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1. A lattice An in n-dimensional Euclidean space £„ consists of the aggregate of all points
with coordinates {xx, ..., xn), where

n

* , - = £ « « " * ( r = l , . . . , n), uu ...,un = 0, ± 1 , ±2 , ...,

for some real ars (r, s = 1, ..., n), subject to the condition || ars ||nn 4= 0. The determinant An

of An is denned by the relation An= ± \\<xrs \\m, the sign being chosen to ensure that An > 0.
If Ax An are the n points of An having coordinates (a,, , a21, ..., anl), ..., (aln, a2n,..., ann),
respectively, then every point of AB may be expressed in the form

utAt+ ... +unAn,

and Ai,..., An, together with the origin O, are said to generate AB. This particular set of
generating points is not unique; it may be proved that a necessary and sufficient condition
that n points of An should generate the lattice is that the n x n determinant formed by their x-
coordinates should be ±An, or, equivalently, that the nxn determinant formed by their
corresponding w-coordinates should be + 1 .

The problem of finding infinite regions in En which contain the origin and n further
generating points of An has already been considered by Minkowski. In particular, Minkowski
[13] proved by simple geometrical arguments that the region

always contains two generating points of A2. Chalk [3] obtained a generalisation of this
result, and later suggested the following conjecture [4] which he proved for n = 3 and 4.

CONJECTURE. There exist n lattice points generating AB in the region

\xxx2...xn\ ^ 2 ^ 1 A..

Clearly the conjectured inequality, if true for general n, would be best possible when the
lattice An is of the form

*i = "( + *"„ (« = 1,. . . . « - l ) , *„ = "„•

Further results of a slightly different nature concerning generating pointsof £ 2 and £ 3

have also been obtained by Chalk and Rogers [6], Barnes [1] and OppenheimJ[15].
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142 D. M. E. FOSTER

Our object is to prove the following two theorems, which yield information about sets of
generating points of A3 in the three dimensional region

Y 2 - l -Y 2 — Y2

+X — X

THEOREM 1. IfA3 has a point, other than the origin, on the surface x\+x\—x\ = 0, then
the region

(1)

contains a set of generating points of A3.

THEOREM 2. If A3 has no point, other than the origin, on the surface x\+x\—x\ = 0, then
the region

k l / 3

(2)

contains a set of generating points ofA3.

We shall show that the inequalities (1) and (2) are best possible. Before doing so, however,
it is convenient to restate Theorems 1 and 2 in terms of indefinite quadratic forms in three
variables. For, if A3 is given by equations of the form

3

*r = Z ars"s ( ' •=!. 2, 3),
s=l

where A3 = ± || <xrs ||33, then clearly x\ + x\ — x\ may be expressed as an indefinite quadratic
form

3 3

r = l s = l

for appropriate ars (r, s = 1, 2, 3), with determinant D3 = \\ ars\\33. On comparison of
determinants we see that

Z)3= - A 5 < 0 .

Two quadratic forms q(ul,..., «„), Q{UU ..., Un) are said to be equivalent, and we write
q ~ Q, if q can be transformed into Q by an integral unimodular substitution of the form

« , = Z Pr*Us (r = l , . . . , n ) ,

where the prs are integers with determinant || prs || = + 1 . The following Theorems 1* and 2*,
which are expressed in terms of quadratic forms, contain the assertions of Theorems 1 and 2,
respectively, and we prove them in this form.
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GENERATING POINTS OF A LATTICE 143

THEOREM 1*. Ifq{uu u2, u3) represents zero non-trivially, then it is equivalent to a form for
which

| a , , | g | Z > 3 | I / 3 (i = l ,2,3), (1)*

with strict inequality unless q ~ kq0 or Xqlt where

and <7i("i, M2, w3) =

THEOREM 2*. Ifq(uu u2, u3) does not represent zero non-trivially, then it is equivalent to a
form for which

(21 \1 /3

l « « l £ « l * > 3 l l 0 = 1,2,3) , (2)*

with strict inequality unless q ~ kq2, where

q2(uu u2, u3) = u\

In a recent paper [5], Dr J. H. H. Chalk has obtained a striking result for a certain class
of quadratic forms in an even number of variables. He has shown that if

