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CANONICAL LIFTS OF FAMILIES OF
ELLIPTIC CURVES

JAMES BORGER and LANCE GURNEY

Abstract. We show that the canonical lift construction for ordinary elliptic

curves over perfect fields of characteristic p > 0 extends uniquely to arbitrary

families of ordinary elliptic curves, even over p-adic formal schemes. In partic-

ular, the universal ordinary elliptic curve has a canonical lift. The existence

statement is largely a formal consequence of the universal property of Witt

vectors applied to the moduli space of ordinary elliptic curves, at least with

enough level structure. As an application, we show how this point of view allows

for more formal proofs of recent results of Finotti and Erdoğan.

§1. Introduction

Fix a prime number p. Let W denote the usual, p-typical Witt vector

functor. Let R be a ring in which p is nilpotent, and write S = SpecR.

Let Wn(S) denote SpecWn(R), and let W (S) denote the direct limit

colimnWn(S). We take this limit in the category of sheaves of sets on the

category of affine schemes with respect to the étale topology. One could say

that W (S) is the correct version of SpecW (R), a construction which, as we

discuss below, does not have good properties.

We say an elliptic curve E over S is ordinary when all fibers of E,

necessarily over points of residue characteristic p, are ordinary. For any

morphism f : S′→ S, we write ES′ , or f∗(E), for the base change S′ ×S E
regarded as an elliptic curve over S′ in the evident way.

The purpose of this paper is to prove the following:

Theorem. There is a unique way of lifting ordinary elliptic curves E

over affine schemes S on which p is nilpotent to elliptic curves Ẽ over W (S)

which is compatible with base change in S and has the property that Ẽ admits

a Frobenius lift ψ : Ẽ→ F ∗(Ẽ), where F is the usual Witt vector Frobenius

map F : W (S)→W (S).
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194 J. BORGER AND L. GURNEY

Note that the requirement here that S is affine is only to simplify the

exposition. We remove it below and allow S to be any p-adic formal scheme,

or even what we call a p-adic sheaf. See Section 4 for the final statement of

the theorem and further details.

We call Ẽ the canonical lift of E. In the case S = Spec k where k is a

perfect field of characteristic p, our canonical lift agrees with the usual one

by the remarks in Section 7.1.

We emphasize that not only does this approach to canonical lifts work in

much greater generality than previous ones, but it is also essentially formal.

For remarks on theories of canonical lifts in completely general contexts, see

the epilogue in Section 7.4.

§2. Background on sheaves

In this section and the next, we define W (S), the infinite-length Witt

vector construction when S is a scheme, and even when S is more general.

The reason there is something to do is that while SpecWn(R) is a well-

behaved construction, the naive infinite-length analogue SpecW (R) is not.

For instance, some basic geometric facts like the theorem in Section 3.2 are

not true for the naive construction. Thus, to handle Witt vectors of infinite

length geometrically, one needs some way of retaining the information of

the projective system of the Wn(R) instead of crudely passing to the limit

W (R) = limnWn(R) in the category of rings.

One standard way of doing this is to view W (R) as a topological ring with

the inverse-limit topology, each Wn(R) being discrete. In the special case

where R is a perfect Fp-algebra, this topology is an adic topology with ideal

of definition generated by p. We can therefore consider its formal spectrum

Spf W (R), and in this way, the theory of formal schemes can accommodate

a satisfactory theory of Witt vector constructions of infinite length, as long

as R is perfect. For general rings R, the inverse-limit topology on W (R) is

not an adic topology, and so the theory of formal schemes cannot even get

started.

Another way of proceeding, also standard, is to view SpecWn(R) as a

sheaf of sets on the category of affine schemes, and to define W (SpecR) to

be the direct limit colimn SpecWn(R) in this category. Since all limit and

colimit constructions are as well behaved in categories of sheaves as they are

in the category of sets, there is good reason to be confident in this approach.

Indeed it works without problem and is the one we take.
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There is a second issue in defining W (S), which is how general we should

allow S to be. It will be convenient later if we can allow S to be the moduli

space of ordinary elliptic curves (with sufficient level structure) over rings

on which p is nilpotent. But this does not exist in the category of schemes.

It does exist in the category of formal schemes, where one can construct it

as the ordinary locus in the p-adic completion of the moduli space of all

elliptic curves. However, it also exists in the category of sheaves mentioned

above. Since we will be using this category anyway, it will be simpler to

take that approach and forget about formal schemes entirely. It also has the

side benefit of working for objects S much more general than p-adic formal

schemes.

2.1 Objects representable over sheaves

Let Aff denote the category of affine schemes, and let Aff∼ denote the

category of sheaves of sets on Aff with respect to the étale topology. (See

SGA4 [2, exp. VII]) Any scheme S can be viewed as an object of Aff∼ via

the functor it represents SpecR 7→Hom(SpecR, S). This is a fully faithful

embedding and we regard the category of schemes as a full subcategory of

Aff∼ in this way without further comment.

