MINIMAL COHESIVE BASIC SETS

by DONALD L. GOLDSMITH † (Received 21st March 1973)

1. Introduction

A basic set (formerly basic sequence) \mathcal{B} is a set of pairs (a, b) of positive integers satisfying

(1) if $(a, b) \in \mathcal{B}$, then $(b, a) \in \mathcal{B}$,

(2) $(a, bc) \in \mathcal{B}$ if and only if $(a, b) \in \mathcal{B}$ and $(a, c) \in \mathcal{B}$,

(3) $(1, k) \in \mathcal{B}, k = 1, 2,$

Some familiar examples of basic sets are

$$\mathscr{S} = \bigcup_{k=1}^{\infty} S_k$$
, where $S_k = \{(1, k), (k, 1)\},\$

 $\mathcal{M} = \{(a, b) | a \text{ and } b \text{ are relatively prime positive integers}\},\$

 $\mathcal{L} = \{(a, b) | a \text{ and } b \text{ are any positive integers} \}.$

If Φ is any set of pairs of positive integers, the basic set *generated* by Φ is the intersection of all basic sets which contain Φ . If \mathcal{B} is generated by Φ , we write

$$\mathscr{B} = \Gamma[\Phi].$$

A pair (p, q) is called a *primitive pair* if both p and q are primes.

A basic set \mathscr{B} is *cohesive* if, for each positive integer k, there is an integer a = a(k) > 1 such that $(k, a) \in \mathscr{B}$. \mathscr{M} and \mathscr{L} are cohesive, as is the basic set

$$\mathscr{B}[p^*] = \Gamma[\bigcup_{q \in P} (p^*, q)]$$

generated by the primitive pairs $\bigcup_{q \in P} (p^*, q)$, where p^* is any fixed prime and P is the set of all primes. \mathscr{B} is minimally cohesive provided

- (1) *B* is cohesive,
- (2) if $\mathscr{B}' \subset \mathscr{B}$ but $\mathscr{B}' \neq \mathscr{B}$ then \mathscr{B}' is not cohesive.

The function-theoretic and combinatorial properties of arbitrary basic sets were discussed in (1) and (2), and those of cohesive basic sets in (3). We confine ourselves in this note to a further investigation of the combinatorial

† This research was partially supported by a Western Michigan University Faculty Research Fellowship.

properties of cohesive basic sets. In particular, we give a complete determination of the collection of all minimal cohesive basic sets and show that there are no minimal cohesive basic sets contained in \mathcal{M} .

Our principal result is the following

Theorem. A basic set \mathcal{B} is minimally cohesive if and only if $\mathcal{B} = \mathcal{B}[p^*]$ for some prime p^* .

2. Proof of the Theorem

We will use several lemmas leading to our main result.

Lemma 1. Suppose that \mathcal{B} is cohesive and that $\Phi_{\mathcal{B}}$ is the set of all primitive pairs in \mathcal{B} . Then \mathcal{B} is minimally cohesive if and only if

$$\mathscr{B}(p, q) = \Gamma[\Phi_{\mathscr{B}} - \{(p, q), (q, p)\}]$$

is not cohesive for every primitive pair (p, q) in \mathcal{B} .

Lemma 2. If \mathcal{B} is cohesive and $\mathcal{B} \subset \mathcal{M}$, then for every positive integer k there are infinitely many primes r such that $(k, r) \in \mathcal{B}$.

Lemma 3. There are no minimal cohesive basic sets in \mathcal{M} .

Proof. Let \mathscr{B} be any cohesive basic set contained in \mathscr{M} , and let (p_0, q_0) be any primitive pair in \mathscr{B} . Choose any integer k > 1. By Lemma 2, there is a prime r different from p_0 and q_0 for which $(k, r) \in \mathscr{B}$. For each prime divisor p of k, $(p, r) \in \mathscr{B}$ and also $(p, r) \in \mathscr{B}(p_0, q_0)$. Hence $(k, r) \in \mathscr{B}(p_0, q_0)$. It follows that $\mathscr{B}(p_0, q_0)$ is cohesive and so, by Lemma 1, \mathscr{B} is not minimally cohesive. That proves Lemma 3.

For a basic set \mathscr{B} and a positive integer k, let $C_{\mathscr{B}}(k)$ denote the set of prime companions of k in \mathscr{B} ; that is,

$$C_{\mathscr{B}}(k) = \{ p \mid p \in P, (p, k) \in \mathscr{B} \}.$$

Note that \mathscr{B} is cohesive if and only if $C_{\mathscr{B}}(k)$ is never empty for any k.

