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Introduction.

The following rational method of dealing with the reduction of a
singular matrix pencil to canonical form has certain advantages. It
is based on the principle of vector chains, the length of the chain
determining a minimal index. This treatment is analogous to that
employed by Dr A. C. Aitken and the author in Canonical Matrices
(1932) 45-57, for the nonsingular case. In Theorems 1 and 2 tests
are explicitly given for determining the minimal indices. Theorem 2
gives a method of discovering the lowest row (or column) minimal
index. Theoretically it should be possible to state a corresponding
theorem for each of these indices, not necessarily the lowest, and
prior to any reduction of the pencil. This extension still awaits
solution.

Theorem 3 is logically equivalent to the arguments used by
Kronecker (who was the first to discuss the singular case, Berlin
Sitzungsberichte (1890), 1375 and (1891), 9, 33) and subsequently by
Dickson (Trans. American Math. Soc, 29 (1927), 239-253). For a
geometrical treatment see Segre, Atti Ace. Torino, 19 (1884), 878.

§1. Let
A = rA + sB = [ra{j + s6i;] (1)

be a matrix pencil, where the elements a^ and 6(J- all belong to a field
y, while r, s are independent variables. Each matrix A, B, A is
assumed to have n rows and n' columns, while neither""^ nor B is a
scalar multiple of the other. I t is proposed to reduce A to a
canonical form

PAQ, |P|=M, |G|=M. (2)
where P and Q are nonsingular constant matrices with'elements in J,
P having n rows and columns, and Q having n'.

Let p be the rank of A in r and 5: that is, let p be the highest
order among the minor determinants of A which do not vanish
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68 H. W. TURNBUXL

identically for all r and s. Then obviously there exist nonnegative
integers fx and /x' such that

fj. = n — p^O, fj,'=n'— p 2^ 0. (3)

Two cases arise, the singular and the nonsingular. In the latter both
p. and y.' are zero: in the former at least one, /u. say, is nonzero. It
will be proved that in the singular case ft is the number of ways,
linearly independent in jf, in which the rows of A are linearly
related, while JU.' similarly relates the columns.

n

Such a row relation 2 6t rowt = 0 can be conveniently written
i = 1

as a matrix product
0A = [0i,02 ,Bn](rA+sB)=O ' (4)

as appears at once when written out in full. The coefficients dt of
this relation here appear as the n components of a row vector 6 which
is said to annihilate A.

By Smith's Theorem1 the matrix A can be reduced in ^ to a
diagonal form D such that

HAK = diag (Eu E2, .. .., Ep, 0, . . . . , 0) = D (5)

where H and K are nonsingular matrices each of whose elements are
homogeneous polynomials in r, s, divided possibly by a power of 5,
whereas the determinants | H \ and | K | are independent of r. The p
nonzero elements E are the invariant factors. This allows relation
(4) to take a simpler form: thus 0 = 6A. = dH'1 DK~\ Hence

<f>D = 0, where j> = 0H~x. (6)

This (j>, so found, is also a row vector: and clearly it can annihilate
D if and only if its first p components are zero. Thus

4> = [ o , o , . . . . , o , 4>f+1, <f>p+2, ... ., 4>n-\ ( ? )

where the last ^ (= n — p) components are arbitrary functions of r
and s. Let the unit matrix of n rows and columns be written

I = {ii, H, , in) (8)

where ^ = [1, 0, . . . . , 0], i2 = [0, 1, . . . . , 0], , in = [0, . . . . , 0 , 1].
Then (7) can be written

£ £ f • • • • + <f>nhi (9)

1 Turnbull and Aitken : Canonical Matrices (1932), 23.
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which shows that the most general condition (4) is a consequence of f±
linearly independent conditions

»p + 1.D-0, i^2D = 0, . . . . . inD = 0. (10)

Each of these conditions is of the form ihHAK = 0, from -which the
nonsingular K and any scalar common factor of the components can
be deleted and the powers of s in the denominators cleared, the result
being called 0A = 0. This proves the following theorem.

THEOREM I. / / the pencil A = rA + sB possesses row dependence,
there are exactly /z distinct conditions

where 6 is a row-vector whose components are homogeneous 'polynomials
in r and s with coefficients in J^, (n — /x) being the rank of A. in r and s.

