One variable equations over semigroups

Frank Levin

An analogue of the theorem on the existence of a primitive element for separable extensions of fields is presented for semigroups. This has two immediate consequences.
(i) A semigroup is algebraically closed with respect to equations in several variables if and only if it is closed with respect to equations in a single variable.
(ii) Any countable semigroup C is embedded in a two-generator semigroup, one of whose generators is in C.

Further, a proof is given that any free product of a semigroup of order one with one of order two is $S Q$-universal, that is, its factor semigroups embed all countable semigroups. The proofs are adaptations of one used by Trevor Evans, Proc. Amer. Math. Soc. 3 (1952), 614-620, to show that a free product of two infinite cyclic semigroups is $S Q$-universal.

The theorem on the existence of a primitive element for fields states that for separable extensions of fields the adjunction of several algebraic elements to a field can be accomplished with a single adjunction. An analogous result holds for groups (see [3]). The following theorem extends this to semigroups and thus answers a question posed by Professor B.H. Neumann in connection with investigations into algebraically closed semigroups.

THEOREM 1. Let A be a semigroup containing a subsemigroup B

[^0]such that A can be generated by B and a countable subset a_{1}, a_{2}, \ldots, of eilements of A. Then there exists an oversemigroup A_{1} of A and an element $a \in A_{1}$ such that A_{1} is generated by B and the single (primitive) element a. Further, to any prescribed integers $n>m \geq 3$, the oversemigroup A_{1} can be so chosen that the primitive element $a \in A_{1}$ satisfies $a^{n}=a^{m}$.

The proof of Theorem 1 is essentially a variation of one used by Trevor Evans in [2] to show that any countable semigroup can be embedded in a two-generator semigroup. Before demonstrating the proof, however, we first list two immediate consequences of the Theorem.

The first application of the Theorem is to equations over semigroups. An equation over a semigroup S has the form
(1) $f\left(x_{1}, x_{2}, \ldots, x_{n} ; s_{1}, s_{2}, \ldots\right)=g\left(x_{1}, x_{2}, \ldots, x_{n} ; s_{1}, s_{2}, \ldots\right)$ where f and g are words in the variables x_{i} and the elements $s_{i} \in S$. (I) is consistent over S if S can be embedded in an oversemigroup T containing elements t_{i} such that (1) is satisfied in T with $x_{i}=t_{i} \cdot S$ is (m, n)-algebraically closed if every consistent system of m equations in n variables can be solved in S itself. The following Corollary then follows directly from the Theorem.

COROLLARY 1. S is (m, n)-algebraically closed if and only if it is ($m, 1$)-algebraically closed.

The second application of the theorem extends Evans' result.
COROLLARY 2. Let C be a countable semigroup. Then C can be embedded in a two-generator semigroup generated by any arbitrarily chosen element $c \in C$ and a second generator g which satisfies, for any prescribed integers $n>m \geq 3$, the relation $g^{n}=g^{m}$.

The second Corollary follows from the Theorem by taking B as the cyclic semigroup generated by c. In particular, if C contains a zero element O, then c can be chosen as 0 . Otherwise, we may first embed C in the semigroup obtained from C by adjoining a zero element.

The proof of the Theorem is based on the following Lemma. Unless
otherwise specified we use the notation of Cl ifford and Preston [1]. In particular, ΔS denotes the diagonal of $S \times S$, and if S is any semigroup without identity element, then S^{l} denotes the semigroup obtained from S by adding an identity element l to S. Otherwise, $S^{1}=S$. Also, $\left\langle x ; x^{m}=x^{n}\right\rangle$ denotes the cyclic semigroup generated by x satisfying $x^{m}=x^{n}$, and $S * T$ denotes the free product of S and T.

LEMMA. Let S and T be semigroups and $P=S * T$. Let Q be a subsemigroup of P having the following properties:
(i) the subsemigroup H of P generated by S and Q is their free product;
(ii) $u v \in H, u \in S$ imply that $v \in H$;
(iii) upv $\in H, p \in H \backslash S, u, v \in P^{l}$ imply that $u, v \in H^{1}$.

Let β be a congruence on H such that $\beta \cap(S \times S)=\Delta S$ and α be the congruence on P generated by β. Then P / α embeds H / β naturally and $\alpha \cap(S \times S)=\Delta S$.

