ON CYCLES AND CONNECTIVITY
 IN PLANAR GRAPHS

M. D. PLUMMER(${ }^{1}$) AND E. L. WILSON

1. Introduction. Let G be a graph and $\zeta(G)$ be the greatest integer n such that every set of n points in G lies on a cycle [8]. It is clear that $\zeta(G) \geq 2$ for 2 -connected planar graphs. Moreover, it is easy to construct arbitrarily large 2 -connected planar graphs for which $\zeta=2$. On the other hand, by a well-known theorem of Tutte [5], [6], if G is planar and 4-connected, it has a Hamiltonian cycle, i.e., $\zeta(G)=|V(G)|$ for all 4-connected (and hence for all 5-connected) planar graphs.

In this paper we settle the one remaining case by showing that $\zeta(G) \geq 5$ for 3connected planar graphs and this is best possible in the sense that there are arbitrarily large 3-connected planar graphs with $\zeta=5$.
2. Additional terminology. For any graphical concepts not defined here the reader is referred to Harary [4]. All graphs in this paper are finite, undirected, and loopless.

Let P be a path in G and H a subgraph of G. Following Watkins [7] we say P and H are openly disjoint (abbreviated o.d.) if they have at most endpoints of P in common. A family of paths $P_{1}, P_{2}, \ldots, P_{n}$ is openly disjoint if they have at most endpoints in common.

We shall have occasion to denote paths by their endpoints. In this case $P[a, b]$, or simply $[a, b]$ when unambiguous, will denote that section of path P with endpoints a and b. We denote $P[a, b]-a-b$ by $P(a, b)$ or by (a, b), with similar definitions for $P(a, b]$ and $P[a, b) . P[a, x, b]$ and $[a, x, b]$ will denote a path with endpoints a and b and intermediate point x. If H is a subgraph of G and w a point of G not on H, a (w, H) path is any path joining w and H in G but having no intermediate points in H.
3. Main results. The following generalization of Menger's theorem is in turn a special case of a result of Dirac [2, Theorem 1]. We shall appeal to it repeatedly and shall call it GMT for brevity.

Theorem 1. If G is n-connected and if u, v_{1}, \ldots, v_{n} are $n+1$ distinct points in G, then there exist n openly disjoint paths P_{1}, \ldots, P_{n} in G, where P_{i} joins u and v_{i}, for all i.

Theorem 2. If G is planar and 3-connected, then any given three points a, b, c and line $x=\alpha \beta$ of G lie on a cycle.

Preof. As an immediate corollary to another theorem of Dirac [3, Theorem 9] there is a cycle C in G containing a, b, and x. If $c \in C$ we are done. Otherwise by GMT there are three openly disjoint (c, C) paths P_{1}, P_{2}, and P_{3} ending on C at three distinct points γ_{1}, γ_{2}, and γ_{3} respectively. Without loss of generality we may assume that C is oriented as $[\alpha, \beta, a, b, \alpha]$. Let $C[\beta, \alpha)=C_{1}, C(a, b)=C_{2}$, and $C(b, \alpha]=C_{3}$. Unless one γ_{i} lies on each of these sections of C, say $\gamma_{i} \in C_{i}$, we are done (cf. Figure 1).

Figure 1.
Now let $C^{\prime}=\left(C-C\left(\gamma_{1}, \gamma_{2}\right)\right) \cup P_{1} \cup P_{2}$. Since G is planar, C^{\prime} separates the plane into two regions, one of which contains a, the other P_{3}. Again by GMT, there are three o.d. (a, C^{\prime}) paths Q_{1}, Q_{2}, Q_{3} meeting C^{\prime} at $\delta_{1}, \delta_{2}, \delta_{3}$ respectively.

Let the sections of C^{\prime} be $C_{1}^{\prime}=C^{\prime}[b, \alpha], C_{2}^{\prime}=C^{\prime}[\beta, c], C_{3}^{\prime}=C^{\prime}[c, b]$. As before, one δ_{i} must occur in each C_{i}^{\prime} or we are done. Moreover, no $\delta_{i}=b$ or c, or again the desired cycle is obtained.

There are three possibilities, $\delta_{1} \in C^{\prime}\left(b, \gamma_{3}\right), \delta_{1} \in C^{\prime}\left(\gamma_{3}, \alpha\right]$, and $\delta_{1}=\gamma_{3}$. In the first case we have a cycle $\left[a, \delta_{2}, \beta, \alpha, \gamma_{3}, c, \delta_{3}, b, \delta_{1}, a\right]$. In the second case we have a cycle $\left[a, \delta_{1}, \alpha, \beta, \delta_{2}, c, \gamma_{3}, b, \delta_{3}, a\right]$. The third case is shown in Figure 2.

Figure 2.