Correlative]y: there are exactly \x distinct relations of column
dependence

AB' = 0

where 6' is a column vector homogeneous in r and s.

There is no necessary connection between 6 and 0'.

§ 2. Let the relations just found be arranged in ascending degree in
r and s, as

61A = 0, 92A = 0 , ^ A = 0, (1)

where the degree of the vector d{ is mt, so that

0 <S 7Kj ^ m2 ^ . . . . ^ m ^ . ( 2 )

These are in fact the Kronecker minimal indices of row dependence
characterising a singular pencil. A like set [m/], fx in number,
refers to column dependence. These sets [m,] and [m/] are
numerical invariants under nonsingular transformation from A to the
type PAQ above, and also under nonsingular linear transformation
from r, s to r', s'. The proof of these statements is immediate: in
either case we have only to suppose the contrary and then obtain
an identity of less than minimal order by applying the reciprocal
transformation; which involves an absurdity.

These minimal indices together with the set of invariant factors
Elt E2, Ep of § 1 (5) completely characterise the pencil A under
such transformations, as Kronecker originally proved. A direct
method will now be given for finding these minimal indices.
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§ 3. Consider the following matrices

M1 = [A, B], M2 = [A B
A J , M3 =i —

A .

~A

•

B
A

.
B
A B

the M consisting of n, 2n, 3n, . . . . rows, a n d the N of n', 2n', Zn', . . . .
columns respectively. Le t pu p/ denote t h e i r respective ranks. Then,
if JLIJ = in — pu /x/ =jn' — p/, we have

Mi = n — pi ^ 0, fj,2 = 2ra — p2 ^ 0, /u.3 = 3n — p3 ^ 0, . . . , (2)
and

Mi' = n ' - p / ^ 0, ,*/ ^ 0. (3)

THEOREM 2. / / jnm+1 is i/ie ,/irs^ nonzero integer in the sequence
/xj, fjL2, . . . ., £Aen m is the value of the smallest minimal index of row
dependence, while /u.TO+1 is the member of such indices which are equal.
Column dependence is given similarly by \x!m + 1 .

Proof. By Smith's Theorem, if ^ > 0, exactly ^ distinct rela-
tions S Xt rowj = 0 exist between the rows of Mu where the \ are 2n'

i
constants which are not all zero in ^. On introducing the row
vector

u = [Ai, A2 , A,,] =(= 0

we may put such a relation in the form of a matrix product

u[A,B] = 0, (4)

that is uA — 0, uB = 0 : so that u [rA + sJB] = 0 for all r, s. But u
is a nonzero constant vector in y . We have therefore secured a
minimal index ml = 0: and the number of such is px (=(= 0).

Next if MI = 0> M2 > 0) then a row vector consisting of 2n
components exists such that

[ ^ B\ = 0, [%, «J =j= 0- (5)

Here «i is a set of n components, u2 is a further set, and in all there
are 2n components. Hence

«! A = 0, «! £ + u2 A = 0, «2 -B = 0,
whence

+ «2 s] [r^ + sB] =0, (6)
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for all values of r, s. But this is explicitly a minimal relation
0A = 0, where 6 = rut + su2 is a vector of index unity. There are
/x2 such distinct relations, while there are none of the zero index
type, since u [A, B] =(= 0 if fii = 0, for all nonzero constant vectors u.

Next if /*! = 0, fj.2 = 0, /x3 > 0, then (4) and (5) are impossible,
but three vectors ult u2, uz each of n components exist such that

[ult u2i i<3] M3 = 0, [?<i, Uo, w3] =j= 0. (7)

Hence
ux A = 0, Mj B + u2 A = 0, u2 B + % A = 0, u3 B = 0;

that is
[% r2 + «2

 r 5 + 11% s2] [rA + sB] = 0 (8)
for all r, s. This gives /x3 distinct relations of index 2. The general
case is now evident: it also applies to columns by means of the

r~A . 1
expressions R W}> B A { t̂/, u2'} etc., where {«!', w2'} denotes

L • ^J
a column of In elements. This proves the theorem.