For any S ∈ Aff∼, let Aff∼S denote the category of sheavesX equipped with

a map X → S, where the morphisms are morphisms over S. If T → S is a

morphism, and X ∈ Aff∼S , let XT denote the sheaf T ×S X together with the

morphism prT : T ×S X → T . We can then define familiar scheme-theoretic

structures on objects X over S by using affine test schemes. For example, an

elliptic curve over S is a sheaf X over S together with a compatible choice of

an elliptic curve structure on XT for every morphism T → S from an affine

scheme T . (To be clear, an elliptic curve structure on XT is by definition

an isomorphism to XT from the sheaf represented by a usual elliptic curve

over T ; and the compatibility condition is that for any morphism T ′→ T

of affine schemes the isomorphism (XT )T ′
∼→XT ′ is a morphism of usual

elliptic curves over T ′.) Note that it also follows that the sheaf X over S

admits a unique group structure (over S) inducing the group structures on

the elliptic curves XT over T .

Descent theory for Aff∼ goes through for general sheaf-theoretic reasons.

Suppose S′→ S is an epimorphism in Aff∼; in other words, every section

of S lifts étale locally to one of S′. Then any object of Aff∼S′ equipped with

descent data to S descends to a unique (up to unique isomorphism) object

of Aff∼ over S. This remains true if we are interested in objects X with
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additional structure, as long as that structure is of an étale-local nature on

affine schemes. This is the case for ordinary elliptic curves, as they satisfy

effective descent for the étale topology, and is the only example we need.

There is a generalization of this which we also use. Suppose we are

given a presentation of an object S ∈ Aff∼ as a colimit: colimi Si
∼→ S.

Then the category of objects over colimi Si is equivalent to the category

of compatible families of objects over the Si. Indeed, an object X over

S gives rise to a compatible family of objects Xi = Si ×S X over the Si,

where compatible means that we are given morphisms Xi→Xj lying over

each morphism Si→ Sj such that the induced maps Xi→ Si ×Sj Xj are

isomorphisms. Conversely, to such a compatible family Xi we associate

the object X = colimi Xi. As above, the equivalence between objects over

a colimit and compatible families also holds for objects with additional

structure of an étale-local nature, such as ordinary elliptic curves. For

general reasons, any sheaf S admits such a presentation where each Si is an

affine scheme, and so an ordinary elliptic curve (say) over S is equivalent

to a compatible family of ordinary elliptic curves over this diagram of affine

schemes. More importantly, one often considers objects S which are given

as the colimit of some specific family of affine schemes, and then one can

describe an elliptic curve over S as a compatible family of elliptic curves

over this specific family. So an elliptic curve over an object given in these

terms really is an accessible object.

2.2 p-adic sheaves

We say that a sheaf S ∈ Aff∼ is p-adic if it is isomorphic to a colimit

colimi Si of affine schemes Si on which p is nilpotent. (We require nothing

of the indexing diagram of the colimit other than that it is small. In other

language, this means that it is a set and not a proper class.) For example, a

scheme is p-adic if and only if p is locally nilpotent on it. In fact, any p-adic

sheaf S has the property that p is nilpotent on any affine scheme admitting

a morphism to S (and the converse is true up to issues of set-theoretic size

just mentioned).

If T is a scheme, put

Tn = Spec Z/pn+1Z×Spec Z T.

Then we call T̂ = colimn Tn the p-adic completion of T . It is a p-adic sheaf

because each Tn is a scheme over Z/pn+1Z and hence a colimit of affine

schemes over Z/pn+1Z.
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We can do the same with any p-adic formal scheme T , and this defines

a fully faithful embedding of the category of p-adic formal schemes into the

category of p-adic sheaves.

§3. Background on Witt vectors

3.1 Universal property of Witt vectors for rings

Let A be a p-torsion-free ring with an endomorphism ψ : A→A such that

ψ(a)≡ ap mod pA. Let R be any ring such that W (R) is p-torsion-free. (This

does not hold in general, but it does hold at two opposite extremes—when

R is a perfect Fp-algebra and when R is p-torsion-free.) Then any ring map

g : A→R lifts to a unique ring map g̃

A
g

��

g̃
// W (R)

||

R

which is Frobenius equivariant, meaning that F ◦ g̃ = g̃ ◦ ψ. In other words,

the image of g̃(a) under the ghost map W (R)→RN is

(3.1.1) 〈g(a), g(ψ(a)), g(ψ2(a)), . . . 〉.

A proof using the traditional definition of Witt vectors can be found

in Lazard’s book [14, p. 215]. However, we remark that the traditional

definition of Witt vectors will be irrelevant in this paper—it is only the

universal property that matters. So a preferable alternative would be to

take a definition of Witt vectors making the universal property obvious.

For such a development, one can see Joyal [10] for a concise account or

[3, Section 1] for a more extensive one.

Observe that g̃ : A→W (R) agrees with the composition W (g) ◦
ĩdA : A→W (A)→W (R). We can therefore define a canonical map g̃

without any restrictions on R. Indeed, we simply define g̃ =W (g) ◦ ĩdA.

One might call g̃ the canonical lift of g. We emphasize that while we have

dropped all assumptions on R here, we are still assuming A is p-torsion-

free. We also emphasize that while g̃ is a canonically defined Frobenius

equivariant lift of g, without any assumptions on R it might not be the

unique one.

If we now write Y = SpecA, then for any ring R, we have functorial maps

Y (R)→ Y (W (R)) given by g 7→ g̃. In other words, if Y is a p-torsion-free
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moduli space parametrizing objects of some given type, a Frobenius lift on

Y defines a way of canonically lifting objects defined over R to objects over

W (R). We might say that a class of objects has a theory of canonical lifts

whenever their moduli space is p-torsion-free and has a Frobenius lift. (For

a little more along these lines see Section 7.4.) Indeed, this is the principle

we apply below. But we need it in a slightly modified form because in our

example, the Frobenius lift ψ exists only on the p-adic completion of the

moduli space, which is not a scheme, but the p-adic completion of a scheme,

in the sense of Section 2.2. The form of the universal property we need we

be given in Section 3.3.