Proof. By Lemma 9.9 of [1], H / β is naturally embedded in P / α if and only if $\alpha \cap(H \times H)=\beta$. Thus, to prove the Lemma we must consider elements of the form

$$
\begin{equation*}
\left(w_{1}, w_{2}\right)=\left(u_{0} p_{1} u_{1} p_{2} \ldots p_{k} u_{k}, u_{0} q_{1} u_{1} q_{2} \ldots q_{k} u_{k}\right) \tag{2}
\end{equation*}
$$

where for each $i,\left(p_{i}, q_{i}\right) \in B, u_{i} \in P^{l}$, and show that $\left(w_{1}, w_{2}\right) \in H \times H$ implies $\left(w_{1}, w_{2}\right) \in \beta$.

The proof is by induction on k. First, let $\left(u_{0} p_{1} u_{1}, u_{0} q_{1} u_{1}\right) \in(H \times H)$. Since $B \cap(S \times S)=\Delta S$ we may assume $\left(p_{1}, q_{1}\right) \nmid S \times S$. In particular, suppose $p_{1} \notin S$. Then, by (iii), $u_{0} p_{1} u_{1} \in H$ implies that $u_{0}, u_{1} \in H^{1}$ so that $\left(u_{0} p_{1} u_{1}, u_{0} q_{1} u_{1}\right) \in \beta$. In the general case (2), we may again assume $p_{1} \in H \backslash S$. Then by (iii), $u_{0}, u_{1} p_{2} \ldots p_{k} u_{k} \in H$. Since $u_{0} q_{1} \in H$ we have, by (ii) or (iii), whichever is applicable, that $u_{1} q_{2} \ldots q_{k} u_{k} \in H$ so that $\left(u_{1} p_{2} \ldots p_{k} u_{k}, u_{1} q_{2} \ldots q_{k} u_{k}\right) \in(H \times H) \cap \alpha$. By induction, it now follows
that $u_{i} \in H$ for all i so that $\left(w_{1}, w_{2}\right) \in \beta$, which proves the Lerma since $\alpha \cap(S \times S)=\beta \cap(S \times S)=\Delta S$.

Proof of Theorem 1. Let $P=B *\langle x\rangle$ and $b \in B$ be an arbitrarily chosen element of B. We define elements $h_{i} \in P$ in one-to-one correspondence with the generators a_{i} of A as follows:

$$
\begin{equation*}
h_{i}=x b x^{2+i} b x, \quad i=1,2, \ldots \tag{3}
\end{equation*}
$$

Let Q be the subsemigroup of P generated by the h_{i}. Since an element of P is in Q if and only if it has the form
$x b \ldots b x^{2} b x^{2+i} b x^{2} b x^{2+j} b x \ldots b x$, it is clear that Q is freely generated by the h_{i}. A similar analysis shows that H, the subsemigroup of P
generated by Q and B is their free product. Thus, H satisfies (i) of the Lemma with S replaced by B. Part ($i i$) of the Lemma is trivial to verify, and (iii) follows from the special forms of the elements of $H \backslash B$. Thus, the Lemma applies. In particular, since $H=B * Q$ there is a congruence β on H with $\beta \cap(B \times B)=\Delta B$ and $H / \beta \cong A$. (That is, H can be mapped homomorphically onto A by φ, say, where φ is the identity map on B and maps each h_{i} onto $a_{i} \in A$.) Thus, if α is the congruence on P generated by β, then P / α embeds $H / \beta \cong A$ naturally and since $\alpha \cap(B \times B)=\Delta B, B$ is embedded in P / α, which proves the first part of the Theorem since P / α is generated by $B \alpha$ and $x \alpha$.

