site. Surgery straightforwardly merges two permutations, or even a permutation and

a partial injective function, obtaining a permutation without fixed points under some

weak assumptions on its inputs. We will have to change ξ(f) not only on D, but on a

slightly larger set E =D∪D†, to make sure ξ(f)�D f is a permutation.

Note now that the following set 〈
{ξ(f) | f ∈ S∞}

〉S∞

is a cofinitary group by construction. In contrast, the following set

{ξ(f)�D(f) f | f ∈ S∞}, (1)

where D(f) ∈ N[∞], is arbitrary and satisfies a maximality condition: every element of

S∞ agrees on an infinite set with a permutation from (1)—with any näıve choice of the

transmutation site D(f) for each f ∈ S∞; but the set in (1) should not be expected to

generate a cofinitary group—unless we refine our choice of D(f). The way forward is to

analyze how the set in (1) fails to generate a cofinitary group.

[S3] By carefully choosing transmutation sites D(f) from an almost disjoint family and

using the size condition from [S1] on the orbits of C, it can be arranged that the only

obstacles to cofinitariness are permutations f ∈ S∞ which agree with an element of

C on an infinite subset of D(f). But by this very property, we can forgo surgery for

such f entirely (one does have to include ξ(f) as well as other elements of C in our

MCG, to achieve maximality; and one must check that not only does f agree with an

element of C on an infinite set, but that this remains true after applying surgery to the
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626 D. SCHRITTESSER

generators of said element. Here again it is used that the sets D(f) are almost disjoint

for different f, as well as a property which we call cooperative (see Remark 2.11).

Thus, with a careful choice of f �→D(f), it becomes possible to show that the following set

Ċ0 := {ξ(f)�D(f) f | f ∈ S∞∧¬κD(f)}∪{c ∈ C | ¬(∃f ∈ S∞) ξ(f) = c∧¬κD(f)} (2)

generates an MCG in S∞, where κD(f) stands for “f agrees with an element of C on an

infinite subset of D(f)” (short: “f is caught”). Of course, the point is that we do not use

the Axiom of Choice in choosing D(f) for each f. The most difficult part of the proof is the

analysis of how (1) fails to be cofinitary; this analysis is implicit in the proof of Proposition

2.14 in §2.4. Another difficult part is to arrange cooperativeness.

Remark 2.1. In order to obtain a group which in addition is definable by a simple

formula, the idea suggests itself to refine the above strategy as follows: instead of considering

elements of c ∈ C as potential codes for a permutation f, interpret c as coding more

information (and then, as before, potentially use surgery on c according to this coded

information). But the group C which we construct below will be Kσ, that is, a countable

union of compact sets. Therefore it is not obvious how to use this type of approach to lower

the complexity below, say, a group with a Π0
2 set of generators (presumably, the group itself

would then be Σ0
3). Neither is there an obvious way to replace the group C in the following

construction by a sufficiently large (non-Kσ) cofinitary group to circumvent this problem.

It is nevertheless possible, using the methods in this paper and some additional ideas, to

construct a Σ0
2 MCG. See also Theorem 4.2 and Question 4.1.

2.1 Ground-work: An action of the free group with a continuum

of generators

Our first goal is to define a group isomorphism

c: F
(
N2
)
→C ≤ S∞,

or equivalently, a faithful action of F
(
N2
)
on N. We would like the orbits of this action to

be finite, and arranged in a sequence such that their sizes exhibit sufficiently fast growth.

This action will be constructed by finite approximations. To this end, given α ≤ ω (i.e.,

α ∈ N or α= N), let us write

F(α2)

for the free group with generating set α2, the set of sequences of length α from {0,1}, and
for n ∈ N with n < α write

rαn : F(
α2)→ F(n2)

for the group homomorphism defined on each generator x ∈ α2 by

rαn(x) = x�n.

We can also drop the superscript since it is determined as the unique α such that x∈ F(α2);

that is, we let

rn =
⋃

n≤α≤ω

rαn .
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We first construct a sequence of finite groups

〈Gn | n ∈ N〉

and group homomorphisms

cn : F(
n2)→Gn,

together with actions

σn : Gn � In, acting faithfully and transitively, where In = [mn,mn+1) and

〈mi | i ∈ N〉 is a strictly increasing sequence from N with m0 = 0. (3)

In what follows, for n ∈ N, let us write

Wn := the set of (reduced) words from F(n2) of length at most n.

For example, W0 is the subset of the trivial group containing only the neutral element,

which we take to be the empty word ∅; that is, W0 is the entire group in this special case,

W0 = F(∅2) = {∅}. To give another example, W1 = {∅,〈0〉,〈0〉−1,〈1〉,〈1〉−1}; of course F(12)

is the free group with two generators.

Our construction of 〈Gn | n ∈ N〉 and cn ensures the following two requirements: For all

n ∈ N,

(A)
∑

m<n|Im|< |In|−1,

(B) cn�Wn is injective.

Proposition 2.2. We can find groups 〈Gn | n ∈ N〉, homomorphisms 〈cn | n ∈ N〉, and
actions σn : Gn � In satisfying the above assumptions, that is, so that (3), (A), and (B)

hold.

Proof. The construction is by induction on n. Suppose, we already have Gn and σn.

Let 〈wi | i < l〉 be an enumeration of Wn+1 so that w0 = ∅, the neutral element of F(n+12).

For each x ∈ n+12, let us first define a partial injection c0(x) on {0, . . . , l−1} by stipulating

that for any pair i, j < l,

c0(x)(i) = j ⇐⇒ wj = xwi.

Now arbitrarily extend c0(x) to a permutation c(x) of {0, . . . , l−1}. Let

G := the group generated by {c(x) | x ∈ n+12} in Sl.

Then, c uniquely extends to a group homomorphism from F(n+12) to G, which we also

denote by c. It is easy to see that c is injective on Wn+1, as c(wi)(0) = i for each i < l.

Now, fix some large number k ∈ N, and let

Gn+1 :=G×Sk,

cn+1 := c×h1,

where h1 is the trivial homomorphism sending x to the identity in Sk. This last part of the

product is included to ensure Gn+1 is large, with the goal of establishing (A).

It is now easy to find σn+1 and In+1. Take a bijection ι of Gn+1 with an appropriate

interval In+1 of natural numbers, and let σn+1 come from the left-multiplication action of
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628 D. SCHRITTESSER

Gn+1 on itself, identified with In+1 via ι. Since

|In+1|= |Gn+1| ≥ |G| ·k!

and k can always be chosen large enough to ensure (A), we are done.

Having constructed this sequence of groups, and actions, now define a group homomor-

phism

c: F
(
N2
)
→ S∞

by describing how each generator x ∈ N2 acts on N: For each n ∈ N, let

c(x)�In = σn ◦ cn(x�n). (4)

We now define

C0 := c
[
N2
]
,

C := c
[
F
(
N2
)]

=
〈
C0
〉S∞

.

Proposition 2.3. The map c is an injective group homomorphism and C is a cofinitary

group.

Proof. To verify injectivity, let two words w,w′ ∈ F
(
N2
)
be given and take n ∈ N so

that w and w′ have word-length at most n, that is, {r∞n (w), r∞n (w′)} ⊆ Wn, and so that

r∞n (w) 	= r∞n (w′). Then by (B), (cn◦r∞n )(w) 	= (cn◦r∞n )(w′) and so by (4) also c(w) 	= c(w′).

Similarly, c(w) is trivial or has finitely many fixed points, for any word w ∈ F
(
N2
)
: Find

n ∈ N so that r∞n (w) ∈ Wn and r∞n (w) 	= ∅ (supposing, to avoid trivialities, that w 	= ∅).
Then for each m≥ n, r∞m (w) 	= ∅ and so (σm ◦ cm ◦ r∞m )(w) has no fixed points. Since

c(w)�Im = (σm ◦ cn ◦ r∞m )(w),

we infer fix(c(w))⊆
⋃

n′<n In′ .

It will be important to know the degree of definability of the objects constructed in this

section. The following is clear by construction.