2 m 2m

«("l» •••. «2J = Z Z ««"r"S («« = O
r=l s= l

is an indefinite form in uu ..., u2m of signature zero and determinant D2m = || ars || 2m,2m + 0»
then it is equivalent to a form for which

I a,, I S I D2m |>'2- 0 = 1 , - ,2m) ,
with equality when

m - l

«(«!, .... U 2 J = Z ( l

The proof of Theorem 1* in §2 divides into two cases, in one of which we use an elementary
result in the theory of continued fractions (Lemma 1) to replace the inequalities (1)* by

I att I < e 0 = 1, 2, 3)

for any e> 0. The other case is less trivial and the proof depends upon Lemma 2, which gives
a useful inequality for a quadratic in a single integral variable. The lemma is not new and is a
corollary of Lemma 5 of Davenport [7], but a proof is given for convenience. The use of this
lemma could be avoided by a direct appeal to a theorem of Macbeath [11] on a quadratic
polynomial in two variables.

The proof of Theorem 2* is rather different and is based upon Lemma 2 and three further
lemmas. Lemma 3, which is needed as a starting point for the proof of the theorem, is classical
and gives the first" minimum " for an indefinite quadratic form in three variables. Lemma 4

https://doi.org/10.1017/S2040618500034912 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034912


144 D. M. E. FOSTER

is a straightforward extension, to a two-dimensional asymmetric hyperbolic region, of Min-
kowski's original theorem on generating points of A2. The result stated in Lemma 5 is a
special case of a recent theorem of Watson on values of a non-zero binary quadratic form.

1 am very grateful to Dr J. H. H. Chalk for suggesting this problem to me and for his
valuable help and advice during my work on it. I should also like to thank Dr G. L. Watson
for his helpful suggestions in improving the presentation.

2. For the proof of Theorem 1* we require the following two lemmas.

LEMMA 1. If a is a given positive irrational number and e> 0, then the inequalities

0 < U n a - P n I < e and 0 < | qn+l<*-pa+1 | < e

are always soluble in integer pairs (pn> qn) and (pn + 1, qn+1) with pnqn+i-pn+iqn = 1.

Proof. Take pjqn and pn + llqn+i to be successive convergents to the continued fraction
for a with n odd and sufficiently large.

LEMMA 2. Ifa,cc,t are any constants satisfying

0 < a < 1, (3)

0 ^ t2 < 1+ia2, (4)

then the inequalities

\a(u+tx)2-a-lt2\ < 1 (5)

are always soluble for an integer u.

Proof. We write

for convenience. If t2 < a, we choose an integer u satisfying

which is possible since

a~112

by (3) and (4). With this value of u we have

-

If t2 ^ a, let u denote the integer for which

-a~H2

(6)
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GENERATING POINTS OF A LATTICE 145

We have, successively,

t2 < l+ia2,

4(f4-a2) < 4t*-4t2a2 + a*,

2(* 4 -a 2 ) 1 ' 2 < It2-a2,

a2 < 2t2-2(t*-a2)112,

1 < a-\t2 + ay2-a-\t2-ay'2. (7)

By (6) and (7) we see that u satisfies

a-\t
2-ayi2 < u+oc < a-\

and (5) now follows.

Proof of Theorem 1*. By considering a positive multiple of q = q(uu u2, u3) in place of q,
if necessary, we may assume that | D3 \ = 1. Then it suffices to prove that, unless q ~ Aq0 or
Aqlt the inequalities

I «(«ls, u2s, u3s) | < 1 (s = 1, 2, 3) (8)

are soluble in integers (uis, u2s, u3s), with || urs || 33 = 1, since the integral unimodular
substitution

«r = Z ursUs (r = 1, 2, 3)
s= l

will transform q into a form each of whose diagonal coefficients is less than 1 in absolute value.
As q represents zero non-trivially, we may suppose, after applying an integral unimodular

substitution to the variables, that a^ = 0 , and q now takes the form

«("i, «2. "3) = 2(a12u2 + a13u3)u1 + a22u2
: + 2a23M2U3 + a33U2,.