We are now ready for the proof of the main theorem.

Suppose p^* is a fixed (but arbitrary) prime and let $\mathscr{B} = \mathscr{B}[p^*]$. \mathscr{B} is clearly cohesive since $(k, p^*) \in \mathscr{B}$ for every positive integer k. Moreover, $\mathscr{B}(p^*, q)$ is not cohesive for any prime q. For if $q \neq p^*$, then $C_{\mathscr{B}(p^*, q)}(q)$ is empty, and if $q = p^*$, then $C_{\mathscr{B}(p^*, p^*)}(p^*q')$ is empty, where q' is any prime different from p^* . Therefore $\mathscr{B}[p^*]$ is minimally cohesive.

Conversely, suppose that \mathscr{B} is any minimally cohesive basic set. It is sufficient to show that the primitive pairs (p^*, q) are in \mathscr{B} for some fixed prime p^* and every prime q in P.

By Lemma 3, $\mathcal{B} \not\subset \mathcal{M}$. Set

$$\mathscr{B}_1 = \mathscr{B} \cap \mathscr{M}.$$

 \mathscr{B}_1 is a basic subset of \mathscr{M} , and we assert that \mathscr{B}_1 is not cohesive. For if (p, q) is any primitive pair in \mathscr{B}_1 , then also $(p, q) \in \mathscr{B}$, and Lemma 1 and the minimal

74

cohesiveness of \mathscr{B} imply that $\mathscr{B}(p, q)$ is not cohesive. But $\mathscr{B}_1(p, q) \subset \mathscr{B}(p, q)$, and so $\mathscr{B}_1(p, q)$ is not cohesive. Therefore if \mathscr{B}_1 were cohesive, then by Lemma 1 it would be a minimally cohesive basic subset of \mathscr{M} , contrary to Lemma 3.

Since \mathscr{B}_1 is not cohesive, there is an integer $k_0 > 1$ such that, for every integer a > 1, $(k_0, a) \notin \mathscr{B}_1$. Now if p is any prime in $C_{\mathscr{B}}(k_0)$, then p must divide k_0 , for otherwise p and k_0 would be relatively prime, so $(p, k_0) \in \mathscr{B} \cap \mathscr{M} = \mathscr{B}_1$, contrary to the choice of k_0 . In particular $C_{\mathscr{B}}(k_0)$ is finite.

Enumerate all the primes: $q_1, q_2, ...,$ and set

$$R_l = C_{\mathscr{B}}(k_0) \cap C_{\mathscr{B}}(q_1) \cap C_{\mathscr{B}}(q_2) \cap \dots \cap C_{\mathscr{B}}(q_l),$$

for l = 1, 2, ... We assert that $R_l \neq \emptyset$ (l = 1, 2, ...). Since \mathscr{B} is cohesive, there is an integer a > 1 for which

$$(a, k_0 q_1 q_2 \dots q_l) \in \mathscr{B}.$$

It follows that $(a, k_0) \in \mathscr{B}$, so each prime divisor of a is in $C_{\mathscr{B}}(k_0)$. Moreover, $(a, q_i) \in \mathscr{B}$ (i = 1, ..., l), so each prime divisor of a is also in $C_{\mathscr{B}}(q_i)$ (i = 1, ..., l). Hence $R_l \neq \emptyset$, as claimed.

It follows from the preceding that $\{R_i\}_{i=1}^{\infty}$ is a nested, decreasing sequence of non-empty, finite sets of primes. Therefore

$$R=\bigcap_{l=1}^{\infty}R_{l}\neq\emptyset.$$

If p^* is any prime in R, then $(p^*, q) \in \mathcal{B}$ for every prime q in P.

That completes the proof of the theorem.

REFERENCES

(1) D. L. GOLDSMITH, On the multiplicative properties of arithmetic functions, *Pacific J. Math.* 27 (1968), 283-304.

(2) D. L. GOLDSMITH, On the structure of certain basic sequences associated with an arithmetic function, *Proc. Edinburgh Math. Soc.* 17 (1971), 305-310.

(3) A. A. GIOIA and D. L. GOLDSMITH, Convolutions of arithmetic functions over cohesive basic sequences, *Pacific J. Math.* 38 (1971), 391-399.

WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MICHIGAN 49001