MINIMAL COHESIVE BASIC SETS

by DONALD L. GOLDSMITH \dagger
(Received 21st March 1973)

1. Introduction

A basic set (formerly basic sequence) \mathscr{B} is a set of pairs (a, b) of positive integers satisfying
(1) if $(a, b) \in \mathscr{B}$, then $(b, a) \in \mathscr{B}$,
(2) $(a, b c) \in \mathscr{B}$ if and only if $(a, b) \in \mathscr{B}$ and $(a, c) \in \mathscr{B}$,
(3) $(1, k) \in \mathscr{B}, k=1,2, \ldots$

Some familiar examples of basic sets are
$\mathscr{S}=\bigcup_{k=1}^{\infty} S_{k}$, where $S_{k}=\{(1, k),(k, 1)\}$,
$\mathscr{M}=\{(a, b) \mid a$ and b are relatively prime positive integers $\}$,
$\mathscr{L}=\{(a, b) \mid a$ and b are any positive integers $\}$.
If Φ is any set of pairs of positive integers, the basic set generated by Φ is the intersection of all basic sets which contain Φ. If \mathscr{B} is generated by Φ, we write

$$
\mathscr{B}=\Gamma[\Phi]
$$

A pair (p, q) is called a primitive pair if both p and q are primes.
A basic set \mathscr{B} is cohesive if, for each positive integer k, there is an integer $a=a(k)>1$ such that $(k, a) \in \mathscr{B} . \mathscr{M}$ and \mathscr{L} are cohesive, as is the basic set

$$
\mathscr{B}\left[p^{*}\right]=\Gamma\left[\bigcup_{q \in P}\left(p^{*}, q\right)\right]
$$

generated by the primitive pairs $\bigcup_{q \in P}\left(p^{*}, q\right)$, where p^{*} is any fixed prime and P is the set of all primes. \mathscr{B} is minimally cohesive provided
(1) \mathscr{B} is cohesive,
(2) if $\mathscr{B}^{\prime} \subset \mathscr{B}$ but $\mathscr{B}^{\prime} \neq \mathscr{B}$ then \mathscr{B}^{\prime} is not cohesive.

The function-theoretic and combinatorial properties of arbitrary basic sets were discussed in (1) and (2), and those of cohesive basic sets in (3). We confine ourselves in this note to a further investigation of the combinatorial
\dagger This research was partially supported by a Western Michigan University Faculty Research Fellowship.
properties of cohesive basic sets. In particular, we give a complete determination of the collection of all minimal cohesive basic sets and show that there are no minimal cohesive basic sets contained in \mathscr{M}.

Our principal result is the following
Theorem. A basic set \mathscr{B} is minimally cohesive if and only if $\mathscr{B}=\mathscr{B}\left[p^{*}\right]$ for some prime p^{*}.

2. Proof of the Theorem

We will use several lemmas leading to our main result.
Lemma 1. Suppose that \mathscr{B} is cohesive and that $\Phi_{\mathscr{A}}$ is the set of all primitive pairs in \mathscr{B}. Then \mathscr{B} is minimally cohesive if and only if

$$
\mathscr{B}(p, q)=\Gamma\left[\Phi_{\mathscr{B}}-\{(p, q),(q, p)\}\right]
$$

is not cohesive for every primitive pair (p, q) in \mathscr{B}.
Lemma 2. If \mathscr{B} is cohesive and $\mathscr{B} \subset \mathscr{M}$, then for every positive integer k there are infinitely many primes r such that $(k, r) \in \mathscr{B}$.

Lemma 3. There are no minimal cohesive basic sets in \mathscr{M}.
Proof. Let \mathscr{B} be any cohesive basic set contained in \mathscr{M}, and let (p_{0}, q_{0}) be any primitive pair in \mathscr{B}. Choose any integer $k>1$. By Lemma 2, there is a prime r different from p_{0} and q_{0} for which $(k, r) \in \mathscr{B}$. For each prime divisor p of $k,(p, r) \in \mathscr{B}$ and also $(p, r) \in \mathscr{B}\left(p_{0}, q_{0}\right)$. Hence $(k, r) \in \mathscr{B}\left(p_{0}, q_{0}\right)$. It follows that $\mathscr{B}\left(p_{0}, q_{0}\right)$ is cohesive and so, by Lemma $1, \mathscr{B}$ is not minimally cohesive. That proves Lemma 3.