Since | Z>3 | + 0, the coefficients a12, a13 cannot both be zero. By interchanging u2, u3, if
necessary, we may suppose that al2 4= 0. Two cases now arise, according as the ratio cii3lal2

is irrational or rational.
Suppose first that ai3/ai2 is irrational and let e> 0. By changing the signs of «2, u3, if

necessary, we may assume that a12> 0, a13 < 0.
Choose («n, «2i, «3i) = (1, 0, 0). By Lemma 1, since (e/a1 2)>0, there exist integer

pairs (u22, M32) and (M23, M33), with M 2 2 « 3 3 - M 2 3 H 3 2 = 1, satisfying

0 <
al3
— u 3 s
a12

8
— (s = 2,3).
a12

For each pair (u2s, u3s) (s = 2, 3), we can always choose a corresponding integer Uj = uu

(s = 2, 3) satisfying
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146 D. M. E. FOSTER

and (8) follows with the triads (1, 0, 0), (u12, u22, "32) a n ^ ("13, «23> "33)* s m c e £ m a y ^e

arbitrarily small.
Now suppose that a13/a12 = q\p where p , q are integers with (p, q) = 1 and q =t= 0 (i.e.

ai3 =}= 0). It is known that there exist integers p ' , q', with (/?', q') — 1, satisfyingpq' —p'q = 1.
Then the integral unimodular substitution given by

u'3 =

will reduce q to the form

i» "2 . "3) =

for appropriate b12,..., b33. If a13 = 0, the above substitution is not required. Comparing
determinants we see that

b{2 I b33 I = I D3 I = 1. (9)

If I b12 I < 1, the result is easily proved, by choosing the triads (1, 0, 0), (ui2, 1,0) and
(M13, 1, 1), where u12, "13 are the integers satisfying

\ 2 b 1 2 u l 2 + b22\ ^ \ b l 2 \ < 1

a n d I 2b12ui3 + b22 + 2b23 + b331 g | bi21 < 1.

Now suppose that \bl2\ > 1 and hence | b33 \ < 1, by (9). We first choose the triads
(1,0,0) and (0,0, — 1). Then taking u2 = M23 = 1» w e nave> on re-arranging,

q(uu 1, «3) = b33(u3+^A +2bl2ul + b22-^ •
\ 033/ 033

By considering — q (ulf 1, M3), if necessary, we may suppose that

0 < b33 < 1. (10)

Let "i = w13 be the integer satisfying

l-$b33-2bi2 ^ ^

33
If

we choose an integer « 3

0

= «33

^2bl2 "13 + &22-

satisfying

*>23
"33 + ^

and then (8) follows. Thus we are left to consider the case in which

q(ul3,1, u3) = fc33fu3+^J -A,
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GENERATING POINTS OF A LATTICE 147

where

and hence, since 0 < b33 < 1, we have

0 < b33k < ± 6 | 3 + 1.

By Lemma 2, with a = fc33, a = b23/b33, t2 = b33k, it follows that there is an integer
w3 = u33 satisfying

1 9(«13, 1, M33) I < 1.

I t remains to consider the case in which \bl2\ = \,\b33\ = \. By changing, if necessary,
the sign of q or the sign of Mt or both we may suppose that

q(uu w2, u3) = 2ulu2 + b22ul + 2b23u2u3 + ul.

Further, by absorbing integral multiples of u2, u3 into Mj and changing the sign of u3, if
necessary, we may suppose that

I b22 I g 1 and O g 2b23 ^ 1.

If I b22 I < 1, the congruences

together imply that b22 = b23 = 0. Thus if u13, u'13 are integers satisfying

and | 2 u ' 1 3 - f e 2 2 + 2 b 2 3 - l | ^ 1,

respectively, then it follows that | q \ < 1 for the triads (1, 0, 0), (0, 1, 0) and (u13, 1, 1) or
(«i3, - 1 , 1), unless

If I fr22 | = 1, then q is equivalent to the form

q(ult u2, u3) = 2u1u2

Let M13 be an integer satisfying

Then | q \ < 1 for the triads (1, 0, 0), ( - 1 , 2, - 1 ) and («13, - 1 , 1 ) , unless lb23 = 1, in which
case
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148 D. M. E. FOSTER

3. In this section we prove Theorem 2*. The proof is independent of Theorem 1* and
use is made of the following three lemmas.

LEMMA 3. The inequalities

I «(«,, "2, "3) I ^ ( I I D3 I)1'3

are always soluble in integers (ult u2, u3) 4= (0, 0, 0).