Proposition 2.4. The sequences 〈Gn | n ∈ N〉, 〈In | n ∈ N〉, 〈cn | n ∈ N〉, 〈σn | n ∈ N〉
are each computable, that is, Δ0

1. Moreover, C0 is a closed subset of NN and (the graph of)

c�N2 is closed in N2×NN. In fact both are Π0
1.

From now on, let us identify Gn with a subgroup of S(In) via σn. That is, from now on

we have

Gn ≤ S(In),

cn : F
(
n2
)
→ S(In),

c(w)�In = (cn ◦ r∞n )(w).

Thus, we can replace σn by the action by evaluation.

Finally, given M ⊆ N we use the notation

I(M) :=
⋃

{In | n ∈ N, In∩M 	= ∅}

for the saturation of a set M with respect to the partition �I = (In)n∈N.
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2.2 Surgery

Write pari(N,N) for the set of partial injective functions from N to N. Largely for aesthetic

reasons, let us make the following definition slightly more general than is presently needed—

namely, for f ∈ pari(N,N) and not just f ∈ S∞.

We define a partial map

� : S∞×P(N)×pari(N,N)⇀ NN,

(g,D,f) �→ g�D f

as follows: given f ∈ pari(N,N), D ⊆ dom(f), and g ∈ S∞, we want to define

(g�D f) : N→ N.

If m ∈D and f(m) = g(m), we let

(g�D f)(m) = g(m)

and otherwise, writing

C = N\
(
D∪f [D]∪ (g−1 ◦f)[D]

)
,

we want to let

(g�D f)(m) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(m), m ∈ C,

f(m), if m ∈D,

(g ◦f−1)(m), if m ∈ f [D],

(g ◦g)(m), if m ∈ (g−1 ◦f)[D].

(5)

We call this operation surgery : f is surgically grafted onto g along the set D. Moreover, we

shall later find it useful to use the following notation for the sets where surgery is performed:

D†(g,D,f) := f [D]∪ (g−1 ◦f)[D] = N\ (D∪C),

E(g,D,f) :=D∪D†(g,D,f) = N\C.
(6)

We now specify the domain of this operation: for one thing, we will only consider this

operation for triples (g,D,f) which have the following property, which ensures that g�D f

on the left of (5) is well defined.

Let us say that D ⊆ N is (g,f)-spaced if and only if:

(a) D ⊆ dom(f), and

(b) for any m,m′ ∈D and for any

h ∈ {f,g−1 ◦f,f−1 ◦g−1 ◦f,f−1 ◦g ◦f},

it holds that h(m) 	=m′.

It is not hard to see that for (g,f)-spaced D, g�D f is well defined by (5). In fact, including

h= f−1◦g◦f in (b) is not needed for this; we include it for the proof that g�D f is injective,

below. We let

dom(�) := {(g,D,f) ∈ S∞×P(N)×pari(N,N) | idN /∈ {g,f} and D is (g,f)-spaced}.
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630 D. SCHRITTESSER

Figure 1.

Surgically transplanting f(n).

Remark 2.5. It may hep the reader to verify that g�D f can be decomposed into cycles

and that these cycles are exactly the cycles of g with the following modification: For each

n ∈D, if f(n) and n belong to different g-orbits, f(n) is removed from whatever g-orbit it

belongs to and inserted into the g-orbit of n just after n, as shown in Figure 1. If n and

f(n) should occur in the same g-orbit but f(n) 	= n and f(n) 	= g(n), then f(n) is removed

from its position, the g-cycle altered to lead from the predecessor of f(n) to its successor

immediately, and f(n) is inserted in the position after n. In particular, the map g�D f is a

permutation of N.

For the incredulous reader, we give a proof of this last fact.

Lemma 2.6. Suppose (g,D,f) ∈ dom(�) (whence D is (g,f)-spaced). Then g�D f is a

permutation of N, and its fixed points are precisely those of g.

Proof. First, we show g�D f is injective. Suppose m,m′ ∈ N, m 	=m′, and

g�D f(m) = g�D f(m′). (7)

We omit trivial cases where by definition of g�D f , the above reduces to f(m) = f(m′) or

g(m) = g(m′). By symmetry, the following three cases remain to be considered.

First, suppose m ∈ D and m′ ∈ f [D]. Substituting the definition of g �D f in (7), we

almost immediately find

m= (f−1 ◦g)(m′′)

for some m′′ ∈D (namely, take m′′ = f−1(m′)). But this is ruled out by (b) above, that is,

by our assumption that D is (g,f)-spaced.

The remaining two cases are similar: If m ∈D and m′ ∈ (g−1 ◦f)[D], an analogous route

as in the previous case leads us to find m′′ ∈D such that

m= (f−1 ◦g ◦f)(m′′),

and if m ∈ f [D] and m′ ∈ (g−1 ◦f)[D], we likewise obtain m′′,m′′′ ∈D such that

m′′ = (f−1 ◦g ◦f)(m′′′).

Either contradicts (b) above, that is, that D was assumed to be (g,f)-spaced.

To show that g�D f is surjective, let m ∈ N be given, and let m′ := g−1(m). If m′ ∈ C,

then m = g(m′) = g �D f(m′) by definition. If m′ ∈ D, m = g �D f(m′′) = (g ◦ f−1)(m′′)

where m′′ = f(m′). If m′ ∈ f [D], m = g�D f(m′′) = g2(m′′) where m′′ = g−1(m′). Finally,

if m′ ∈ (g−1 ◦f)[D], m ∈ f [D], so m= g�D f(m′′) = f(m′′) for m′′ = f−1(m).

The final statement regarding fixed points is obvious from the definitions.
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The reader may find it helpful to note at this point that moreover, under the right

circumstances, surgery does not destroy being cofinitary. Readers can skip the following

(somewhat artificial) lemma and proof sketch without loss if they wish, since we shall prove

a more pertinent (but also much more complex) statement later in Proposition 2.8.

Lemma 2.7. If (g,D,f) ∈ dom(�), f ∈ S∞, and {g,f} freely generates a cofinitary

group, then g�D f has only finitely many fixed points. In fact, if C ∪{f} freely generates

a cofinitary group, g ∈ C, f /∈ C, and (g,D,f) ∈ dom(�) then {g�D f}∪C \{g} generates a

cofinitary group as well.

Proof sketch. For the first assertion, by assumption, any word in the generators f and

g has only finitely many fixed points. Let h := g�D f and F := fix(h); we show F is finite.

This is because

F ∩D ⊆ fix(f),

F ∩f [D]⊆ fix(g ◦f−1),

F ∩ (g−1 ◦f)[D]⊆ fix(g2), and

F \E(g,D,f)⊆ fix(g)

are each finite. The second statement is left as an exercise.

2.3 The scenic route to maximality

Given f ∈ S∞ and X ∈ N[∞], let us say f is caught (by C) on X to mean that for some

Y ∈X [∞] and some c ∈ C, f�Y = c�Y . Let us abbreviate this by κ(X,f), that is,

κ(X,f) :⇐⇒
(
∃w ∈ F

(
N2
))(

∃Y ∈X [∞]
)
f�Y = c(w)�Y. (8)

Fix a continuous one-to-one map,

χ : S∞
1−1−→ N2,

f �→ χ(f),
(9)

for example, by taking χ(f) to represent the graph of f as an element of N2 via the obvious

identification N2∼= N×N2∼= P(N×N).

We thus obtain a continuous injective map ξ from S∞ into C (emphatically not a group

homomorphism, nor do we need it to be onto) defined as follows:

ξ := c◦χ.

In the next section, we will define an injective map

D: S∞ → N[∞],

f �→D(f),

whose range will be an almost disjoint family. This map will be defined so as to ensure that

the following set Ċ0 generates (in S∞) an MCG (as sketched in [S3]):

Ċ0 :=
(
C0 \ ran(ξ)

)
∪{ξ(f) | f ∈ S∞∧κ(D(f),f)}∪{

ξ(f)�D(f) f | f ∈ S∞∧¬κ(D(f),f)
}
. (10)
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Supposing we have fixed the map D, let us introduce the following shorthands:

κD(f) :⇐⇒ κD(f),f).