3.2 Witt vectors for schemes

Write Wn : Aff→ Aff for the functor defined by Wn(SpecR) =

SpecWn(R). The following theorem is fundamental:

Theorem. The functor Wn : Aff→ Aff preserves étale maps, étale

covering families, and étale base change. In particular, Wn is continuous

in the étale topology.

The first general argument was given in van der Kallen [17, (2.4)], but was

written only for the ‘big’ Witt vector functor. For a proof for the p-typical

Witt vector functor considered here, one can see [3, Section 9.2]. One can

also see the earlier paper by Langer and Zink [13, Appendix A]; note that

while the results there are stated only under some finite-type assumptions,

the general case can be deduced by a limiting argument. However, for all

our applications, it is enough to consider Witt vectors of rings in which p

is nilpotent, and in this context the theorems in Langer–Zink do not have

any finiteness assumptions and hence apply without modification.

This allows us to extend Wn to Aff∼, by SGA4 [1, exp. III]. Indeed,

because Wn is continuous, for any sheaf S, the presheaf U 7→ S(Wn(U)), for

any U ∈ Aff, is a sheaf. This defines a functor Wn∗ : Aff∼→ Aff∼, and it has

a left adjoint W ∗n . Finally, W ∗n extends Wn from Aff to Aff∼ in the sense

that we have canonical isomorphisms W ∗n(SpecR)
∼→ SpecWn(R). So from

now on, we often abusively write Wn =W ∗n .

Since Wn : Aff∼→ Aff∼ is a left adjoint, it preserves colimits. Therefore,

any presentation f : colimi SpecRi
∼→ S gives rise to a presentation

Wn(f) : colimi SpecWn(Ri)
∼−→Wn(S).

https://doi.org/10.1017/nmj.2017.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.34


CANONICAL LIFTS OF FAMILIES OF ELLIPTIC CURVES 199

Therefore, by the remarks in Section 2.1, an elliptic curve over Wn(S) can

be understood as a compatible system of elliptic curves over the Wn(Si),

and similarly for any other kind of object having a local nature.

Observe that if S is a p-adic sheaf, then so is Wn(S). Indeed, it is

sufficient (and necessary) to observe that if p is nilpotent in a ring R,

then it is nilpotent in Wn(R). One way to show this is to observe that the

comonad structure map Wm+n(Fp)→Wn(Wm(Fp)) makes Wn(Z/pm+1Z)

into a Z/pm+n+1Z-algebra.

In fact, if S is a scheme on which p is locally nilpotent, then so is Wn(S).

We will not use this below and mention it only for the reader who is more

comfortable with schemes than abstract sheaf theory. As a topological space,

Wn(S) agrees with S, and its structure sheaf OWn(S) is given by the presheaf

U 7→Wn(OS(U)). One way to show this is by using the fact that for any

ring R and any element f ∈R, we have Wn(R[1/f ]) =Wn(R)[1/[f ]], where

[f ] denotes the Teichmüller lift of f . Alternatively, open immersions are

the same as étale monomorphisms and hence are preserved by Wn, by the

theorem above.

Then we define

W (S) = colimnWn(S).

We emphasize that this colimit is taken in Aff∼. Thus W is the left adjoint of

limnWn∗. If S = colimi Si, then we haveW (S) = colimn,iWn(Si). Therefore,

if S is a p-adic sheaf, then so is W (S). But W (S) is typically not a scheme,

even if S is. (For instance, if S = Spec Fp, then W (S) is the colimit of

Spec Z/pn+1Z, which represents the functor sending SpecR to the one-

point set if p is nilpotent in R and to the empty set otherwise. This is

representable by the formal scheme Spf Zp but not by a scheme.) It is,

however, still easy to work with. For example, if T is an affine scheme, then

the set Hom(T, W (S)) is the filtered colimit colimn Hom(T, Wn(S)). (By for

example SGA4 [2, exp. VI, Theorem 1.23(ii) on p. 185]) So if S is a scheme,

for example, then any map T →W (S) factors through the scheme Wn(S)

for some n.

Note that Wn and W preserve epimorphisms in Aff∼, as they are left

adjoints. In particular, if S′→ S is an étale cover of schemes, then W (S′)→
W (S) is an epimorphism, and hence descent is available.

3.3 The universal property of Witt vectors for p-adic sheaves

Let A be a p-torsion-free ring with a Frobenius lift ψ. Let Ym =

SpecA/pm+1A, Ŷ = colimm Ym, as in Section 2.2, and ψ̂ : Ŷ → Ŷ be the
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Frobenius lift induced by ψ. Let S be a p-adic sheaf and let f : S→ Ŷ be a

morphism. Write S = colimi SpecRi, with p nilpotent in each ring Ri. Then

for each i, there exists an mi such that the map SpecRi→ Ŷ factors through

the inclusion Ymi → Ŷ , thus inducing a map A/pmi+1A→Ri. Let g denote

the composition A→A/pmi+1A→Ri, and let g̃ denote the canonical lift as

defined in 3.1. Then for each n, the composition

A
g̃−→W (Ri)−→Wn(Ri)

factors through A→A/pNi,n+1A for some Ni,n (in fact, for any Ni,n >mi

+ n). This defines a compatible family of maps

SpecWn(Ri)−→ SpecA/pNi,n+1 === YNi,n −→ Ŷ ,

and hence, by the universal property of colimits, a map

f̃ : W (S) === colimn,iWn(SpecRi)−→ Ŷ ,

which we again call the canonical lift of f : S→ Ŷ . Note that as with the

previously defined canonical lift maps, the map f̃ is Frobenius equivariant,

which is to say f̃ ◦ ψ̂ = F ◦ f̃ .