For a proof of this classical result, which is the first of a sequence of minima of an
indefinite quadratic form in three variables, see [10]. We observe, in passing, that the particular
form relating to the fourth minimum arises as the critical form q2(uly

 U2> "3) m Theorem 2*.

LEMMA 4. For any T> 0, the region

-TA2 g xjx2 g — A2

always contains two generating points of A2.

Proof. Consider the tangent parallelogram II, defined by

I r l
X l + t x 2 1 s V( A 2 /r ) , I r lx, - t x 2 \ z 2j(rA2).

Clearly IT, is symmetrical about the origin, and since it may be transformed by a linear sub-
stitution of determinant 2 into a rectangle having area 8A2, its area is 4A2. By Minkowski's
fundamental theorem, n t contains a point of A2 other than the origin O. Further, by varying
t continuously, we can obtain a parallelogram II,., which contains two independent points P, Q,
say, of A2, other than O. Let P', Q be the reflections of P, Q respectively in O. If the paral-
lelogram PQP'Q' contains points of A2 other than O, we simply replace it by a smaller
parallelogram. Thus we assume that PQP'Q' does not contain any point of A2 other than O.

Since P, Q are lattice points, it follows that the area of the parallelogram with sides OP,
OQ is an integral multiple of A2, say mA2. The area of the parallelogram PQP'Q' is 2mA2,
and 2mA2^ 4A2; consequently two possibilities arise according as m = 1 or 2. If m = 1, the
parallelogram with sides OP, OQ has area A2, and hence P, Q, together with O, generate A2.
If m = 2, the parallelogram PQP'Q' coincides with the original tangent parallelogram n,, and
Q and i (P+ Q), together with O, generate A2.

We observe that the two generating points obtained lie entirely inside the region considered
if there is no point of A2 on either bounding hyperbola. However, if there is a point of A2 on
one of these hyperbolae, the tangent parallelogram II,, for suitable t, through that point will
have on its boundary two basis points lying inside the region, unless there is a primitive point
of A2 on the other hyperbola. In this case A2 is of the form
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GENERATING POINTS OF A LATTICE 149

Restating the result with n = 1/(21"), we obtain the following corollary.

COROLLARY. If H> 0 and if q (uu u2) = (aui+Pu2)(yul+5u2) is an indefinite quadratic
form in ult u2 of determinant d= —£(a<5—/fy)2, then the inequalities

~\d\1l2<q(uu,u2s)<ix\d\i'2 (s=l,2)

are always soluble in integers (uu, u2s) (s = 1, 2) with || «„ || = 1, unless

A proof of the next lemma, due to Watson, is given for convenience as his has not been
published. Let

denote an indefinite quadratic form in uu u2 which does not represent zero non-trivially and
has determinant

d = ac-b2 <0.

Denote by P, N the lower bounds of the positive values of q, —q, respectively, for all integers

LEMMA 5.

with equality when

Proof] We suppose PN 4= 0, for otherwise the result is obvious. Also ifP = N the result
is well known [12], since

P = N£j(±\d\).

By changing the sign of q, if necessary, we may suppose that

N<P.
Hence

N£y/G\d\). (11)

If we consider a suitable multiple of q instead of q, we may take P = 1, and it now suffices to
prove that

N£$\d\. (12)

Let s> 0. After applying an appropriate unimodular substitution to the variables uu u2, we
may assume that

\a^b^a. (13)

f The proof given here is an adaptation of that of Dr Watson, who has very kindly let me reproduce it.
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By our hypothesis concerning P and N, it follows that either q ^ —N or q Si 1 for all integers
(«i,«2)*(0,0).

The inequality (12) follows easily if | d | Sif. For in this case we have

by (11). Thus suppose now that
\d\<i. (14)

Since
ac-b2 = d<0

we have
ac<b2^ a2,

by (13), and hence
c<a. (15)

Thus either (i) 1 ̂  c < 1 + e, or (ii) c < 0.

In the first case

and by (13), (15) and the choice of c, we have

1 - 2 ( 1 + E ) + 1 < q{-\, 1) < l + e - 2 + l + e,

since, using (13), b Si \a > 0 and (1 + e)2 > b2 > ac ;> 1. Thus

- 2 e < q ( - l , 1) <2e,

which is impossible if e is sufficiently small. Hence only the second case can arise, and we have
therefore

c£-N. (16)

Now \d\ = a\c\ +b2^aN + ±a2, by (16),

SiJV+i, by (13),

so that
N^\d\-i

<i\d\, by (14).