With this notation, the definition in (10) is obviously equivalent to the one already

mentioned in (2). It will be extremely convenient for what follows to introduce yet another

way of referring to the elements of Ċ0. Define

ċ: N2→ Ċ0
as follows: given x ∈ N2, let

ċ(x) :=

{
c(x), if x /∈ ran(χ) or κD

(
χ−1(x)

)
,

c(x)�D(f) f, otherwise, where f := χ−1(x),
(11)

noting that thereby

Ċ0 = {ċ(x) | x ∈ N2}. (12)

Extend ċ to F
(
N2
)
in the unique possible way to obtain a homomorphism. Recalling (6),

let us introduce the following notation for sets where surgery affects ξ(f) = c
(
χ(f)

)
:

D†(f) := f
[
D(f)

]
∪ (c(f)−1 ◦f)

[
D(f)

]
=D†(c(f),f,D(f)

)
,

E(f) :=D(f)∪D†(f) = E
(
c(f),f,D(f)

)
.

With this notation at our disposal, it will be easier to formulate and explain the proofs of

the following propositions.

It is useful to give conditions which the map f �→ D(f) has to satisfy and which imply

that Ċ0 as defined above generates a group which is maximal cofinitary. We do this in

the following proposition. (In this proposition, as in the remainder of the article, we work

with c,χ, ξ, and �I as constructed above and in the previous section. For the proof of the

proposition itself very little is required of these ingredients. It is for the existence of the map

D as claimed in the proposition—without which of course the proposition is useless—that

we tailored the properties of c,χ, ξ, and �I.)

Proposition 2.8. Suppose we have a map

S∞ → N[∞],

f �→D,

such that for all f,f ′ ∈ S∞:

(I) If f 	= f ′, D(f)∩D(f ′) is finite.

(II) For any m ∈D(f), if m ∈ In and f(m) ∈ In′ then n≤ n′. Moreover, D(f) meets each

component In of �I in at most one point.

(III) If ¬κD(f), D(f) is (ξ(f),f)-spaced.

(IV) If h ∈ S∞ and κD(h) then h�Y = c(w)�Y for some Y ∈ D(h)
[∞]

and w = xl . . .x0 ∈
F
(
N2
)
such that Y ∩E(fj) = ∅ for each j ≤ l with xj ∈ ran(χ) and fj := χ−1(xj) such

that fj 	= h.1

1 Equivalently, one could replace “such that fj �= h” by “such that ¬κD(fj)” here.
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S∞
N2 C0

P(N)

� Ċ0

χ

ξ

D

c

Figure 2.

Coding and catching permutations.

Then the group (call it Ċ) generated by the set Ċ0 defined as in (10) is maximal cofinitary.

In other words,

Ċ := 〈Ċ0〉S∞ =
〈({

c ∈ C0 | ¬(∃f ∈ S∞)
[
ξ(f) = c∧¬κD(f)

]}
∪

{
ξ(f)�D(f) f | f ∈ S∞∧¬κD(f)

}〉S∞
(13)

is an MCG.

If the reader is puzzled by (IV), they should look ahead to Proposition 2.13 and Remark

2.11 now. Observe that (13) is well defined and Ċ is a group since by construction of ξ and

by Lemma 2.6 each element of Ċ0 is a permutation of N. The reader may find it helpful to

refer to Figure 2.

The above proposition would not be useful if the only way to choose such a map f �→D(f)

would be to use AC/Zorn’s Lemma. But to the contrary, there is an explicit and purely

combinatorial construction of a map f �→D(f) with the above properties, without appealing

to AC in any shape or form.

Lemma 2.9. There is a map D: S∞ →P(N) satisfying (I)–(III) from Proposition 2.8.

Proof. Let us fix, for the remainder of this article, a bijection

#: <ω2→ N, (14)

x∗ �→#(x∗).

To achieve (I), we let

D0(f) = {#
(
χ(f)�k

)
| k ∈ N},

whence f 	= f ′ ⇒ |D0(f)∩D0(f
′)|< ω.

To also achieve (II), we define

D1(f) :=

{
min

(
(mn,mn+1]\

⋃
k<n

f−1[Ik]∪{f−1(mn)}
) ∣∣∣∣∣ n ∈D0(f)

}
. (15)

This set is infinite by (A) in our construction of C (see page r.In). Note the use of the open

interval (mn,mn+1]; this is a mere convenience, and only relevant when we reuse the present

definitions in later propositions (see Remark 3.8 for the reason).
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To ensure (III), it is enough to further thin out D1(f) to a subset which we will call

D2(f). In fact, since the requirement in (III) is conditional on f being caught on the final

set D(f) which we are in the process of constructing, we can do away with an easy case: if{
m ∈D1(f) | f(m) 	=m ∧ f(m) 	= ξ(f)(m)

}
is finite, (16)

simply let D2(f) = D1(f). Then, as D(f) ∈D2(f)
[∞]

, κD(f) will hold.

If otherwise the set in (16) is infinite, we thin out as follows: let

mf
k = least m ∈D1(f)\fix(f) such that f(m) 	= g(m) and

m> h(mf
l ) for each l < k, and h ∈H ∪H−1,

where,

g := ξ(f),

H := {f,g−1 ◦f,f−1 ◦g−1 ◦f,f−1 ◦g ◦f}.

Note that H is the set from (b) in the definition of (g,f)-spaced (see page i.avoid.1). Now,

let

D2(f) := {mf
k | k ∈ N}.

It is clear that the condition in (b) for m 	=m′ is enforced by the second line in the above

definition of mf
k ; for m=m′, use the first line of said definition and the fact that g has no

fixed points. Thus, D2(f) is
(
ξ(f),f

)
-spaced.

We shall reuse the notation D2(f) in the next section to construct an MCG which is Borel,

and also one which is even arithmetical. Therefore, we pause and gauge of the definitional

complexity of the map D2.

Lemma 2.10. Given f ∈ S∞, the set D1(f) is computable in f, and D2(f) is computable

relative to an oracle consisting of f and the truth value of (16). Therefore, D2(f) is uniformly

Δ3
0(f).

Proof. The proof is straightforward.

Before we finish the construction of the map D satisfying Proposition 2.8, we discuss the

most involved requirement, Item (IV).

Remark 2.11. We sketch how Requirement (IV) ensures that Ċ is maximal (more detail

is found in the proof of Proposition 2.13): Suppose we are given h ∈ S∞ and want to show

that Ċ0∪{h} is not contained in a cofinitary group. As explained at the beginning of §2,
the ¬κD(h) case will be easy, so let us suppose κD(h) holds. Fix w = (xl)

il . . .(x0)
i0 and an

infinite set Y0 ∈ D(h)
[∞]

such that h�Y0 = c(w)�Y0. We know ċ(w) ∈ Ċ0, but we must still

show c(w)�Y = ċ(w)�Y for some Y ∈ Y0
[∞]. The existence of such Y is exactly what (IV)

ensures.

How will we guarantee this? Such Y exists unless for all but finitely many m ∈ Y0, the

path of m under c(xl)
il , . . . ,c(x0)

i0 meets some E
(
χ−1(xj)

)
; this is the set where ċ(xj)

potentially differs from c(xj). In fact, by (I) the task is reduced to ensuring2 the sets

D†(χ−1(xj)
)
avoid said path, for all j ∈ J .

2 This case was overlooked (perhaps, repressed) in an earlier version of this article. Once more, thanks to
Severin Mejak for noticing the gap.
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That is, the potential problem is a set U = {fj | j ∈ J} ⊆ S∞ where “the D†(fj) are

too greedy” in the sense that
⋃

j∈J D
†(fj) almost covers Y0 (i.e., with only finitely many

exceptions). Let us call such U an uncooperative set for h and w.

To ensure that (IV) holds, we approach the above situation from the point of view of

a potential element of an uncooperative set U. Given f, we shall be able to detect that f

is one of the permutations from a potentially uncooperative set U = {fj | j ∈ J} for some

h and w. In fact, we arrange—by making D(f) sparse—that there is at most one h and

w for which this can occur. We then make each set D(fj) so sparse that Y0 \
⋃

j∈J D
†(fj)

remains infinite, for Y0 as above. For this, f = fj has to take into account h and w as

well as the other permutations from U, that is, the thinning out has to be coordinated (or

cooperative) among U. This is achieved using a semaphore which reserves some points of

Y0 for the catching of h. Crucially, all the relevant information (that is, h, w, and the set U

of all participants in the potential conflict) can be reconstructed from each single f ∈ U , so

they will indeed use the same semaphore.

