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Taylor’s hypothesis, relating temporal to spatial fluctuations in turbulent flows is
investigated using powerful numerical computations by del Álamo & Jiménez (J. Fluid
Mech., 2009, this issue, vol. 640, pp. 5–26). Their results cast doubt on recent
interpretations of bimodal spectra in relation to very large-scale turbulent structures
in experimental measurements in turbulent shear flows.
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1. Introduction

With the rise of modern computational power, it is currently an exciting time for
fluid mechanics. Large-scale computer simulations of fluid flow allow us to probe
long-standing scientific questions in a fashion different from traditional experimental
techniques. Using simulation, access to complete data sets describing the evolution
of entire flow fields often sheds new light on old problems and guides further
experimental investigation. The article by del Álamo & Jiménez (2009, this issue, vol.
640, pp. 5–26), which calls into question Taylor’s famous hypothesis, serves as a case
in point.

Turbulence is the process by which a broad range of structures and complexity
arises out of a fluid system, a system which is, after all, governed by a relatively simple,
yet crucially nonlinear, set of mathematical equations. Turbulence is ubiquitous, and
often plays a key role in both natural and engineered fluid systems. Historically,
simultaneous resolution of spatial and temporal components of turbulence has
presented a challenge to laboratory experimentalists, because streamwise interference
from multiple probes often prevents the reliable measurement of full spatio-temporal
data. Alternative non-intrusive laser diagnostic techniques provide adequate spatial
resolution, but are limited in temporal resolution. For this reason, Taylor (1938)
proposed his famous hypothesis relating the spatial and temporal characteristics of
turbulence. Taylor reasoned that if the turbulence intensity u′ is small compared to
the mean flow speed U , then the temporal response at a fixed point in space can be
viewed as the result of an unchanging spatial pattern convecting uniformly past the
point at velocity U .

For grid-generated compressible turbulence, Taylor’s hypothesis performs well
for the divergence-free part of the flow, but does not accurately represent the
dilatational, i.e. inherently compressible part (Lee, Lele & Moin 1992). Also, it is well
known that Taylor’s hypothesis breaks down in the case of flows containing high
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Passing frequency f = ω/(2π)

Convection velocity U

Wavelength λ = 2π/kx

Figure 1. An elementary schematic of a single Fourier mode convected by uniform flow. The
wave produces oscillations of frequency ω as it passes by a fixed station (vertical dashed line).

shear (Lin 1953). Nevertheless, many experimentalists apply this hypothesis when
complete spatio-temporal data is unavailable. For wall-bounded flows, the result has
been ‘bimodal energy spectra’ (Hites 1997; Kunkel & Marusic 2006), which seem
to contradict the theoretical k−1

x spectrum, kx being the streamwise wavenumber,
predicted by Townsend (1976). Focusing on this case, del Álamo & Jiménez show
from their simulation data that the long wavelength mode may be an artifact
of Taylor’s hypothesis, and that the true spectrum matches theory more closely.
Furthermore, they suggest a novel correction to Taylor’s hypothesis accounting for
frequency-dependent convection velocities.

2. Overview

As shown in figure 1, the convection velocity of a single Fourier mode is determined
from its frequency and wavelength as U = f λ = ω/kx . For turbulent flows, this
definition is ambiguous because a spectrum of frequencies (shown as a shaded
region in figure 2) is observed at each wavenumber kx . Taylor’s hypothesis (more
appropriately an approximation) removes this ambiguity by assuming that the
convection velocity is independent of both frequency and wavenumber and is simply
equal to the local mean velocity. One major contribution of del Álamo and Jiménez is
to examine the consequences of this assumption in the case of turbulent channel flow,
using full three-dimensional space–time data taken from simulations. In the highly
sheared region near the wall, del Álamo and Jiménez found that modes with long
wavelengths in fact propagate faster than the local mean velocity. This is consistent
with the idea that these longer scales arise from very large-scale structures (with
heights on the order of the width of the channel) whose convection velocity scales
with the bulk mean velocity instead of the local mean. This is illustrated in the figure
beside the title, where the red and yellow vortices propagate with the local mean
profile at each vertical distance from the wall, whereas the larger purple and green
velocity structures propagate at a speed that is close to the average of U (y) over their
wall-normal extent.

