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ON CYCLES AND CONNECTIVITY 
IN PLANAR GRAPHS 

BY 

M. D. PLUMMERC) AND E. L. WILSON 

1. Introduction. Let G be a graph and £(G) be the greatest integer n such that 
every set of « points in G lies on a cycle [8]. It is clear that £(<7)>2 for 2-connected 
planar graphs. Moreover, it is easy to construct arbitrarily large 2-connected 
planar graphs for which £=2. On the other hand, by a well-known theorem of 
Tutte [5], [6], if G is planar and 4-connected, it has a Hamiltonian cycle, i.e., 
£(G)=\V(G)\ for all 4-connected (and hence for all 5-connected) planar graphs. 

In this paper we settle the one remaining case by showing that £ ( < J ) > 5 for 3-
connected planar graphs and this is best possible in the sense that there are ar
bitrarily large 3-connected planar graphs with £=5. 

•2. Additional terminology. For any graphical concepts not defined here the 
reader is referred to Harary [4]. All graphs in this paper are finite, undirected, and 
loopless. 

Let P be a path in G and H a subgraph of G. Following Watkins [7] we say P 
and H are openly disjoint (abbreviated o.d.) if they have at most endpoints of P in 
common. A family of paths Pu P29.. . ,Pn is openly disjoint if they have at most 
endpoints in common. 

We shall have occasion to denote paths by their endpoints. In this case P[a, b], 
or simply [a, b] when unambiguous, will denote that section of path P with end-
points a and b. We denote P[a, b]—a—b by P(a, b) or by (#, b), with similar 
definitions for P(a, b] and P[a, b). P[a, x, b] and [a, x, b] will denote a path with 
endpoints a and b and intermediate point x. If H is a subgraph of G and w a point 
of G not on H, a (w, H) path is any path joining w and H in G but having no 
intermediate points in H. 

3. Main results. The following generalization of Menger's theorem is in turn a 
special case of a result of Dirac [2, Theorem 1]. We shall appeal to it repeatedly 
and shall call it GMT for brevity. 

THEOREM 1. If G is n-connected and ifu, vu . . . , vn are n+1 distinct points in G, 
then there exist n openly disjoint paths Pl9 . . . , Pn in G, where Pi joins u and vi9for 
alii. 
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THEOREM 2. If G is planar and ^-connected, then any given three points a, b, c and 
line x—oi^ofG lie on a cycle. 

Proof. As an immediate corollary to another theorem of Dirac [3, Theorem 9] 
there is a cycle C in G containing a, b9 and x. If c e C we are done. Otherwise by 
GMT there are three openly disjoint (c, C) paths Pl9 P2, and P 3 ending on C at 
three distinct points yl9 y2, and yz respectively. Without loss of generality we may 
assume that C is oriented as [a, /?, a, b, a]. Let C[@, a )=C l 5 C(a, b) = C2, and 
C(b, a]=C3 . Unless one yt lies on each of these sections of C, say y{ e Ci9 we are 
done (cf. Figure 1). 

7a 

Figure 1. 

Now let C'=(C—C(yl9 y2)) UP X U P2. Since G is planar, C separates the 
plane into two regions, one of which contains a, the other P3. Again by GMT, 
there are three o.d. (a, C") paths Ql9 Q2, Qz meeting C at ôl9 ô2, ô3 respectively. 

Let the sections of C be C'^C'lb, a], C'2=C[p, c], C'z=C'[c, b]. As before, 
one di must occur in each C\ or we are done. Moreover, no b~b or c, or again 
the desired cycle is obtained. 

There are three possibilities, ô±e C'(b,yz), à1eC\yZy a], and ô±=yz. In the 
first case we have a cycle [a, ô2, (3, a, yz, c, ôz, b, dl9 a]. In the second case we have 
a cycle [a, dl9 a, (3, ô2, c, yz, b9 ôz, a]. The third case is shown in Figure 2. 

Figure 2. 
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Now define cycle C"=PZ U f t U f t U C'[<53, c]. Then C" separates b from 
A=C'[y3 , x, c] U Q2. Once again by GMT there are three o.d. (b9 C") paths 
meeting C" at points Àl9 X29 A3. Let the three parts of C" be C'[^C'[\a9 y3]9 C2 = 
C'lya, c], and C3 =C"[c, a]. No two of the At- can lie in one of the C" or else the 
desired cycle is obtained. Hence in particular, no A t=73, a or c. But then 
[a, Àl9 y39 a, /?, <52, £, A2, è, A3, 0] is the desired cycle. 

As an immediate consequence of this theorem we have 

COROLLARY 2.1. If G is planar and 3-connected, then any four points of G lie on 
a cycle. 

Thus £,(G)>4for 3-connected planar graphs. 

At this point we are ready to prove the main theorem of this paper. 

THEOREM 3. If G is planar, 3-connected, and G^K±, then £((7)>5. 

Proof. Let a, b, c, d, e be any five points of G. We know from Corollary 2.1 
that £ ( ( J ) > 4 . Thus there is a cycle C in G containing a, b, c, d. If e e C we are 
done, so suppose e $ C. 

Since G is 3-connected there are, by GMT, three o.d. paths from e to three 
distinct points yl9 y2, y% of C. Clearly if any two y/s lie on C[a9 b]9 or C[b9 c]9 or 
C[c9 d] or on C[d9 a] we are done. Hence at most one yi lies in each of these four 
sections of C. There are then, up to homeomorphism two cases to consider: 

(I) yx G C(d9 a)9 y2 e C(a9 b)9 y3 e C(b9 c). 
(II) 7l=d9 y2 E C(a9 b)9 y3 e C(b9 c). 