Lemma 2.12. There is a map D: S∞ →P(N) which in addition to (I)–(III) also satisfies

(IV) from Proposition 2.8.

Before we prove the lemma, we introduce some notation which will be useful throughout

this article. First, we define a strict partial order on N: let

m≺#m′ def⇐⇒ s� s′ for the unique s,s′ ∈ <ωNs.t. m ∈ I#(s)∧m′ ∈ I#(s′).

Second, given m,m′ ∈ N (and recalling the map cn from Proposition 2.2), define

w(m,m′) =

{
the unique element w ∈Wn such that cn(w)(m) =m′, if such exists,

↑ (i.e., remains undefined), otherwise.

For aesthetic reasons, we make the next two of the current series of definitions slightly

more general than is presently needed (i.e., for h ∈ pari(N,N) and not just h ∈ S∞).

Third, given h ∈ pari(N,N), we define a strict partial order on N. Let

m0≺hm1

if and only if m0 <m1, and for each i ∈ {0,1}, wi := w
(
mi,h(mi)

)
∈ F

(
ni2

)
is defined and

w0 = rn1
n0
(w1).

Finally, given a partial order ≺ we shall say a set X is ≺-homogeneous if and only if either

X consists only of ≺-incomparable elements, or else X is totally ordered by ≺.

Proof of Lemma 2.12. We start with the map D2 constructed in Lemma 2.9 which

already satisfies (I)–(III) and thin out several more times to ensure (IV).

First, if κ
(
D2(f),f

)
, we simply let D(f) = D2(f). Next, find a map

D3 : {f ∈ S∞ | ¬κ
(
D2(f),f

)
}→ P(N),

such that D3(f) ∈ D2(f)
[∞]

and f [D3(f)] is ≺#-homogeneous for each f ∈ dom(D3). To

this end, consider the following relation on S∞×P(N):

R(f,D′)
def⇐⇒

(
D′ ∈D2(f)

[∞]∧f [D′] is ≺# -homogeneous
)
.
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By Ramsey’s Theorem, for each f ∈ S∞ there is D′ such that R(f,D′). As R is Π1
1 (even

arithmetical, as is straightforward to verify) a map D3 as desired exists (provably in ZF)

by Π1
1-Uniformization.3 Given f ∈ dom(D3), by construction, for at most one h ∈ NN does(

∃X ∈D3(f)
[∞]

)
f [X]⊆ I

(
D2(h)

)
, (17)

hold. Let us therefore write hf for it, and say “hf exists” to mean “there exists h ∈ NN

satisfying (19)”. Clearly hf is then definable from f.

By the same argument as above, we can find a map D4 : dom(D3) → P(N) such that

D4(f) ∈D3(f)
[∞]

and if hf is defined, f
[
D4(f)

]
is ≺hf

-homogeneous. For any f ∈ S∞ such

that κD2(f) and hf is defined, by construction, there is at most one w ∈ F
(
N2
)
such that(

∃X ∈D4(f)
[∞]

)
hf�f [X] = c(w)�f [X]. (18)

Analogously to the above, let us denote such w by wf if it exists, and let us express this

state of affairs by “wf exists.” (Now f can be an element of a uncooperative set for at most

one pair h and w—namely hf and wf .)

Given f ∈ dom(D3), if hf or wf do not exist, then we can let D5(f) =D4(f). Now suppose

both h= hf and w = wf exist and write

w = (xl)
il . . .(x0)

i0 , (19)

where each xj ∈ N2 and ij ∈ {−1,1}. Let J be the set of j ≤ l such that xj ∈ ran(χ) and

χ−1(xj) 	= h, and for each j ∈ J , let4

fj := χ−1(xj).

As described in Remark 2.11, catching of h may fail because {fj | j ∈ J} form an

uncooperative set. We now describe a semaphore which reserves some points of each D(fj),

thought of as a scarce resource, for the catching of h. (Note that if it should be the case

that f /∈ {fj | j ∈ J}, then there is no uncooperative set in which f participates, and we

can let D5(f) = D4(f) and are done. But it doesn’t hurt to follow the procedure below for

every f.)

For the final step, we shall use the shorthand

D†
4(f) := I

(
f
[
D4(f)

])
.

Recursively define a sequence ȳ = (yn)n∈N. This sequence only depends on f only through

h = hf and w = wf , therefore we shall also write ȳh,w = (yh,wn )n∈N for it. To start the

induction, let

y0 = the least y ∈D2(h) such that h(y) = c(w).

Now suppose n ∈ N\1 and yn−1 is already defined. Let

yn = the least y ∈D2(h) such that h(y) = c(w)(y) and (∀j ∈ J),

y ∈D†
4(fj)⇒

[
(∃m ∈ N) yn−1 <m< y∧m ∈D†

4(fj)
]
.

3 We will soon show that in fact, the map f �→D3(f) can be chosen to be arithmetical.
4 It would be enough to consider j such that xj ∈ χ [{f ∈ S∞ | κD2(f)}].
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That is, y is protected from being used by fj provided fj has been able to use a point m

previously, earlier than its present request at y but, in case n > 0, after the previous point

yn−1 reserved for h (where potentially, we also had to deny fj access). Define

D5(f) =
{
m ∈D4(f) | f(m) /∈ I

({
y
hf ,wf
n | n ∈ N

})}
.

By construction, D5(f) is infinite. (Note that no similarly easy construction would be

possible if we hadn’t arranged that there is at most one pair hf ,wf for which f is potentially

uncooperative.) Finally, we conclude the case of f ∈ S∞ such that ¬κ
(
D2(f),f

)
by defining

D(f) = D5(f).

Then (IV) holds. Given an arbitrary h ∈ S∞ and w such that h and c(w) agree on an

infinite subset of D(h), write w as (18) above, and let {fj | j ∈ J} be defined as above.

We show there is an infinite set Y ⊆ D2(h) = D(h) disjoint from each E(fj); namely, let

Y := ran
(
ȳh,w

)
\
⋃

j∈J D2(fj). By construction, for each j ∈ J,

ran
(
ȳh,w

)
∩D†(fj) = ∅

and so since E(fj) ⊆ D(fj)∪D†(fj), Y is disjoint from E(fj). Note that Y is infinite

by (I).

We now prove Proposition 2.8. The proof will take up the remainder of this section and

the next section and is split into two further propositions, the first of which has the purpose

of verifying maximality.

Proposition 2.13. For any h ∈ S∞, there is c ∈ Ċ such that {n ∈ N | h(n) = c(n)} is

infinite. In particular, provided we can show that the group Ċ is cofinitary, Ċ will be maximal

cofinitary.

Proof. Let h ∈ S∞ be given. Suppose first that h is not caught, that is, ¬κD(h) holds,

or in more detail, κ
(
D(h),h

)
from (8) fails. Then letting x := χ(h), by definition of ċ,

h�D(h) = ċ(x)�D(h), whence h agrees on an infinite set with the element c := ċ(x) of Ċ.
Now consider the case that h is caught—that is, κD(h) or equivalently, κ(D(h),h) from

(8) holds. Let us fix a word w ∈ F
(
N2
)
and an infinite set Y ⊆ N witnessing (IV). Then

h�Y = c(w)�Y. (20)

Let us write

w = (xl)
il . . .(x0)

i0 ,

let J be the set of j ≤ l such that xj ∈ ran(χ)\{χ(h)}, and let

fj := χ−1(xj)

for each j ∈ J . By choice of Y (i.e., by (IV)), we have

ċ(xj)�Y = c(xj)�Y (21)

for any j ∈ J , since surgery is only applied to points in E(fj), and this set is disjoint

from Y. Note that if xj = χ(h), (21) is also true by definition of ċ and surgery; likewise,

if xj /∈ ran(χ) is (21) is true by definition of ċ. Thus, (21) holds for all j ≤ l, whence also

c(w)�Y = ċ(w)�Y . From this and (20), we infer that h agrees on Y with ċ(w).
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2.4 Cofinitariness

In this section, we prove that the group Ċ constructed in the previous section—or more

precisely, any group constructed as in Proposition 2.8—is cofinitary.