Because these fast modes produce high-frequency signals, Taylor’s approximation
aliases them to shorter wavelengths, creating artificial maxima and minima in the
spatial energy spectrum. Figure 10(a) of del Álamo and Jiménez’s article shows that
the true pre-multiplied energy spectrum appears flatter, reminiscent of Townsend’s
k−1

x theory, than the spectrum computed using Taylor’s approximation. Moreover, the
spectrum computed via Taylor’s approximation matches closely the bimodal shape of
spectra derived from experimental data, suggesting that the bimodal spectra found in

2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

21
26

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992126


Journal of Fluid Mechanics Focus

luids
onF

kxkx,1

cu,1

cu,2

ω

Figure 2. A sketch of the spatio-temporal spectrum of a turbulent flow. The convection
velocities cu,1 and cu,2 shown are determined by the location of the maxima of spectra

taken along constant kx and ω, respectively. Del Álamo and Jiménez’s definition (not shown)
corresponds to the centre of gravity of the shaded spectrum.

recent experiments may be explained by an artifact of Taylor’s approximation rather
than a physical effect. It is important to note, however, that the absence of a long-
wavelength peak in the spatial energy spectrum is not necessarily inconsistent with
the notion that energetic outer structures (such as packets of hairpin vortices) extend
into the buffer layer. It does suggest, however, that their energy is more broadbanded
than commonly supposed.

Several schemes have been proposed to define the convection velocity
unambiguously, while retaining its dependence on both wavenumber and frequency.
One possibility, proposed by Wills (1964), considers the maximum of the frequency
spectrum observed along a constant wavenumber. This maximum defines a frequency
which can be used to define a convection velocity cu,1 (figure 2). Alternatively, the
maximum of the spectrum of wavenumbers at a constant ω may be used to define a
slightly different velocity cu,2 (in general, cu,1 �= cu,2). Other definitions for convection
velocity are possible as reviewed by Hussain & Clark (1981) and Goldschmidt,
Young & Ott (1981). A common element of these previous definitions is that they
rely on full kx − ω spectral information which, presents significant experimental
difficulties and thus motivates experimentalists to apply Taylor’s approximation in
the absence of alternatives.

Del Álamo & Jiménez also suggest a physically motivated definition of convection
velocity which depends on spectral information in only one direction (either space
or time) and on a local derivative in the remaining direction. It seeks to minimize
the variance of the total or derivative, finding the reference frame in which waves
experience the least amount of change. For example, the single propagating wave
of figure 1 is ‘frozen’ in a reference frame moving with the mean velocity U . Here,
Taylor’s hypothesis applies exactly and the variance of the total derivative would
vanish. However, for a turbulent flow, the variance may be minimized, but not
completely eliminated, thus providing a convenient measure of the validity of Taylor’s
hypothesis.
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3. Future

Bimodal spectra derived from channel flow experiments have been the cause of much
recent interest as they seem to provide additional concrete evidence of energetic very
large-scale flow structures. Disturbingly, the long-wavelength spectral peak has been
absent from numerical simulations, questioning their credibility. Using full spatio-
temporal simulation data, however, del Álamo & Jiménez (in press) have shown that
experimental bimodal spectra may well be artifacts of Taylor’s approximation, and
that when aliasing effects are taken into account, the resulting spectra agree better with
those measured from simulation and predicted by theory. Clearly, experimental shear
flow data based on Taylor’s approximation will now need to be reconsidered. Also,
while the existence of very large-scale structures is well known, flatter spectra imply
that their energy shifts to longer wavelengths. This theoretical implication encourages
future testing requiring higher Reynolds number simulations or long spatio-temporal
experimental measurements.

While del Álamo and Jiménez pass a word of caution on direct application of
Taylor’s approximation to shear flows, their proposed correction should be valuable
in a number of experimental and numerical settings. For example, this correction
may be useful in the design of high-performance non-reflecting numerical boundary
conditions. This is of paramount importance to aeroacoustic simulations where the
sound radiated, while loud to human perception, actually comprises a very small
percentage of the total aerodynamic energy of a flow. Numerical errors at an
outlet boundary can overwhelm the physically generated sound and lead to gross
mispredictions. This has led to the development of aeroacoustic boundary conditions
estimating a convection velocity (Wang, Lele & Moin 1996) similar to del Álamo and
Jiménez’s correction.
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