Now define cycle $C^{\prime \prime}=P_{3} \cup Q_{1} \cup Q_{3} \cup C^{\prime}\left[\delta_{3}, c\right]$. Then $C^{\prime \prime}$ separates b from $\Lambda=C^{\prime}\left[\gamma_{3}, x, c\right] \cup Q_{2}$. Once again by GMT there are three o.d. ($b, C^{\prime \prime}$) paths meeting $C^{\prime \prime}$ at points $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Let the three parts of $C^{\prime \prime}$ be $C_{1}^{\prime \prime}=C_{1}^{\prime \prime}\left[a, \gamma_{3}\right], C_{2}^{\prime \prime}=$ $C^{\prime \prime}\left[\gamma_{3}, c\right]$, and $C_{3}^{\prime \prime}=C^{\prime \prime}[c, a]$. No two of the λ_{i} can lie in one of the $C_{i}^{\prime \prime}$ or else the desired cycle is obtained. Hence in particular, no $\lambda_{i}=\gamma_{3}, a$ or c. But then $\left[a, \lambda_{1}, \gamma_{3}, \alpha, \beta, \delta_{2}, c, \lambda_{2}, b, \lambda_{3}, a\right]$ is the desired cycle.

As an immediate consequence of this theorem we have
Corollary 2.1. If G is planar and 3-connected, then any four points of G lie on a cycle.

Thus $\zeta(G) \geq 4$ for 3-connected planar graphs.

At this point we are ready to prove the main theorem of this paper.
Theorem 3. If G is planar, 3-connected, and $G \neq K_{4}$, then $\zeta(G) \geq 5$.
Proof. Let a, b, c, d, e be any five points of G. We know from Corollary 2.1 that $\zeta(G) \geq 4$. Thus there is a cycle C in G containing a, b, c, d. If $e \in C$ we are done, so suppose $e \notin C$.

Since G is 3-connected there are, by GMT, three o.d. paths from e to three distinct points $\gamma_{1}, \gamma_{2}, \gamma_{3}$ of C. Clearly if any two γ_{i} 's lie on $C[a, b]$, or $C[b, c]$, or $C[c, d]$ or on $C[d, a]$ we are done. Hence at most one γ_{i} lies in each of these four sections of C. There are then, up to homeomorphism two cases to consider:
(I) $\gamma_{1} \in C(d, a), \gamma_{2} \in C(a, b), \gamma_{3} \in C(b, c)$.
(II) $\gamma_{1}=\mathrm{d}, \gamma_{2} \in C(a, b), \gamma_{3} \in C(b, c)$.

Now delete ($\gamma_{1}, a, \gamma_{2}$) from both I and II. In each case we obtain the graph shown in Figure 3.

Let D denote the cycle $\left[e, \gamma_{2}, b, \gamma_{3}, c, d, e\right]$ and H denote $D \cup\left(e, \gamma_{3}\right)$. Now by GMT, there are three o.d. (a, H) paths Q_{1}, Q_{2}, Q_{3}. Since D separates a from $\left(e, \gamma_{3}\right)$, these paths end at points $\delta_{1}, \delta_{2}, \delta_{3}$ on D. If we follow $C\left[a, \gamma_{2}\right]$ from γ_{2} to the first

Figure 3.
point λ on one of the Q 's, say Q_{1}, then the paths $C\left[\gamma_{2}, \lambda\right] \cup Q_{1}[\lambda, a], Q_{2}, Q_{3}$ are three o.d. (a, D) paths. Thus we may assume without loss of generality that $\delta_{1}=\gamma_{2}$.

It is now a simple matter to show that there are five ways in which Q_{2} and Q_{3} may be drawn without producing a cycle containing a, b, c, d, and e. (Note that $c \neq \delta_{2}$ or δ_{3}, for if $c=\delta_{2}$, say, the cycle [$a, \gamma_{2}, b, \gamma_{3}, e, d, c, a$] suffices.)

1. $\delta_{1}=\gamma_{2} \quad \delta_{2} \in[d, e) \quad \delta_{3}=\gamma_{3}$
2. $\delta_{1}=\gamma_{2} \quad \delta_{2} \in(d, e) \quad \delta_{3} \in(c, d)$
3. $\delta_{1}=\gamma_{2} \quad \delta_{2} \in\left(b, \gamma_{3}\right] \quad \delta_{3} \in(c, d)$

We now treat each of these cases.
Case 1. Delete $\left(\gamma_{2}, b, \gamma_{3}\right)$ and call the resulting graph H_{1}. By GMT there are three o.d. paths from b to H_{1}. Furthermore, the cycle $M=\left[e, \gamma_{2}, a, \gamma_{3}, e\right]$ separates b from the rest of H_{1}. Thus the endpoints of these three paths must lie on M. It is easily verified that if two paths end on $M[e, a]$, on $M\left[a, \gamma_{3}\right]$, or on $M\left[\gamma_{3}, e\right]$ we are done. On the other hand, if one path ends on each of these, a cycle containing a, b, c, d, and e is easily discovered.

Case 2. We have the configuration of Figure 4.