Proposition 2.14. Under the same assumptions as in Proposition 2.8, Ċ as defined

there, is a cofinitary group.

Proof. Suppose c ∈ Ċ and c has infinitely many fixed points. Let l ∈ N be minimal such

that c arises via composition from a sequence of length l of generators/inverses of generators.

Supposing toward a contradiction l > 0, choose c0, . . . , cl−1 ∈ Ċ0 and i0, . . . , il−1 ∈{−1,1} such
that

c= (cl−1)
il−1 ◦ · · · ◦ (c0)i0 . (22)

By minimal choice of l, (cl−1)
il−1 . . .(c0)

i0 is reduced in the usual sense that it contains no

subwords of the form c−ici with c ∈ Ċ0, that is, it is reduced as a word in F(Ċ0).
For each i < l, we can pick xi ∈ N2 so that

c= ċ
(
(xl−1)

il−1 . . .(x0)
i0
)
,

or in other words, so that either

ci = c(xi)

if xi /∈ ran(χ) or κD(χ
-1(xi)), or otherwise if xi ∈ ran(χ) and κD(χ

-1(xi)), then

ci = c(xi)�D(χ-1)(xi)χ
-1(xi). (23)

In the second case, let us write

fi := χ-1(xi).

Since the word on the right in (22) is reduced with respect to the rules in F(Ċ0),

w := (xl−1)
il−1 . . .(x0)

i0

is in reduced form as a word in F
(
N2
)
.

Let F be a tail segment of fix(c) such that for all m ∈ F and for all points m′ in the path

under w of m, m′ lies in at most one of the sets D(fi), for any i < l such that fi is defined.

This is possible by (I).

For any m ∈ F and j < l such that cj has the form as in (23), the permutation

c(xj)�D(fj) fj(m)

acts in the path under w of each element of F as one of

c(xj)(m),

c(xj)
2(m),

fj(m), or(
c(xj)◦fj−1

)
(m)
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as in (5). Thus, for each m ∈ fix(c), we can find l(m) ≤ 2l, ċmj , and imj for j < l(m) such

that

c(m) =
(
ċml(m)−1 ◦ . . .◦ ċm0

)
(m),

where for each j < l(m)

ċmj =

{
c(xm

j )i
m
j or

(fm
j )i

m
j

with xm
j ∈ {xl−1, . . . ,x0} and fm

j := χ-1(xm
j ) when xm

j ∈ ran(χ) and the above equation calls

for fm
j to be defined; that is, in this case fm

j = fi for some i < l.

Write

wm :=
(
xm
l(m)−1

)iml(m)−1

. . .(xm
0 )

im0 .

Note again that the length l(m) of this new word wm is bounded by the definition of surgery,

namely, we have l(m) ≤ 2l. Since there are only finitely many possible such substitutions

(each xm
j being chosen from {xi | i < l}) we can write F as a finite union of sets on each of

which wm is constant in m. Let F ∗ ⊆ F be one such set which is infinite. Replacing each

superscript “m” by “∗,” we write

l(m) = l∗,

cmj = c∗j ,

xm
j = x∗

j ,

imj = i∗j ,

fm
j = f∗

j ,

for all m ∈ F ∗ and all j < l∗. By construction,

c∗j =

{
c(x∗

j )
i∗j or

χ-1(x∗
j )

i∗j = f∗
j ,

for all m ∈ F ∗ and all j < l∗. Moreover,(
c∗l∗−1 ◦ . . .◦ c∗0

)
�F ∗ = ċ(w)�F ∗ = c�F ∗ = idF∗ .

Finally, we also write

w∗ := (x∗
l∗−1)

i∗l∗−1 . . .(x∗
0)

i∗0 .

Claim 2.15. The word w∗ reduces to ∅ in F
(
N2
)
.

Proof of claim. Suppose otherwise that as an element of F
(
N2
)
, the word w∗ reduces to

v and v 	= ∅. We will derive a contradiction.

Fix l̄ ∈ N and a sequence j(0), . . . , j(l̄−1) so that we may write the word v as

v =
(
x∗
j(l̄−1)

)i∗j(l̄−1)

. . .
(
x∗
j(0)

)i∗j(0)
.
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For now, fix m ∈ F ∗ arbitrarily. Let us write the path of m under the word v as

m(0),m(1), . . . ,m(l̄), where m(0) =m and m(l̄) = c∗(v)(m) =m, and

m(k+1) = c∗j(k)
(
m(k)

)
for each k < l̄. Let us look at the subword corresponding to a part of the path which is

spent in the interval from our partition �I with lowest possible index: That is, let

Km = [km0 ,km1 ]

be a nonempty interval in Z/l̄Z such that5 for all k ∈Km, m(k) ∈ In(m) where

n(m) := min{n | (∃k ≤ l̄)m(k) ∈ In};

furthermore, let us suppose that Km is maximal in the sense that (working modulo l̄) either

Km = [0, l̄] or m(km0 −1) /∈ In(m) and m(km1 +1) /∈ In(m).

Subclaim 2.16. It holds that m(km1 ) =m(km0 ).

Proof of subclaim. The first possibility is that the entire path of m under v lies within

In(m). In this case, we may assume km0 = j(0) and km1 = j(l̄−1) and m(km1 ) =m(km0 ) =m.

If on the other hand, the path enters Im(n) from another interval component of �I, since by

choice of m(n) this second interval comes later in �I, the path must enter via an application

of some (fi)
−1, where i is unique such that D(fi)∩ Im(n) 	= ∅, and m(km0 ) is the unique

point in this intersection. By the same argument, m(km1 ) must also be equal to this unique

point in D(fi)∩ Im(n).

Let

K̃m = [k̃m0 , k̃m1 ]

be a sub-interval of Km which is nonempty and minimal with the property that m(k̃m1 ) =

m(k̃m0 ). Shrinking F ∗ to an infinite subset F̃ if necessary, we may assume that K̃m is

independent of m; let us suppose for all m ∈ F̃ ,

K̃m = K̃ = [k̃0, k̃1].

Now consider the word

ṽ := v�K̃ =
(
x∗
j(k̃1)

)i∗
j(k̃1)

. . .
(
x∗
j(k̃0)

)i∗
j(k̃0)

,

corresponding to the permutation

c∗
j(k̃1)

◦ . . .◦ c∗
j(k̃0)

.

Let us emphasize again that by construction,

F̃ ⊆ fix
(
c∗
j(k̃1)

◦ . . .◦ c∗
j(k̃0)

)
,

that F̃ is infinite, and that by minimality of K̃, for any k,k′ ∈ [k̃0, k̃1] such that k < k′

and {k,k′} 	= {k̃0, k̃1}, and for any m ∈ c∗j(k−1) ◦ . . .◦ c∗j(k̃0)
[F̃ ] (for k > 0) (resp. any m ∈ F̃

5 We conveniently identify indices along the path with integers modulo l̄; alternatively, one can shift the
path by taking a cyclic permutation of the words w and w∗ to guarantee 0≤ k0

m ≤ km
1 ≤ l̄.
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[when k = k̃0]),

m 	= c∗j(k′) ◦ . . .◦ c∗j(k)(m).

We now begin with a series of subclaims which culminate in the proof of the assertion

that ṽ = ∅, contradicting the choice of ṽ.

Subclaim 2.17. For at most one j = j(k) with k ∈ [k̃0, k̃1) is it the case that c
∗
j = f∗

j or

c∗j = (f∗
j )

−1.

Proof of subclaim. Suppose otherwise, fix distinct k and k′ from K̃ such that j = j(k)

and j′ = j(k′) constitute a counterexample to the claim, that is, c∗j ∈ {f∗
j ,(f

∗
j )

−1} and

c∗j′ ∈ {f∗
j′ ,(f

∗
j′)

−1}. Since we have chosen F so that the path of each of its elements passes

though at most one of transmutation site, we have f∗
j = f∗

j′ . Thus, one of the following

configurations occurs in such a path under ṽ:

. . .m(k′+1) m(k′) m(k+1) m(k) . . .
(f∗

j )
−1

c(�x) f∗
j

or

. . .m(k′+1) m(k′) m(k+1) m(k) . . . ,
f∗
j c(�x) f∗

j

where in the first case, �x 	= ∅ because w∗ is reduced. The first is impossible since then

m(k+1) =m(k′), contradicting our assumption that for no proper subword of ṽ does the

corresponding path segment have a fixed point. The second is also impossible, since then

m(k′+1) =m(k+1), leading to the same contradiction.