§4. Statement of the theorem

We return to the notation of the introduction, where R is a ring in

which p is nilpotent and S = SpecR. Then the usual Witt vector Frobenius

map F : Wn+1(R)→Wn(R) induces functorial maps F : Wn(S)→Wn+1(S),

for any S ∈ Aff∼, and upon taking colimits, maps F : W (S)→W (S). It

also satisfies the relation F (x)≡ r(x)p mod pWn(R), where r : Wn+1(R)→
Wn(R) denotes the usual projection. So the maps F : W (S)→W (S) agree

with the usual pth power Frobenius map on the locus Spec Fp ×Spec Z W (S).

Let us then say that a Frobenius lift on an elliptic curve E over W (S) is

a morphism E→ F ∗(E) of elliptic curves over W (S) restricting to the usual

Frobenius map on Spec Fp ×Spec Z W (S).

Theorem. There is a unique way of lifting ordinary elliptic curves

E over p-adic sheaves S to elliptic curves Ẽ over W (S) such that the

construction E 7→ Ẽ is compatible with base change in S and such that each

Ẽ admits a Frobenius lift.
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We make some remarks to clarify the statement. First, the base-change

condition, which can be written (ES′)
∼ = ẼW (S′) for any map S′→ S, is

more properly expressed as a coherent family of isomorphisms. Second, the

uniqueness statement is to be understood as follows: if E 7→ Ê is any other

such construction, then there is a unique family of isomorphisms Ẽ→ Ê,

where E runs over all ordinary elliptic curves E over all p-adic base sheaves

S, which are Frobenius equivariant and compatible with restriction of the

base S. We emphasize that such a uniqueness statement does not apply to

lifts of a single elliptic curve or even all elliptic curves over a given base

S but only to the family of all elliptic curves over all bases. However, see

Theorem 6.1 for a result in this direction.

§5. Existence

In this section, we construct the canonical lift functor. In the presence

of enough level structure, it is nothing more than the universal property of

Witt vectors applied to the moduli space of ordinary elliptic curves with its

canonical Frobenius lift. In general, we use a descent argument to pass from

the case with level structure to the general setting.

5.1 Existence with level structure

Let Y (N) denote the moduli space of elliptic curves E/S with full level-

N structure ξ : (Z/NZ)2
∼→ E[N ](S). We assume p -N and that N is large

enough to make the moduli problem representable. (So N > 3 is enough.)

In this case, Y (N) is a smooth affine scheme of relative dimension one

over Spec Z[1/N ]. Let T denote the open subscheme of Y (N) which is the

complement of the supersingular locus on the fiber over p, and let Y (N)o

denote its p-adic completion T̂ , in the sense of Section 2.2. Then Y (N)o has

the form colimn SpecAN/p
n+1AN , where AN is p-adically complete and

p-torsion-free. Indeed, if we write Y (N) = SpecR, then AN is the p-adic

completion of R[Q−1], for any subset Q⊂R such that SpecR[Q−1]/(p)

is the ordinary locus of the fiber of Y (N) over p. It follows that AN
is p-torsion-free because R smooth over Z[1/N ] and hence p-torsion-free.

Therefore, it has the form needed to apply the universal property of

Section 3.3.

Recall the standard Frobenius lift ψ on Y (N)o. Let E be an ordinary

elliptic curve over an affine scheme S on which p is nilpotent, and let Ecan

denote its canonical subgroup, the connected component of its p-torsion

subgroup-scheme [11, Chapter 3]. It is a finite flat closed subgroup-scheme
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of E. Let E/Ecan denote the usual quotient (so not the quotient object in

Aff∼, but the quotient with respect to the fppf topology). Thus E/Ecan

is also a family of ordinary elliptic curves over S, and the quotient map

E→ E/Ecan is faithfully flat. Further, if ξ is a level-N structure on E, then

its image ξ̄ in E/Ecan is still a level-N structure. We then let ψ denote

the map Y (N)o→ Y (N)o that, for any S, sends an S-valued point (E, ξ)

to (E/Ecan, ξ̄). It is a Frobenius lift because for ordinary elliptic curves over

Fp-algebras, the connected component of the p-torsion subgroup-scheme

agrees with the kernel of Frobenius.

Now let (E, ξ) be an ordinary elliptic curve with level-N structure over a

p-adic sheaf S. This is the pull-back of the universal object (E , ξu) through

a unique map c : S→ Y (N)o. Since the ring AN is p-torsion-free, we can

apply the universal property of Witt vectors as given in Section 3.3 and

write

c̃ : W (S)→ Y (N)o

for the morphism induced by c. We then let (E, ξ)∼ denote the canonical lift

of (E, ξ), which is to say the pull-back c̃∗((E , ξu)) of the universal elliptic

curve with level-N structure. The assignment

(E, ξ) 7→ (E, ξ)∼

now defines our theory of canonical lifts for elliptic curves with full level-N

structure. We could write (E, ξ)∼ = (Ẽ, ξ̃), but it will not be until the next

section that we know Ẽ is canonically independent of the choice of ξ.