For a basic set \mathscr{B} and a positive integer k, let $C_{\mathscr{B}}(k)$ denote the set of prime companions of k in \mathscr{B}; that is,

$$
C_{\mathscr{Z}}(k)=\{p \mid p \in P,(p, k) \in \mathscr{B}\} .
$$

Note that \mathscr{B} is cohesive if and only if $C_{\mathscr{P}}(k)$ is never empty for any k.
We are now ready for the proof of the main theorem.
Suppose p^{*} is a fixed (but arbitrary) prime and let $\mathscr{B}=\mathscr{B}\left[p^{*}\right] . \mathscr{B}$ is clearly cohesive since $\left(k, p^{*}\right) \in \mathscr{B}$ for every positive integer k. Moreover, $\mathscr{B}\left(p^{*}, q\right)$ is not cohesive for any prime q. For if $q \neq p^{*}$, then $C_{\mathscr{D}\left(p^{*}, q\right)}(q)$ is empty, and if $q=p^{*}$, then $C_{\mathscr{B}\left(p^{*}, p^{*}\right)}\left(p^{*} q^{\prime}\right)$ is empty, where q^{\prime} is any prime different from p^{*}. Therefore $\mathscr{B}\left[p^{*}\right]$ is minimally cohesive.

Conversely, suppose that \mathscr{B} is any minimally cohesive basic set. It is sufficient to show that the primitive pairs (p^{*}, q) are in \mathscr{B} for some fixed prime p^{*} and every prime q in P.

By Lemma 3, $\mathscr{B} \not \subset \mathscr{M}$. Set

$$
\mathscr{B}_{1}=\mathscr{B} \cap \mathscr{M} .
$$

\mathscr{B}_{1} is a basic subset of \mathscr{M}, and we assert that \mathscr{B}_{1} is not cohesive. For if (p, q) is any primitive pair in \mathscr{B}_{1}, then also $(p, q) \in \mathscr{B}$, and Lemma 1 and the minimal
cohesiveness of \mathscr{B} imply that $\mathscr{B}(p, q)$ is not cohesive. But $\mathscr{B}_{1}(p, q) \subset \mathscr{B}(p, q)$, and so $\mathscr{B}_{1}(p, q)$ is not cohesive. Therefore if \mathscr{B}_{1} were cohesive, then by Lemma 1 it would be a minimally cohesive basic subset of \mathscr{M}, contrary to Lemma 3.

Since \mathscr{B}_{1} is not cohesive, there is an integer $k_{0}>1$ such that, for every integer $a>1,\left(k_{0}, a\right) \notin \mathscr{B}_{1}$. Now if p is any prime in $C_{\mathscr{B}}\left(k_{0}\right)$, then p must divide k_{0}, for otherwise p and k_{0} would be relatively prime, so $\left(p, k_{0}\right) \in \mathscr{B} \cap \mathscr{M}=\mathscr{B}_{1}$, contrary to the choice of k_{0}. In particular $C_{\mathscr{A}}\left(k_{0}\right)$ is finite.

Enumerate all the primes: q_{1}, q_{2}, \ldots, and set

$$
R_{l}=C_{\mathscr{B}}\left(k_{0}\right) \cap C_{\mathscr{B}}\left(q_{1}\right) \cap C_{\mathscr{O}}\left(q_{2}\right) \cap \ldots \cap C_{\mathscr{B}}\left(q_{l}\right),
$$

for $l=1,2, \ldots$. We assert that $R_{l} \neq \varnothing(l=1,2, \ldots)$. Since \mathscr{B} is cohesive, there is an integer $a>1$ for which

$$
\left(a, k_{0} q_{1} q_{2} \ldots q_{l}\right) \in \mathscr{B}
$$

It follows that (a, k_{0}) $\in \mathscr{B}$, so each prime divisor of a is in $C_{\mathscr{G}}\left(k_{0}\right)$. Moreover, $\left(a, q_{i}\right) \in \mathscr{B}(i=1, \ldots, l)$, so each prime divisor of a is also in $C_{\mathscr{D}}\left(q_{i}\right)(i=1, \ldots, l)$. Hence $R_{l} \neq \varnothing$, as claimed.

It follows from the preceding that $\left\{R_{l}\right\}_{l=1}^{\infty}$ is a nested, decreasing sequence of non-empty, finite sets of primes. Therefore

$$
R=\bigcap_{l=1}^{\infty} R_{l} \neq \varnothing
$$

If p^{*} is any prime in R, then $\left(p^{*}, q\right) \in \mathscr{B}$ for every prime q in P.
That completes the proof of the theorem.

REFERENCES

(1) D. L. Goldsmith, On the multiplicative properties of arithmetic functions, Pacific J. Math. 27 (1968), 283-304.
(2) D. L. Goldsmith, On the structure of certain basic sequences associated with an arithmetic function, Proc. Edinburgh Math. Soc. 17 (1971), 305-310.
(3) A. A. Gioia and D. L. Goldsmith, Convolutions of arithmetic functions over cohesive basic sequences, Pacific J. Math. 38 (1971), 391-399.

Western Michigan University
Kalamazoo, Michigan 49001