Subclaim 2.18. It is impossible that c∗j be (f∗
j )

i∗j for exactly one j as in the previous

claim.

Proof of subclaim. Otherwise, letting j be a counterexample, the path of any element

of F̃ is of the following form:

m(j(k̃0)) =m(j(k̃1)) m(k+1) m(k) m(j(k̃0))
c(�x1) (f∗

j )
i∗j c(�x0)

with m(k) ∈D(f∗
j ), for appropriately chosen �x0,�x1 ∈ F

(
N2
)
and therefore

(f∗
j )

i∗j (m) = c(�x0�x1)(m) (24)

for infinitely many m ∈ D(f∗
j ). Thus, κD(f

∗
j ). But this contradicts that by assumption,

f∗
j = f i for some i < l with ¬κD(fi).

Subclaim 2.19. It must be the case that ṽ = ∅.

Proof of subclaim. By the previous two claims, all c∗j are of the form c(x∗
j )

i∗j . Therefore,

c(ṽ)(m) =m

for all m ∈ F̃ . But this is only possible if ṽ reduces to ∅ in F
(
N2
)
because C is cofinitary

and c is injective.

With this we reach a contradiction, since by assumption, ṽ is a nontrivial subword of the

word v obtained by reducing w∗.
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We have shown that w∗ reduces to ∅. With the next claim, we reach the desired

contradiction and finish the proof of the proposition.

Claim 2.20. It must be the case that already w = ∅.
Proof of claim. Suppose otherwise, we first consider the case that w∗ contains a subword

of the form

(f∗
j )

−1f∗
j

for some j < l. By the definition of ċ this subword can only arise via substitution (in the

path of elements of Y ) of a subword of w of the form

(x∗
j )

−1x∗
j

(substituting each ċ(x∗
j ) by f∗

j ) which is impossible as we have assumed no such subwords

occur in w ; or via substitution from a subword of w of the form

x∗
jx

∗
j , (25)

substituting ċ(x∗
j ) on the right-hand side by f∗

j , and substituting ċ(x∗
j ) on the left-hand

side by c(x∗
j )(f

∗
j )

−1. Therefore, the subword (25) of w via substitution gives rise to the

following subword of w∗:

c(x∗
j )(f

∗
j )

−1f∗
j . (26)

But since w∗ reduces to ∅ by Claim 2.15, the occurrence of c(x∗
j ) on the left-hand side in

(26) must cancel, so the word in (26) can be extended to a subword of w of the form

c(x∗
j )

−1c(x∗
j )(f

∗
j )

−1f∗
j

with the left-most letter coming from a substitution of (x∗
j )

−1 by c(x∗
j )

−1 or c(x∗
j )

−2.

Therefore, the letter immediately to the left of the subword (25) in w must be (x∗
j )

−1. This

is a contradiction since we have assumed w to be reduced, so no adjacent x∗
j and (x∗

j )
−1

occur in w.

Next, let us consider the case that w∗ has a subword of the form c(x∗
j )

−1c(x∗
j ). Such a

word can only arise from substituting (x∗
j )

−1x∗
j via the definition of ċ, so again, this stands

in contradiction to the assumption that w be reduced.

Analogous arguments go through by symmetry if w∗ has a subword of the form f∗
j (f

∗
j )

−1

or c(x∗
j )c(x

∗
j )

−1.

We have shown it must have been the case that w = ∅ and l= 0, that is, c= idN to begin

with; since c was an arbitrary element of Ċ such that fix(c) is infinite, Ċ is cofinitary.

Corollary 2.21. There is an MCG.

Remark 2.22. It is of course possible to give an upper bound for the definitional

complexity of the group obtained in this section; namely, a Boolean combination of Σ1
2

statements. Since we will construct an MCG of much lower definitional complexity in the

next section, we shall not dwell on this point.

§3. More complicated construction, simpler definition

The following theorem was shown first by Horowitz and Shelah in [11]. In this section,

we finish our proof of their result and also improve their result.
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Theorem 3.1. There is a Borel (in fact, Δ1
1) MCG.

One of the ways in which the proof given in the previous section differs from Horowitz

and Shelah’s is that it can be almost effortlessly improved to show Theorem 1, that is, the

following.

Theorem 3.2. There is a finite level Borel (in fact, Σ0
<ω, i.e., arithmetical) MCG.

These results are provable in ZF; this is obviously true from the proof we give below (but

even if we were to give a proof appealing to AC, this appeal could be removed post facto

by the well-known trick of running the proof in L and using absoluteness).

For the purpose of a quick proof of Theorem 3.1, let us make the additional assumption

that ξ was chosen to be a bijection between S∞ and C (this is not necessary for the proof, but

convenient). We show that there exists a map D: S∞ → N[∞] whose graph is Δ1
1 and even

arithmetical, satisfying (I)–(IV) as in said Proposition, and so that in addition, κ(D(f),f)

as defined in (8) becomes a Borel—in fact, an arithmetical—property of f.

The group Ċ defined from this re-defined map D: S∞ →P(N) just as in Proposition 2.8

is then maximal cofinitary, by said proposition; moreover, it is now easy to see that Ċ is

Borel.

In fact, we show the following.

Proposition 3.3. Suppose we have maps ξ and D satisfying all the assumptions of

Proposition 2.8 and so that in addition, first, both D: S∞ → P(N) and ξ : S∞ → C are

analytic maps, second, ξ is a bijection, and third, we can find a Δ1
1 relation λ(X,f) on

P(N)×S∞ such that for all f ∈ S∞,

λ(D(f),f) ⇐⇒ κ(D(f),f). (27)

Then the group Ċ defined as in Proposition 2.8 by (10) and (13), is Δ1
1 and an MCG.

Proof. That Ċ as in the present proposition is an MCG holds because it also satisfies

the assumptions of Proposition 2.8; we show that Ċ is Δ1
1.

By (27), by definition of Ċ, and because ξ is surjective, it is obvious that for all h ∈ S∞,

h ∈ Ċ ⇐⇒ (∃l ∈ N)(∃g0, . . . ,gl ∈ S∞)
(
∃i0, . . . , il ∈ {1,−1}

)
h= (gl)

il . . .(g0)
i0∧

(∃f0, . . . ,fl ∈ S∞)
(
∃D0, . . . ,Dl ∈ P(N)

)
(∀i≤ l)

Di =D(fi)∧
[(
λ(Di,fi)∧gi = ξ(fi)

)
∨(

¬λ(Di,fi)∧gi = ξ(fi)�Di fi
)]
. (28)

Since λ(Di,fi) is Δ
1
1, and since the relations

h= (gl)
il . . .(g0)

i0 ,

gi = ξ(fi),

gi = ξ(fi)�Di fi,

are arithmetic—in fact, Π0
1—in h and since the map D is a Σ1

1, clearly, the formula to the

right of “⇐⇒ ” in (28) is Σ1
1.

By maximality of Ċ it holds that for any h ∈ S∞,

h /∈ Ċ ⇐⇒ (∃g0, . . . ,gl ∈ NN)(∀j ≤ l) gj ∈ Ċ∧
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(∃i1, . . . , il) fix
(
glh

il . . .hi1g0
)
is infinite,

and so clearly Ċ is also Π1
1. Thus, Ċ is Δ1

1.

We next show that a map D: S∞ →P(N) as in the previous proposition exists.

The construction given in the proof of Lemma 2.12 is not sufficient here for two reasons:

First, there is no indication of how we might find the predicate λ. Second, we did not pay

close attention to definability, in particular in how certain homogeneous sets were chosen.

We now give a similar construction, verifying that the same choice can be made in a Σ1
1(f)

fashion—in fact, arithmetically-in-f. In fact, this same (second) version of D: S∞ →P(N)

is used in both Propositions 3.3 and 3.7, that is, we re-use it in the construction of an

arithmetical MCG.