5.2 Existence in general

We use a standard descent argument. So let Y (N, N) denote the moduli

space of elliptic curves with a pair of full level-N structures (ξ1, ξ2). Forget-

ting one or the other defines projections Y (N, N)⇒ Y (N), both which are

finite étale. Now we proceed as we did with Y (N)o. Let Y (N, N)o denote

the p-adic completion of the complement of the supersingular locus on the

fiber over p. Then Y (N, N)o is of the form colimn SpecAN,N/p
n+1AN,N ,

where AN,N is a p-adically complete and p-torsion-free ring, and it has a

Frobenius lift, also denoted ψ, defined by sending an elliptic curve to its

quotient by the canonical subgroup, with the image level structures. This

defines a theory of canonical lifts for elliptic curves with pairs of full level-

N structure. It is compatible with the projections Y (N, N)⇒ Y (N) in the

sense that taking the canonical lift commutes with forgetting each of the
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level structures. This is simply because the Frobenius lift ψ commutes with

the projections.

We can now define the canonical lift of an arbitrary ordinary elliptic

curve E over a p-adic sheaf S. It will in fact be enough to do this for affine

schemes S, as the construction will be compatible with base change along

morphisms of affine schemes, so that if S is an arbitrary p-adic sheaf and

E is an ordinary elliptic curve over S, writing S = colimi Si as a colimit

of affine schemes, we may define Ẽ over W (S) to be colimi(ESi)
∼ over

W (S) = colimiW (Si), as in Section 2.1.

So let E be an ordinary elliptic curve over an affine p-adic scheme S.

Let S′ be the universal cover of S over which E admits a level-N structure

ξ. The covering morphism S′→ S is then finite and étale, and we have a

diagram

S′ ×S S′
c2
//

����

Y (N, N)o

����

S′
c1

// Y (N)o.

Each column has the structure of a groupoid object in the category Aff∼ in

which the displayed projections are the source and target structure maps.

Indeed, S′ ×S S′ is an equivalence-relation object on S′ over S, and hence

it admits a unique groupoid structure over S. On the right column, the

groupoid structure Y (N, N)o over Y (N)o is the one with composition given

by

(E, ξ1, ξ2) ◦ (E′, ξ′1, ξ
′
2) = (E, ξ1, β

∗(ξ′2)),

whenever there is an isomorphism β : (E, ξ2)
∼→ (E′, ξ′1), which is unique

when it exists. With respect to these groupoid structures, this diagram

becomes a morphism of groupoid objects. Because the right column has

Frobenius lifts which are compatible with the projections, the universal

property of Witt vectors then gives us a diagram

W (S′ ×S S′)
c̃2
//

����

Y (N, N)o

����

W (S′)
c̃1

// Y (N)o.
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By the theorem in Section 3.2, we have

W (S′ ×S S′) = colimnWn(S′ ×S S′) = colimnWn(S′)×Wn(S) Wn(S′)

= W (S′)×W (S) W (S′),

and so the diagram above can be identified with

W (S′)×W (S) W (S′) //

����

Y (N, N)o

����

W (S′) // Y (N)o,

which is easily seen to be a morphism of groupoid objects again. In

other words, there is a family over W (S′) equipped with descent data

to W (S). Since W preserves epimorphisms, as explained above, the map

W (S′)→W (S) is an effective descent morphism for elliptic curves. So we

can define Ẽ to be the descended object over W (S). It is well defined up

to unique isomorphism, in the usual sense. As remarked earlier, it is at

this point clear that the construction E/S 7→ Ẽ/W (S) for affine schemes

S is compatible with base change and therefore can be extended to any

ordinary elliptic curve over any p-adic sheaf S and we do so without further

comment.

Our construction of the canonical lift Ẽ appears to depend on the

auxiliary choice of the level N . One could easily show at this point that

it does not, up to canonical isomorphism, but this is a consequence of the

uniqueness statement proved in Section 6, and there is no need to establish

it earlier.

5.3 Remark: a stack-theoretic interpretation

The language of stacks is well-suited for expressing the descent argument

above. For simplicity, we explain it for Witt vectors of finite length.

Given a stack X, let Wn∗(X) denote the fibered category sending

any affine scheme S to the category X(Wn(S)). This is often called the

arithmetic jet space or the Greenberg transform of X. It is straightforward

to show that Wn∗ sends affine schemes to affine schemes, that it is a right

adjoint and hence sends groupoid objects to groupoid objects, and that

it preserves étale morphisms. (See [4].) Finally, by the theorem in 3.2 the

functor Wn is continuous in the étale topology. It then follows for general

reasons that Wn∗ takes stacks to stacks. (See [16, Tag 04WC].)
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The compatible Frobenius lifts on Y (N)o and Y (N, N)o can then be

packaged as a morphism of étale groupoid objects

Y (N, N)o //

����

Wn∗(Y (N, N)o)

����

Y (N)o // Wn∗(Y (N)o).