Now delete (yl9 a9 y2) from both I and II. In each case we obtain the graph 
shown in Figure 3. 

Let D denote the cycle [e9 y29 b9 yZ9 c9 d9 e] and H denote D U (e9 yz). Now by 
GMT, there are three o.d. (a, H) paths Ql9 Q29 Q3. Since D separates a from (e, y3)9 

these paths end at points dl9 ô29 ôz on D. If we follow C[a9 y2] from y2 to the first 

c 

Figure 3. 
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point X on one of the 2's, say Ql9 then the paths C[y29 X] U QX[X9 a], Q29 Qz are 
three o.d. (a, D) paths. Thus we may assume without loss of generality that 

It is now a simple matter to show that there are five ways in which Q2 and Qz 

may be drawn without producing a cycle containing a9 b9 c9 d, and e. (Note that 
c^ô2 or <53, for if c=<32, say, the cycle [a, y29 b, yZ9 e, d9 c, a] suffices.) 

1. àx=y2 ô2e \d9ê) ôz=yz 

2. ô1=y2 ô2 G (d, é) èz e (c, d) 
3. ô1=y2 ô2e(b,yz] ô3e(c9d) 

We now treat each of these cases. 

Case 1. Delete (y2, b, yz) and call the resulting graph Hx. By GMT there are 
three o.d. paths from b to Hv Furthermore, the cycle M= [e, y2, a, y3, e] separates 
b from the rest of Hv Thus the endpoints of these three paths must lie on M. It is 
easily verified that if two paths end on M[e, a], on M [a, y3], or on M[y3, e] we 
are done. On the other hand, if one path ends on each of these, a cycle containing 
a, b, c, d, and e is easily discovered. 

Case 2. We have the configuration of Figure 4. 

Figure 4. 

Delete (<53, c, yz) from this graph and call the resulting graph Hz. 
There are three o.d. paths from c to i/3, ending on the cycle [e, yz, b, y2, a9 d, 

<52, e]. As before we may assume, without loss of generality, that one of these paths 
ends at yz. 

There are, up to homeomorphism, three ways in which the other two paths can 
be drawn without producing a cycle containing a, b, c9 d9 and e. That is when the 
three paths end on 

(ii) yZ9 ô29 (a, d) 
or 

(iii) 7s, 72, {à*, é). 
(i) If we delete (y3, b9 y2) from the graph and then consider the three o.d. 

paths from b to the cycle [e9 yZ9 c, y29 e]9 we find that these three paths must 
produce a cycle containing a, b9 c9 d9 and e. 
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(ii) Let the endpoint on (a9 d) be denoted ft. If we delete (ô2, d, /*) from the 
graph and consider the three o.d. paths from b to the cycle [a9 <52, c9 \i9 a] we find 
that these paths produce the desired cycle containing a, b9 c9 d9 and e. 

(iii) If we delete (yZ9 b, y2) from the graph and consider the three o.d. paths 
from b to the cycle [e, yZ9 c, y29 e]9 we find that these paths produce the desired 
cycle containing a9 b, c, d9 and e. 

Case 3. By deleting (y29 b9 ô2), we obtain the graph shown in Figure 5. 

Figure 5. 

Call this graph # 4 . The cycle [e, dl9 a, yZ9 e] separates b from the rest of H^ 
For this reason the three o.d. paths from b to Hé end on this cycle. It is easily 
shown that, unless all three paths end on [e, y3], a cycle containing a, b9 c9 d9 and 
e is present. So we need consider only situations shown in Figure 6. 

Figure 6. 

Delete (y39 c9 <53) and call the resulting graph H6. 
The cycle E= [e9 b9 y39 a, <53, d9 e] separates c from {e9 a). Thus the three o.d. 

paths Rl9 i?2, R3 from c to H5 end at points al9 a29 a3 of E. It is easily shown that 
we have a cycle containing a, b, c9 d9 and e unless, up to homeomorphism, a1=e9 

<*2 e (b9 yZ9 a), and a3 e (a, ôB9 d). 

Delete the path (e9 b, a2) from H5 U R± U JR2 U Rs and call the resulting graph 
i/6. The cycle F= [c9 a29 a, ôl9 e, c] separates b from the rest of H6. Thus the three 
o.d. paths from c to H6 end on F. It is easily verified that there is a cycle containing 
a, b9 c9 d9 and e regardless of the location of these three endpoints. This completes 
the proof of the theorem. 

Since there exist planar 3-connected graphs with five points, Theorem 3 is, in 
a trivial sense, best possible. However, Theorem 3 cannot be improved even by 
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excluding those graphs with a sufficiently small number of points. To see this, the 
reader may verify that the 3-connected planar graphs Gn, shown in Figure 7, have 
«>10 points, but each has £((jn)=5. In each Gn it is easily seen that there is no 
cycle containing the six points a, b, c, d, e, and/. 

^Z~V ^L—r-7^f . 

C«: 

/ / n — 11 pointe 

Figure 7. 

The graph G1X has been previously described by Barnette and Jucovic [1] who 
show that it is also the smallest 3-connected planar graph containing no Hamil-
tonian cycle. 
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