For the second part of the Theorem we further embed the oversemigroup $A_{1}=P / \alpha$ constructed above. Thus, consider A_{1}, a semigroup generated by B and $a \in A_{1}$. Let now $\left.P_{1}=B *\left\langle y ; y^{n}=y^{m}\right\rangle, n\right\rangle m \geq 3$. Choose $b \in B$ as above and set $h=y b y^{3} b y$. Clearly, h generates an infinite cyclic subsemigroup $Q_{1} \subset P_{1}$. Let H_{1} be generated in P_{1} by B and Q_{1}. As above, we obtain that $H_{1}=B * Q_{1}$ so that H_{1} satisfies (i) of the Lemma. Part (ii) of the Lerma is also easy to verify here. For Part (iii), we need only remark that since $n>m \geq 3$, the relation for y has no effect in deciding if an element lies in H_{l} since products of elements of H_{1} introduce, at most, quadratic factors of y. Thus, the Lemma is again applicable, and since $H_{1}=B * Q_{1}$ there is, as above, a congruence
β_{1} on H_{1} such that $H_{1} / \beta_{1} \cong A_{1}$ and $\beta_{1} \cap(B \times B)=\Delta B$. Hence, if α_{1} is the congruence on P_{1},generated by β_{1}, then P_{1} / α_{1} embeds H_{1} / β_{1}. Finally, since $\alpha_{1} \cap(B \times B)=\Delta B$, we have embedded A_{1} and, hence, A in P_{1} / α_{1} which is generated by B and the congruence class containing y, which proves the Theorem.

If we drop the condition in Corollary 2 that one of the two generators of the oversemigroup of C is in C, then we obtain a slightly sharper result. For the following Theorem let $P_{2}=\left\langle x ; x^{2}=x\right\rangle * T_{2}$, where T_{2} is any semigroup of order 2 with elements t_{1}, t_{2}, say.

THEOREM 2. Let C be a countable semigroup. Then C can be embedded in a factor semigroup of P_{2}.

Proof. First embed C in a two-generator semigroup C_{1} as provided by Corollary 2 or Evans [2]. Let $H_{2} \subset P_{2}$ be the subsemigroup of P_{2} generated by $h_{1}=x t_{1} x$ and $h_{2}=x t_{2} x$. An element $h \in H_{2}$ has the form $h=x s_{1} x s_{2} \ldots s_{k} x$, where $s_{i} \in T_{2}$. Since h is uniquely determined by the sequence $s_{1}, s_{2}, \ldots, s_{k}$, it is clear that H_{2} is freely generated by the h_{i}. Thus, there is a congruence B_{2} on H_{2} such that $H_{2} / \beta_{2}=C_{1}$. Let α_{2} be the congruence of P_{2} generated by β_{2}. Again, the proof will be completed by showing that P_{2} / α_{2} embeds H_{2} / β_{2} or, equivalently, that $\alpha_{2} \cap\left(H_{2} \times H_{2}\right)=\beta_{2}$. Thus, let $\left(p_{i}, q_{i}\right) \in \beta_{2}, i=1,2, \ldots$, and

$$
\begin{equation*}
\left(w_{1}, w_{2}\right)=\left(u_{\sigma} p_{1} u_{1} p_{2} \ldots p_{k} u_{k}, u_{0} q_{1} u_{1} q_{2} \ldots q_{k} u_{k}\right) \in H_{2} \times H_{2} \tag{4}
\end{equation*}
$$

where $u_{i} \in P_{2}^{1}$. Since $x^{2}=x$ and each p_{i} and q_{i} begins and ends with an $x,\left(\omega_{1}, w_{2}\right)$ can be expressed in the form

$$
\begin{equation*}
\left(w_{1}, w_{2}\right)=\left(v_{0} p_{1} v_{1} p_{2} \ldots p_{k} v_{k}, v_{o} q_{1} v_{1} q_{2} \ldots q_{k} v_{k}\right) \tag{5}
\end{equation*}
$$

where, for each $i, v_{i}=x u_{i} x$ if $u_{i} \notin H_{2}^{l}$ and $v_{i}=u_{i}$, otherwise. In either case each $v_{i} \in H_{2}^{1}$ so that $\left(w_{1}, w_{2}\right) \in \beta_{2}$, which proves the Theorem.

References

[1] A.H. Clifford and G.B. Preston, The aZgebraic theory of semigroups, Vol. Il (Math. Surveys 7 (II), Amer. Math. Soc., Providence, Rhode Island, 1967).
[2] Trevor Evans, "Embedding theorems for multiplicative systems and projective geometries", Proc. Amer. Math. Soc. 3 (1952), 614-620.
[3] Frank Levin, "One variable equations over groups", Arch. Math. 15 (1964), 179-188.

Rutgers, The State University,
New Brunswick, New Jersey, USA.

[^0]: Received 10 January 1970. The author gratefully acknowledges support by the National Science Foundation.