It therefore induces a morphism (unique up to unique isomorphism) of the

quotient stacks

Y (N, N)o //

����

Wn∗(Y (N, N)o)

����

Y (N)o //

��

Wn∗(Y (N)o)

��

Y (1)o // Wn∗(Y (1)o).

This morphism of stacks is then nothing more than the family of canonical

lift functors, truncated at length n. The image of an elliptic curve E over S

is the elliptic curve ẼWn(S) over Wn(S).

It is worth noting that Buium’s work on differential modular forms [6]

also touches on the connection between canonical lifts, moduli spaces, and

arithmetic jet spaces.

5.4 Frobenius lifts

In this section, we define isomorphisms

ηE : Ẽ/Ẽcan ∼−→ F ∗(Ẽ),

where F denotes the Frobenius map W (S)→W (S), such that the compo-

sition

Ẽ −→ Ẽ/Ẽcan ∼−→ F ∗(Ẽ)

with the quotient map is a Frobenius lift, in the sense of Section 4. First

observe that such an isomorphism ηE , if it exists, is necessarily unique.
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Indeed, to show two isomorphisms with the property above agree, it is

enough to show they agree after base change to any Wn(Si), where Si is any

affine scheme mapping to S on which p is nilpotent; but then the difference

of two such maps would be a map of elliptic curves which is zero over

Spec Fp ×Spec Z Wn(Si), and hence zero over all of Wn(Si) by the rigidity

theorem [12, Theorem 2.4.2, p. 76].

Therefore, local existence on the base will imply global existence. In

particular, we may assume that E admits a level-N structure and then,

by base change, that S = Y (N)o and that E is the universal curve E .

The classifying morphism c= ĩd: W (Y (N)o)→ Y (N)o for Ẽ is Frobenius

equivariant, by construction. In other words, there is a unique identification

c∗ψ∗(E ) = ψ∗F ∗(E ) compatible with the level structure. We also have

ψ∗(E ) = E /E can, by the definition of ψ. Thus we have identifications

Ẽ /Ẽ can = c∗(E /E can) = c∗ψ∗(E ) = F ∗c∗(E ) = F ∗(Ẽ )

which are compatible with the level structure (and hence unique). Finally,

the composition Ẽ → Ẽ /Ẽ can = F ∗(Ẽ ) reduces to the relative pth power

Frobenius map modulo p because, writing Ẽ0 = Spec Fp ×Spec Z Ẽ , the actual

Frobenius map Ẽ0→ Fr∗(Ẽ0) has kernel Ẽ can
0 and is compatible with the level

structure.

From the stack-theoretic point of view, the map ηE can be viewed as

an invertible natural transformation ψ ◦ c→ c ◦ F and hence as providing a

Frobenius equivariant structure on the morphism c : W (S)→ Y (1)o.

5.5 Remark: avoiding abstract sheaf theory

It is possible to avoid abstract sheaf theory by working with compatible

systems of elliptic curves. Indeed, as explained in Sections 2.1 and 3.2, an

elliptic curve over W (S), where S is a scheme on which p is nilpotent, is

equivalent to a compatible family of elliptic curves over the Wn(S), which

are also schemes on which p is nilpotent (and even of finite type over Zp if

S is). Thus the canonical lift Ẽ can be viewed as a compatible system of

elliptic curves Ẽn over the schemes Wn(S), which are not much harder to

understand than S itself.

Of course one could construct this compatible system directly, without

going through Witt vectors of infinite length. For each n, the truncated

canonical lift Ẽn is constructed exactly as we did above with Witt vectors

of infinite length but using Wn everywhere instead of W . One then shows
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directly that the Ẽn form a compatible system, and we never have to leave

the category of schemes. The Frobenius morphism then becomes a family

of morphisms

Ẽn −→ Ẽn/Ẽ
can
n

∼−→ F ∗(Ẽn+1)

of elliptic curves over the Wn(S), where F now denotes the truncated Witt

vector Frobenius map Wn(S)→Wn+1(S).

§6. Uniqueness

To prove the uniqueness part of the theorem, we need the following result

in the particular case of the universal elliptic curve. But since the result is

just as easy to prove in a more general form, we do that.

Theorem 6.1. Let R be a p-adically complete ring such that W (R) is p-

torsion-free. Let S = colimn SpecR/pn+1R, and let E be an ordinary elliptic

curve over S. Suppose X1 and X2 are lifts of E to W (S) with Frobenius

lifts ψ1 and ψ2. Then there is a unique Frobenius equivariant isomorphism

β : X1→X2 restricting to the identity on E.

We recall again that W (R) is p-torsion-free if R is either p-torsion-free or

a perfect Fp-algebra. Also note that by formal GAGA, elliptic curves over

S are equivalent to elliptic curves over SpecR.

Proof. The Frobenius lifts are morphisms Xi→ F ∗(Xi) of elliptic curves

over W (S) which reduce to the Frobenius map modulo p, and hence are

(representable and) flat of degree p, by rigidity [12, Theorem 2.4.2, p. 76].

Therefore, the kernel is a (representable) finite flat lift of the kernel of the

Frobenius map and hence equals the canonical subgroup. Thus the Frobenius

lifts ψi induce isomorphisms ψ̄i : Xi/X
can
i

∼→ F ∗(Xi).