Proof of Theorem 2*. By considering a suitable positive multiple ofq = q (w,, u2, «3) in
place of q, if necessary, we can take D3 = -25/27. Then, as in the proof of Theorem 1*, it
suffices to prove that, unless q ~ kq2, the inequalities

\q(uls, u2s, u3s) | < 1 (s = l , 2 , 3 ) (17)

are always soluble in integers («ls, u2s, «3s) (s = 1, 2, 3), with || urs ||33 = 1.
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If M denotes the lower bound of | q (uu u2, u3) | over all integer triads (ult u2, «3) +
(0, 0, 0), then, by a weaker form of Lemma 3, we have

0 ^ M < 9/10.

Suppose first that M = 0. Then, for any e> 0, the inequalities

<e

are always soluble in integers uu u2, «3, and it follows that the inequalities

0<q(u1,u2,u3)<E

are also soluble for any e> 0, by a theorem of Oppenheim [14].
Now suppose that M 4= 0, and choose e so that

0 ^ s < 1/81.

By the definition of M, there are coprime integers uu u2, u3 satisfying

Thus, if the inequalities 0 <q < 1 are insoluble in integers uu u2, u3, then the inequalities
0 < — q < 1 are soluble in integers ux, u2, u3.

In either case, therefore, after applying a suitable unimodular substitution to the variables
«!, u2, «3, we may ensure that either

or ( i i ) 0 < - a u

and in case (ii) the inequalities 0 < q < 1 are insoluble in integers ult u2, u3.

Case (i). We may write

(j(u,, u2, M3) = allCu1+c2u2 + c3u3)
2 + q1(u2, u3),

for suitable constants c2, c3 and qi(u2, u3), which is an indefinite quadratic form in u2, u3 of
determinant -25/(27au). By the corollary to Lemma 4, with ft = {(4-an)(27an)*}/20,
there exist integer pairs (u22, u32) and (u23, u33), with u22u33-u23u32 = 1, satisfying

100 4 — a
( ^ 1 ( 2 3 )(4-au)27a1,

unless

If
4-a,,

0 ^ 9,(«2,, "is) < —4—

L2
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for some s = 2, 3, we choose an integer wls satisfying

I«1S + C2«2S + C3«3, I £h

and then
I «("is. "2S» "3s) I < i « i i + i ( 4 - a n ) = 1.

Now suppose that ql(u2s, u3s) = — A for some s = 2, 3, where

0<A<100/{27a i l (4- a i l )} , by (18),

i.e. 0 < anA < 100/{27(4-au)}.

In this case we have

q(uu u2s, u3s) = a11(«1 + c2u25 + c3«3j)
2-ari1(anA).

Since 0 <alt < 1, we have, successively,

(3a 1 1 -2 ) 2 (3a u -8 )^0 ,

27a?1-108aj1 + 108a11-32 ^ 0,

400-27(4-fl11)(4+a?1)^0,

100/{27(4-au)}g(4+a?1)/4.

By Lemma 2, with a = o n , t2 = OnA, there is an integer M1S satisfying

I «("l5. "2s» "3S) I < I-

Thus the inequalities (17) follow, with the triads (1,0,0), (w12, M22» "32) ar>d (un> "23. "33)-
It remains to consider the case in which

where n = {(4-a,1)(27a11)*}/20. If we choose («„, «32) = (0, - 1 ) and (u23, u33) = (1, 1),
then

100 < , .^ 4 - a M

(4-«it)27fln 4

and (17) again follows, with the triads (1,0,0), (w12, 0, - 1 ) and («1 3 ,1, 1), unless a n = 2/3.
In this case \i = 1/^/2, and q is equivalent to

for some constants c2, c3. By absorbing integral multiples of u2, u3 into «, and changing the
sign of u2, if necessary, we may assume that

0 g c2 g i and 0 <; c3 < 1.