Figure 4.
Delete ($\delta_{3}, c, \gamma_{3}$) from this graph and call the resulting graph H_{3}.
There are three o.d. paths from c to H_{3}, ending on the cycle $\left[e, \gamma_{3}, b, \gamma_{2}, a, d\right.$, $\left.\delta_{2}, e\right]$. As before we may assume, without loss of generality, that one of these paths ends at γ_{3}.

There are, up to homeomorphism, three ways in which the other two paths can be drawn without producing a cycle containing a, b, c, d, and e. That is when the three paths end on
(i) $\gamma_{3}, \delta_{2}, \gamma_{2}$
(ii) $\gamma_{3}, \delta_{2},(a, d)$
or
(iii) $\gamma_{3}, \gamma_{2},\left(\delta_{2}, e\right)$.
(i) If we delete $\left(\gamma_{3}, b, \gamma_{2}\right)$ from the graph and then consider the three o.d. paths from b to the cycle $\left[e, \gamma_{3}, c, \gamma_{2}, e\right]$, we find that these three paths must produce a cycle containing a, b, c, d, and e.
(ii) Let the endpoint on (a, d) be denoted μ. If we delete $\left(\delta_{2}, d, \mu\right)$ from the graph and consider the three o.d. paths from b to the cycle $\left[a, \delta_{2}, c, \mu, a\right]$ we find that these paths produce the desired cycle containing a, b, c, d, and e.
(iii) If we delete $\left(\gamma_{3}, b, \gamma_{2}\right)$ from the graph and consider the three o.d. paths from b to the cycle $\left[e, \gamma_{3}, c, \gamma_{2}, e\right.$], we find that these paths produce the desired cycle containing a, b, c, d, and e.

Case 3. By deleting ($\gamma_{2}, b, \delta_{2}$), we obtain the graph shown in Figure 5.

Figure 5.
Call this graph H_{4}. The cycle [$e, \delta_{1}, a, \gamma_{3}, e$] separates b from the rest of H_{4}. For this reason the three o.d. paths from b to H_{4} end on this cycle. It is easily shown that, unless all three paths end on $\left[e, \gamma_{3}\right]$, a cycle containing a, b, c, d, and e is present. So we need consider only situations shown in Figure 6.

Figure 6.
Delete ($\gamma_{3}, c, \delta_{3}$) and call the resulting graph H_{5}.
The cycle $E=\left[e, b, \gamma_{3}, a, \delta_{3}, d, e\right]$ separates c from (e, a). Thus the three o.d. paths R_{1}, R_{2}, R_{3} from c to H_{5} end at points $\sigma_{1}, \sigma_{2}, \sigma_{3}$ of E. It is easily shown that we have a cycle containing a, b, c, d, and e unless, up to homeomorphism, $\sigma_{1}=e$, $\sigma_{2} \in\left(b, \gamma_{3}, a\right)$, and $\sigma_{3} \in\left(a, \delta_{3}, d\right)$.

Delete the path (e, b, σ_{2}) from $H_{5} \cup R_{1} \cup R_{2} \cup R_{3}$ and call the resulting graph H_{6}. The cycle $F=\left[c, \sigma_{2}, a, \delta_{1}, e, c\right]$ separates b from the rest of H_{6}. Thus the three o.d. paths from c to H_{6} end on F. It is easily verified that there is a cycle containing a, b, c, d, and e regardless of the location of these three endpoints. This completes the proof of the theorem.

Since there exist planar 3-connected graphs with five points, Theorem 3 is, in a trivial sense, best possible. However, Theorem 3 cannot be improved even by
excluding those graphs with a sufficiently small number of points. To see this, the reader may verify that the 3-connected planar graphs G_{n}, shown in Figure 7, have $n>10$ points, but each has $\zeta\left(G_{n}\right)=5$. In each G_{n} it is easily seen that there is no cycle containing the six points a, b, c, d, e, and f.

Figure 7.

The graph G_{11} has been previously described by Barnette and Jucovič [1] who show that it is also the smallest 3-connected planar graph containing no Hamiltonian cycle.

References

1. D. Barnette and E. Jucovič, Hamiltonian circuits on 3-polytopes, J. Combinatorial Theory 9 (1970), 54-59.
2. G. Dirac, Généralisations du théorème de Menger, C. R. Acad. Sci. Paris, 250 (1960), 42524253.
3. -_, In abstrakten Graphen vorhandene vollstandige 4-Graphen und ihre unterteilungen, Math. Nachr., 22 (1960), 61-85.
4. F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969.
5. O. Ore, The four-color problem, Academic Press, New York, (1967), 68-74.
6. W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99-116.
7. M. E. Watkins, On the existence of certain disjoint arcs in graphs, Duke Math. J., 35 (1968), 231-246.
8. M. E. Watkins and D. M. Mesner, Cycles and connectivity in graphs, Canad. J. Math., 19 (1967), 1319-1328.