We first consider the case where E admits a level-N structure ξ. Let ξi
denote the unique lift of ξ to Xi, and let αi : W (S)→ Y (N)o denote the

classifying map for (Xi, ξi). Now observe that the isomorphisms ψ̄i must

preserve the level structure, whereXi/X
can
i is given the image level structure

and F ∗(Xi) is given the pull-back level structure. Indeed, consider the

elliptic curves X̄i = Spec Fp ×Spec Z Xi over Spec Fp ×Spec Z W (S). Because

p -N , the N -torsion is finite étale. Therefore, the Frobenius map X̄i→
Fr∗S(X̄i) preserves the level structure and, again because the N -torsion is

finite étale, so does any lift of the Frobenius map. In particular, the maps

ψ̄i preserve it.
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It follows that the elliptic curves Xi/X
can
i and F ∗(Xi) have the same

classifying map W (S)→ Y (N)o. The classifying map for Xi/X
can
i is ψ ◦ αi,

by the definition of ψ, and that for F ∗(Xi) is αi ◦ F . Therefore, we have

ψ ◦ αi = αi ◦ F , which is to say that the maps αi :W (S)→ Y (N)o commute

with the Frobenius lifts.

But at the same time, since both (Xi, ξi) lift (E, ξ), the two compositions

S // W (S)
α1
//

α2

// Y (N)o

agree. Therefore, writing Y (N)o = colimn SpecA/pn+1A with A p-adically

complete, we see that the two compositions

A
α∗1
//

α∗2

// W (R) // R

agree. Further, the maps α∗1 and α∗2 are Frobenius equivariant because α1

and α2 are. Since A and W (R) are p-torsion-free, the universal property of

Witt vectors implies α∗1 = α∗2 and hence α1 = α2.

When E is arbitrary, the existence and uniqueness of β follow formally

because étale locally β exists and is unique. We write out the details. Let

S′ denote the universal étale cover of S over which E admits a level-N

structure. Write E′ = S′ ×S E and X ′i =W (S′)×W (S) Ei. Then each X ′i is a

lift of E′ with a Frobenius lift ψ′i = F × ψi. Since each X ′i also admits a level-

N structure, the construction above gives a canonical morphism β′ : X ′1→
X ′2 (and hence in fact a unique one, because N is large) commuting with

the Frobenius lifts ψ′i. Further, β is equivariant with respect to descent

data. Indeed, write S′′ = S′ ×S S′ and X ′′i =W (S′′)×W (S) X. Then each

X ′′i is a lift of S′′ ×S E with Frobenius lift ψ′′i = F × ψi. Therefore, there is

a unique Frobenius equivariant morphism β′′ : X ′′1 →X ′′2 . In particular, the

two restrictions of β′ to W (S′′) agree, which is to say that β′ is equivariant

with respect to descent data.

6.2 Uniqueness of the canonical lift functor

Suppose we have an assignment E 7→ Ê, sending elliptic curves E/S to

elliptic curves Ê/W (S) with a Frobenius lift which is compatible with

change of the base S. To give an isomorphism Ê→ Ẽ, it is enough give

isomorphisms locally on S which are compatible with change of S. Therefore,
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we may assume E admits a level-N structure. Let d : S→ Y (N)o denote the

classifying morphism of E, and let W (d) : W (S)→W (Y (N)o) denote the

induced morphism. Now since we have Y (N)o = colimn SpecAN/p
n+1AN ,

where AN is p-adically complete and p-torsion-free, we can apply the

theorem above to the universal ordinary elliptic curve E over Y (N)o.

Therefore, there is a unique Frobenius equivariant isomorphism Ê → Ẽ

restricting to the identity on E . Since the constructions E 7→ Ê and E 7→ Ẽ

are compatible with restriction of S (in the first case by assumption and in

the second case by Section 5), the family of morphisms

Ê ===W (d)∗(Ê )
∼−→W (d)∗(Ẽ ) === Ẽ,

is the unique family of Frobenius equivariant isomorphisms Ê→ Ẽ which is

compatible with restriction of S.

In particular, the functor E 7→ Ẽ constructed in Section 5 is independent

of the choice of the level N , up to unique isomorphism.

§7. Remarks and applications

7.1 Comparison with the classical canonical lifts

In the classical context where S = Spec k with k a perfect field of char-

acteristic p, it is known that the Serre–Tate canonical lift has a Frobenius

lift and is characterized, up to unique isomorphism, by this property. (See

Messing’s book [15, p. 177, cor. (1.2) and p. 174, cor. (3.4)].) The theorem

in Theorem 6.1 then implies that our canonical lifts are isomorphic to the

Serre–Tate canonical lifts by a unique Frobenius equivariant morphism.

Also observe that in this context, we only need a weak case of the theorem

in Section 3.2 in the descent argument. This is because level structure exists

over some finite extension k′/k, and then it is well known that W (k′)/W (k)

is finite étale and we have W (k′ ⊗k k′) =W (k′)⊗W (k) W (k′). Thus in the

classical context, our argument really is little more than an application of

the universal property of Witt vectors.