We shall use the following two lemmas:

Lemma 3.4. Suppose we are given D ⊆ N and a partial order ≺ on D. There is an

infinite, uniformly arithmetical-in-(D,≺) set H = H(D,≺) ⊆ D which is ≺-homogeneous

(i.e., totally ordered by ≺ or consisting of pairwise ≺-incomparable elements).

Proof. Define the predicate T = T (D,≺) by

T :⇐⇒
(
∀n ∈D

)(
∃n′ ∈D \ (n+1)

)(
∀n′′ ∈D \ (n′+1)

)
n′ ≺ n′′. (29)

Clearly this predicate is arithmetical in (≺,D). (The letter T , i.e., “T” in script type stands

for tangled.)

We can now define H =H(≺,D) by distinguishing two cases:

Case 1 T holds. In this case, we can fix n0 such that(
∀n′ ∈D \ (n0+1)

)(
∃n′′ ∈D \ (n′+1)

)
n′ ≺ n′′.

It is therefore easy to pick an infinite subset of D consisting of pairwise ≺-comparable

elements. Define m0,m1, . . . by induction as follows:

m0 =minD,

mj+1 = least m ∈D such that mj ≺m,

and let

H := {mj | j ∈ N}.

Case 2 T fails. In this case, it is easy to pick a subset of D consisting of pairwise

≺-incomparable elements. Define m0,m1, . . . by induction as follows:

m0 =minD,

mj+1 = least m such that
(
∀m′ ∈D \m+1

)
mj 	≺m′,

and again let

H := {mj | j ∈ N}.

Clearly, H as constructed above is arithmetical in (D,≺): The predicate T is Π0
3(D,≺);

and the construction of sequences in Case 1 and Case 2 are easily seen to be arithmetical

in (D,≺).
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We now refine the construction of D from Lemma 2.12, paying closer attention to

definability.

Given f ∈ S∞, we already know D2(f) is arithmetical in f. By the previous lemma, since

≺# is recursive, we can find an infinite set D3(f)⊆D2(f) which is uniformly arithmetical

in f and such that f [D3(f)] is ≺#-homogeneous. In other words, we can choose the

map D3 : S∞ → P(N) to be arithmetical. Repeating the same argument, we can find an

arithmetical map D4 : S∞ →P(N) such that D4(f)⊆D3(f) is infinite and f [D4(f)] is ≺f -

homogeneous.

The predicate “hf exists”—that is, (17)—holds of f if and only if f [D4(f)] is totally

ordered by ≺f . Thus the predicate “hf exists” is obviously arithmetical in f. An analogous

argument shows the predicate “wf exists” to be arithmetical in f.

We now verify that the definition of the semaphore is also arithmetical. Let us suppose

for the moment that hf and wf exist.

The relation hf (k) = l is arithmetical in f since

hf (k) = l ⇐⇒
(
∃m ∈D3(f)

)
(∃h̄ ∈ <ωN) f(m) ∈ I#(h̄)∧ h̄(k) = l.

Similarly, the relation r∞n (wf ) = w̄ is arithmetical in f since

r∞n (wf ) = w̄ ⇐⇒ (∃m0 ∈ N)
(
∀m ∈D4(f)\m0

)
(rn ◦w)

(
m,hf (m)

)
= w̄

and because hf is arithmetical in f. Now a glance at the definition of ȳhf ,wf suffices to

see that this sequence is arithmetical in
(
D2(f),D4(f),wf ,hf ,f

)
Since these are are all

arithmetical in f, so is ȳhf ,wf . We conclude that D5(f) can be constructed in an arithmetical-

in-f manner.

We thus have constructed a map D5 : S∞ → P(N) as in Lemma 2.12 but which

furthermore is arithmetical. We now arrange that there is a predicate λ as in (27) satisfying

the requirements of Proposition 3.3. Repeating the argument from the beginning of the

previous paragraph one last time, find an arithmetical map D6 : S∞ → P(N) such that

D6(f)⊆D5(f) is infinite and ≺f -homogeneous. Finally, for any f ∈ S∞ define

D(f) = D6(f).

Lemma 3.5. With this choice of map D: S∞ →P(N), the following are equivalent:

1. There is �x ∈ F
(
N2
)
such that f�D(f) = c(�x)�D(f).

2.
(
∀n,n′ ∈D(f)

)
n≺fn

′.

3. κD(f), that is, there is X ∈D(f)
[∞]

and �x ∈ F
(
N2
)
such that f�X = c(�x)�X.

4.
(
∃n,n′ ∈D(f)

)
n≺fn

′.

5. T
(
D(f),≺f

)
fails.

Proof. Noting that either D(f) is pairwise ≺f -comparable or pairwise ≺f -incomparable,

and that the second possibility holds if and only if T
(
D(f),≺f

)
holds, the above

equivalences are obvious by the definition of ≺f .

Thus, letting

λ(D,f) :⇐⇒ (∀n,n′ ∈D) n≺fn
′, (30)
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all the requirements of Proposition 3.3 hold. The reader may find it helpful to note that

alternatively, letting λ(D,f) : ⇐⇒ (∃n,n′ ∈ D) n≺fn
′ would achieve the same goal (this

formula being equivalent in the relevant case, i.e., when D=D(f), by the previous lemma).

By the previous lemma, we have constructed a map satisfying all the requirements of

Proposition 3.3.

Corollary 3.6. The map

D: S∞ →P(N),

f �→D(f)

constructed above satisfies all the requirements of Proposition 3.3.

Proof. Requirements (I)–(IV) hold because D(f) ⊆ D5(f) and by the arguments from

the previous section. By the previous lemma, we moreover have (∀f ∈ S∞) λ(D(f),f) ⇐⇒
κD(f). Also, λ(D,f) is Π0

1, in particular, it is Δ1
1. Finally, by construction, f �→ D(f) is

analytical, in particular it is Δ1
1.

It is, in fact, not hard to adapt the construction given above in this section so that

the resulting MCG Ċ is arithmetical. That is, it can be given a definition in second-order

arithmetical by a formula involving only finitely many quantifiers over natural numbers.6

Proposition 3.7. There is an finite level Borel (in fact, arithmetical) MCG which,

moreover, is isomorphic to the group F
(
N2
)
.

Remark 3.8. In the following proof (see (32)), the reader will finally see why in the

definition of D1(f) in (15) on page e.up, we made sure that mn /∈D1(f). This is convenient

since, in notation used below in the proof, it allows us to easily recover wh from h ∈ Ċ.

In this proof, we shall finally make use of the fact that 〈Gn | n ∈ N〉, 〈cn | n ∈ N〉,
〈In | n ∈ N〉, and c, from §2.1 are arithmetically definable (in fact, they are effectively

computable).

Proof. Assume in addition to the requirements stated in Proposition 2.8, that ran(χ) is

closed and χ is continuous and that, moreover, its graph is Π0
1 (or at least, ran(χ) and the

graph of χ are arithmetical). We have already given a suggestion for an adequate function

χ so that all of the above is true at the beginning of §2.3, just after (9). Finally (recalling

that mn = min(In)), we assume that D(f)∩{mn | n ∈ N} = ∅ for each f ∈ S∞, as indeed

does hold for the map D we have constructed above.

Again, we define an MCG Ċ as in (13) but with κ replaced by λ as defined in (30), and

of course, with the map D as defined on page page.D.2:

h ∈ Ċ def⇐⇒ (∃l ∈ N)(∃g0, . . . ,gl ∈ S∞)
(
∃i0, . . . , il ∈ {1,−1}

)
h= (gl)

il . . .(g0)
i0∧

(∀i≤ l)

{
gi ∈ C0 \ ran(ξ)∨

(∃fi ∈ S∞)(∀i≤ l)
[(
λ(D(fi),fi)∧gi = ξ(fi)

)
∨

(
¬λ(D(fi),fi)∧gi = ξ(fi)�D(fi) fi

)]}
. (31)

6 Again, in fact two quantifiers over N suffice (see Theorem 4.2 [without proof]).
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Just as in Proposition 3.3, since Ċ satisfies all the requirements of Proposition 2.8 it is an

MCG. We now demonstrate how to find an arithmetical definition of this group Ċ. The idea
is that a witness to every quantifier in (31), if such a witness exists at all, is definable from h

by an arithmetical relation. Thus, all second-order quantifiers can be eliminated from (31).