We shall show that there are three triads of determinant 1 for which | q \ < 1, unless c2 = |
and c'3 = 0.
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If c2 4= i and c'3 4= 0, we choose the triads (1, 0, 0), (0, 1, 0) and (1, 0, 1); if c2 = •£ and
c'3 4= 0, we choose the triads (1, 0, 0), (1, 1, - 1 ) and (1, 0, 1); finally, if c2 4= \, c'3 = 0, we
choose the triads (1, 0, 0), (1, 1, - 1 ) and (0, 1, 0).

In the remaining case, when (c2, c'3) = (£, 0), the unimodular substitution

«i = l/i + l/3. u2 = U2-2U3, u3 = U2-U3

will transform q into the equivalent form Q = Q(UU U2, U3), where

u u2, i / 3 ) = u l + u . u ^ u l l
It may be verified that \Q does not represent zero, and that it has absolute minimum 1,
attained only when U2 = 0 (mod 2).

Before going on to the alternative case, we observe that, if M = 0, we can ensure that
0 < a , ! < e, and a slight modification of the foregoing proof will yield a result of the type

I «("i« u2s, u3s) I < e (s = 1, 2, 3)

with || «„ || 33 = 1.

Case (ii). In this case we write

u U2, U 3 ) = - | a n | ( « i + d 2 " 2 + ^3«3)2 + «2(«2. "3).

for suitable constants d2, d3 and^2(«2> M3)> which is a positive definite quadratic form in u2, u3

of determinant 25/(27 | ay, |), and
0 < | a n | < l .

After applying an integral unimodular substitution to the variables u2, u3, it is known
[8, Theorem 51] that we can ensure that

92(«2> "3) = Aul+2Bu2u3

where

AC-B2 = 2 5 \2B\^A and 0 < A gS min \c - • 2 5 = / f°° .}• (19)

27 I « n I (. V3 27 I a n I \ 81 | a n |J

We again choose ( « u , w2i, M31) = (1, 0, 0). We next choose (w22. "32) = (1 .0) . s o that

-q(uu 1, 0) = I a n I (Ul + d'2)
2-\ a u THl «,i I /I)

for appropriate d2, where
0 < | a 1 1 | > l < > / ( i | a n | ) , by (19),

<|+i|flnl.

by the inequality of the arithmetic and geometric means. Since 0 < | axl \ < 1, we have

I flu I (2-1 flu I) < 1 ,
i.e.
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and hence 0 < | a u | A < 1 + ^ 0 ^ .

By Lemma 2, with a = | a n |, t2 = | a n | A, we can always choose an integer u12 satisfying

| q(ui2, 1, 0) | < 1.

Finally, we take (u23, u33) — (0, 1), so that

-«(«! , 0, 1) = | « „ | (ul + d'3)
2-\ « n |"HI flu I C),

for some constant d3. We now show, with the help of Lemma 5, that A cannot be too small,
and then deduce that | alt | C is bounded above in terms of | a u |.

Consider the quadratic section

« ( « 1 , « 2 , 0 ) = - I flu \(ul + d'2u2)
2+Au2

2

oiq(ui, u2, u3). This is an indefinite quadratic form in uu u2 of determinant — | a u \ A, which
does not represent zero non-trivially. Thus if P, N denote the lower bounds of the positive
values of q(uu u2, 0), — q(uu u2, 0), respectively, it follows, by Lemma 5, that

$\an\A. (20)

By hypothesis,

P ^ l and N^M>\all | ( l -e ) . (21)

Thus by (20), (21) we have

I a u I (1-e) < M g N £ PN ^ i I a n | A,

and hence
A>%l-8).

But since \2B\ $, A^ C,by (19), we have

| . | ( l e ) C < ^ C g ^ C B ^
27|an

which leads to

| | c 1 ^

since e < 1/81. A final application of Lemma 5, with a = | a u | and t2 = \ an \ C, shows that

I q(ul3, 0, 1) I < 1

for some integer w13. The inequalities (17) now follow, with the triads (1,0,0), («,2, 1,0) and
(«13, 0, 1).

https://doi.org/10.1017/S2040618500034912 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034912


GENERATING POINTS OF A LATTICE 155

Note. If M' denotes the lower bound of the positive values of g(uu u2, u3) taken over all
integer triads (ut, u2, u3) # (0, 0, 0), then, by a theorem of Barnes [2], we have

vt/3

It may be remarked that this is inadequate to ensure that 0 <at t < 1 and thereby exclude case
(ii) of Theorem 2*.
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