While our approach has the benefit of allowing families in mixed char-

acteristic, it also requires them, even if one is only interested in canonical

lifts of elliptic curves in characteristic p; and this could be viewed as a

drawback. The reason is simply that the special fiber Y (N)oFp
does not

admit a map from W (Y (N)oFp
). Indeed, no nonempty Witt vector scheme

maps to Spec Fp.
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7.2 j-invariants

We can describe the j-invariant of the canonical lift of the universal

family. Recall that Y (N)o = Spf AN and Y (N, N)o = Spf AN,N , where AN
and AN,N are p-adically complete and p-torsion-free, and that forgetting

the level structures induces a pair of Frobenius equivariant maps AN ⇒
AN,N . Thus, writing A1 for the equalizer of these two maps, the map

(idAN
)∼ : AN →W (AN ) restricts to a map s :A1→W (A1), and so the

Frobenius lift on AN restricts to a Frobenius lift on A1. Now write

A1 = Zp[j, 1/f(j)]∧, where j is an indeterminate identified with the j-

function, f(j) is a monic polynomial whose roots lift the supersingular

j-invariants, and (·)∧ denotes p-adic completion. The image of j under

the map s : A1→W (A1) has ghost components 〈j, ψ(j), ψ◦2(j), . . . 〉 ∈A∞1 .

It follows that if E is any family of ordinary elliptic curves, the ghost

components of j(Ẽ) are obtained by evaluating the universal expressions

ψ◦n(j) ∈ Zp[j, 1/f(j)]∧ at j = j(E).

One can similarly consider the usual Witt components (j0, j1, . . . ) of

s(j). Then the Witt components of j(Ẽ) are also obtained by evaluating

the universal expressions jn ∈ Zp[j, 1/f(j)]∧ at j = j(E). For example, by

the definition of the ghost map, we have ψ◦n(j) =
∑n

i=0 p
ijp

n−i

i , and so the

Witt components of the j-invariant of the canonical lift of an elliptic curve

with j-invariant j are given by

j0 = j, j1 = (ψ(j)− jp)/p,

j2 = (ψ(ψ(j))− jp2)/p2 − (ψ(j)− jp)p/pp+1,

and so on. For elliptic curves over perfect fields of characteristic p, such a

result was found by Erdoğan [7] (strengthening earlier results of Finotti [8])

by more traditional means, but where the universal expressions are of course

the reductions of ours modulo p. We note that Erdoğan also constructs

canonical lifts for families over perfect Fp-algebras.

We can do the same for elliptic curves over a general base. Let E be a

family over Spf R for a p-adically complete ring R. Then the j-invariant

j(Ẽ) is an element of W (R), and as in (3.1.1) its ghost components are

〈j(E0), j(E1), j(E2), . . . 〉= 〈j(E), ψ(j(E)), ψ◦2(j(E)), . . . 〉 ∈R∞,

where E0 = E and En+1 = En/E
can
n . This already determines j(Ẽ) if R is

p-torsion-free, since in that case the ghost map W (R)→RN is injective.

In general, one can lift E arbitrarily to a family E′ over a p-torsion-free
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extension R′ of R, and then j(Ẽ) is the image under W (R′)→W (R) of

j((E′)∼), which has the simple description above since R′ is p-torsion-free.

This can be expressed in an especially pleasant way in the particular case

where R is a perfect Fp-algebra k, and R′ is W (k). Then one can show that

the projection W (pr0) : W (W (k))→W (k) sends a Witt vector with ghost

components 〈a0, a1, . . . 〉 ∈W (k)∞ to limn→∞ F−n(an) ∈W (k), and so we

have

j(Ẽ) = lim
n→∞

F−n(j(E′n)) = lim
n→∞

F−n(ψ◦n(j(E′))),

where E′ is an arbitrary lift to W (k) of E and the E′n are as above. If k

is a field with pr elements, then F r = idW (k) and so we simply have j(Ẽ) =

limn→∞ j(E′rn).

7.3 Canonical lifts of canonical lifts

Amusingly, one can take canonical lifts of canonical lifts and so on, any

number of times. Indeed, if E is an ordinary elliptic curve over a p-adic

sheaf S, then Ẽ is also an ordinary elliptic curve over the p-adic sheaf

W (S). However, one can show that the double canonical lift
˜̃
E is canonically

isomorphic to the pull-back of Ẽ through the composition, or plethysm, map

W (W (S))→W (S) of [4, (10.6.13)], and similarly for the higher iterates. So

these higher canonical lifts are all determined by the first one in a way that

has nothing to do with elliptic curves and only the general theory of Witt

vectors.

7.4 Epilogue: on a general theory of canonical lifts

We proposed above that a theory of canonical lifts for a class of objects

parametrized by a moduli space Y should be defined to be a Frobenius lift

ψ : Y → Y , as long as Y is p-torsion-free. In the absence of this assumption,

one should define a theory of canonical lifts to be a slightly stronger

structure. Namely, the functor W∗ = limnWn∗ has a natural comonad

structure (coming from the maps Wm+n∗→Wm∗ ◦Wn∗ of [4, (10.6.14)])

and a theory of canonical lifts for the objects parametrized by Y would

then be a coaction of the comonad W∗ on Y . This is called a δ-structure in

Joyal [10] and Buium [5] and a p-typical Λ-structure in [3, 4].

This can also be done for other varieties of Witt vectors in the sense of [4],

such as the big Witt vectors. One would then define a theory of canonical

lifts, relative to the given variety of Witt vectors, to be an action of the
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comonad W∗ on Y . In other words, a theory of canonical lifts for a class

of objects should defined to be a Λ-structure on their moduli space. This

was carried out by the second author [9] in the case of elliptic curves with

complex multiplication and the variety of big Witt vectors associated with

an imaginary quadratic field.
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