It may help at this point to slightly change perspectives regarding the construction of Ċ0
again and recall the surjective group homomorphism

ċ: F
(
N2
)
→ Ċ

defined in (11). For the readers convenience, we rephrase the definition: For x ∈ N2,

ċ(x) :=

⎧⎪⎨
⎪⎩
c(x), if x /∈ ran(χ),

c(x), if x ∈ ran(χ) and λ(D(f),f), where f := χ−1(x),

ξ(f)�D(f) f, if x ∈ ran(χ) and ¬λ(D(f),f), where f := χ−1(x).

Not that in the second line, c(x) = ξ(f). We stress again that (12) holds, that is,

Ċ = ran(ċ).

In fact, ċ is also injective, as will be seen in the remainder of this proof.

Let us make some further definitions: Let us say h is a candidate if and only if (∃n0 ∈
N) φcan(h,n0), where

φcan(h,n0)
def⇐⇒ (∀n,n′ ∈ N s.t. n,n′ ≥ n0)

[
n < n′ ⇒mn≺hmn′

]
. (32)

Clearly, h is a candidate if and only if there is w ∈ F
(
N2
)
such that

(∃n0 ∈ N) c(w) agrees with h on {mn | n ∈ N ∧ n≥ n0}. (33)

Here, we use that {mn | n ∈ N ∧ n≥ n0} is never affected by surgery (see Remark 3.8).

Whenever h ∈ S∞ is a candidate, let7

wh := the unique word w ∈ F
(
N2
)
satisfying (33),

l(h) := lh
(
wh

)
,

and find xh
0 , . . . ,x

h
l ∈ N2 and ih0 , . . . , i

h
l ∈ {1,−1} such that

wh = (xh
l )

ihl . . .(xh
0 )

ih0 ,

where l= l(h). Moreover, for each i≤ lh, if it should be the case that xh
i ∈ ran(χ), we define

fh
i := χ−1(xh

i ).

Finally, define ghi to be ċ(xh
i ), that is,

ghi =

⎧⎪⎨
⎪⎩
χ(xh

i ), if xh
i /∈ ran(χ),

ξ(fh
i )
(
= χ(xh

i )
)
, if xh

i ∈ ran(χ) and λ(D(fh
i ),f

h
i ),

ξ(fh
i )�D(fh

i ) f
h
i , if xh

i ∈ ran(χ) and ¬λ(D(fh
i ),f

h
i ).

7 This is very different from wf in the proof of Lemma 2.12. The slogan is, wh codes h, while wf catches
h in the context of said proof.
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With these definitions, it is straightforward to verify that

h ∈ Ċ ⇐⇒ h is a candidate and h= (ghl(h))
ihl(h) . . .(gh0 )

ih0 . (34)

It remains to verify that this is an arithmetical property of h. While this is almost immediate

from the construction, we give some details for the convenience of the reader.

Claim 3.9. The relation φcan on NN × N is arithmetical, and wh is uniformly

arithmetical in h. Moreover, there are arithmetical relations L on NN×N and I on NN×N2

such that

L(h, l) ⇐⇒ h is a candidate and l = l(h),

I(h,j, i) ⇐⇒ (∃l) L(j, l)∧ j < l∧ ihj = i.

Proof of claim. Since �I, cn, and Gn are computable from n, the set

{(n,w) | n ∈ N ∧ w = w
(
mn,h(mn)

)
}

is computable in h. Thus, also ≺h is Δ0
1 in h. A glance at (32) shows that φcan is Π0

1 in h.

Finally, that wh is uniformly Σ0
2 in h follows from the fact that

rn(w
h) = w ⇐⇒ φcan(n,h) ∧ cn(w) = w

(
mn,h(mn)

)
.

The second part of the claim follows. Alternatively, take L(h, l) to be

(∃n ∈ N)
[
φcan(h,n) ∧ l = lh

(
w(mn,h(mn))

)]
.

This is arithmetical (even Σ0
2) in h for the same reasons as cited in the previous paragraph.

Similarly for I.

Claim 3.10. There are arithmetical relations Rx,Rf , and Rg on NN×N3 such that for

any candidate h ∈ S∞ and j ≤ l(h),

Rx(h,j,m,n) ⇐⇒ xh
j (m) = n,

Rf (h,j,m,n) ⇐⇒ xh
j ∈ ran(χ) ∧ fh

j (m) = n,

Rg(h,j,m,n) ⇐⇒ ghj (m) = n.

Proof of claim. The first equivalence follows from the previous claim. Alternatively, one

can easily verify that Rx(h,j,m,n) is equivalent to

(∃n′ ∈ N)(∃i ∈ {−1,1}
[
φcan(h,n

′) ∧ cn′

(
w
(
mn′ ,h(mn′)

))
j
= xi ∧ x(m) = n

]
.

That Rf is also arithmetical follows from our assumption (at the beginning of the proof

of Proposition 3.7) that χ is effectively continuous, injective, and has arithmetical (even

closed) range. That Rg is arithmetical follows from the definition of surgery, from the fact

that D(f) is arithmetical in f, from the fact that λ(D,f) is arithmetical in D and f, and from

the fact that arithmetical relations are closed under substitutions. The remaining details

are left to the reader.

Claim 3.11. The unary relation R⊆ NN defined by

R(h)
def⇐⇒

[
h is a candidate and h= (ghl(h))

ihl(h) . . .(gh0 )
ih0
]

is arithmetical.
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Proof of claim. Clearly, R(h) is equivalent to the conjunction of (∃n0 ∈ N) φcan(h,n0)

and

(
∃�n ∈ l(h)+1N

)
�n(0) =m ∧ �n

(
l(h)+1

)
= n ∧

(
∀j ≤ l(h)

)
�n(j+1) =

(
ghj

)ihj (
�n(j)

)
.

This is arithmetical by standard arguments, and by substituting the relations L, I, and Rg

from the previous claims.

This completes the proof that the right-hand side of (34), and hence the MCG defined

by (31), is arithmetical.

Corollary 3.12. Theorem 3.2, a.k.a., Theorem 1 hold.

In fact, as we have claimed in the introduction, Theorem 4.2 below holds, that is, there

is an MCG which is generated by a closed (even Π0
1) subset of S∞.

Remark 3.13. We take a moment to give an incomplete list of differences between the

proofs in this paper and the earlier proof by Horowitz and Shelah in [11]. There may be

further differences that I am not aware of. The main idea of the strategy sketched at the

beginning of §2 is doubtlessly due to Horowitz and Shelah, as is the definition of surgery.

The construction of the map c differs somewhat from theirs; the definitions of D(f) in

every section seem to me different as well, and the corresponding construction in [11] is, I

believe, substantially more complex. Moreover, our use of the formulas κD and especially λ

differs from the approach in [11]; they have a similar case distinction, but their version relies

heavily on details of the proof of the Infinite Ramsey Theorem. Finally, we find explicit

conditions on D and c, as stated in the present paper in several propositions, clarifying.

With these, we find it easy to arrive at an arithmetical group (the group in [11] may well

also be arithmetical).

§4. The open question

It was shown in [14] that no Kσ (i.e., countable union of compact sets) subgroup of S∞
can be maximal cofinitary.

To the following longstanding question, we still do not know the answer:

Question 4.1. Can a closed, or even a Π0
1, subgroup of S∞ be maximal cofinitary?

As has been mentioned several times in this article, with quite a bit more work, one can

show the following (cf. Remark 2.1).

Theorem 4.2. There exists a closed (even Π0
1) subset Ċ0 of S∞ such that the subgroup

Ċ := 〈Ċ0〉S∞ it generates is maximal cofinitary. Moreover, the MCG Ċ is Fσ (even Σ0
2).

If one restricts attention to free MCGs, that is, MCGs which are isomorphic to a free group,

this result is optimal. Since the first version of the present article has been made public,

these results have appeared in Severin Mejak’s thesis [25].
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