It should be remarked that the matrices N are not the transposed
of the M: the elements within A (and B) maintain their same relative
positions. Also, while the method discovers the initial index mx or
m/ it does not at once discover higher indices, if any.

For example:

. . ~ ~1 . . .

. . ! . 1 . .
. 1 .

A =

r . .

s r .

. s r

. . s

s . .

A =

1
1

(9)

Here the ranks of Mx, Mt, M3, iW4 are 6, 12, 16, 20 respectively so
that fxz = 2 is the first nonzero p. This implies two minimal indices
each equal to 3 — 1 = 2.

§4. In the singular case let m denote the smallest minimal index, so
that the corresponding minimal relation 0A = 0 can be written more
explicitly as
[uos

m — u1s
m-1r + M2s"'-2r2 - + (-)mumrm] (rA + sB) = 0 (1)

where each of the (m + 1) coefficients it; is a row vector of n constant
components. Since this is identically true for all r, s the coefficients
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of powers of r vanish; so that the following minimal chain of vector
equations is obtained:

0 = u0B, uQA = Wi-8, uxA = u2B, . . .., uM_xA = umB, u,nA = 0. (2)

THEOREM 3. / / m is the least minimal index of row dependence
the vectors v0, ux . um determined by this chain of equations are
linearly independent: and so also are the m vectors UiB, u2B, . . . ., umB.

Proof. The theorem is obvious if m = 0. If m > 0, the rank
(n — v) of B must be less than n, so that n components for the vector
w0 can be found (in v distinct ways) satisfying the n scalar equations
implied by

n0B=0, ^o=t=0.

Next the relation ux A = u0 B is virtually a set of n nonhomogeneous
linear equations to determine the n components of ux in terms of those
of uQ and the elements of A and B. (This step is possible if and only
if the rank n — v1 of A is the same as that of the augmented matrix
{A, UQB} which has (n + 1) rows. Since the whole chain is already
known to exist, at least one of the v values of u0 will satisfy this and
provide v1 possible values of %x).

Let this process be continued for constructing «0, w1; .. .., up until
up+1 is the first such vector to be linearly related to its predecessors.
Then scalar constants at (zero or otherwise) exist in J such that

0 =Mj,+i + OL\UP + a2MP_1 + . . . . + a;)+1«0- (3)

Let (p + 1) new vectors vt be formed,

v0 = u0,

a2

which are palpably linearly independent, since u0, . . . . , up are.
Then

0 = v0B, v0A=vxB, ...., vp_1A = vpB, vpA = 0 (5)

as is at once seen by substituting for each v in terms of the uim For
example v0 A — vx B = u0 A — (ui + au0) B = u0 A — ux B = 0. But
this is a chain implying a relation 0A = 0 with u replaced by v (=f= 0)
and m by p. Since m is minimal m g p. Hence u0, uu .. .., um are
linearly independent since w0, . . . . , up are.

https://doi.org/10.1017/S0013091500008002 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008002


ON THE REDUCTION OF SINGULAR MATRIX PENCILS 73

If uq A is the firstFor the second part of the theorem let TO > 0.
of the sequence u0A, u^A, .... to be linearly dependent upon its
predecessors, let

0 (6)

or wqA — 0, where wq — uq + fi\Uq_x + . . . . + j3?w0. By constructing
w0, v>i, • • • •, wq-i analogously to the vt in (4) it again follows that a
chain 0 = w0 B, .. . ., wqA = 0 exists, which in turn cannot be shorter
than the chain (2). Hence q ^ TO: and this proves the theorem.

Reduction to Canonical Form.

§ 5. Consider the following matrix relation

!

'_-Po_

or PA =

(rA +

XQ~\

sB) =

where

1 r

s r

i s

\_rAo+

M 0 , M 1 ;

r
Q

. . .

rAx + sB^

., um are tlle

M l

M 2

firs

D

B

t_
t (TO

TO > 0,

+

(1)

of P.
Since by Theorem 3 these are linearly independent, P itself may be
made a nonsingular constant matrix by choosing a suitable submatrix
P o for its remaining (n — m — 1) rows. If TO = 0 then PA has a zero
top row and we pass on to consider lower rows. If TO > 0, then the m
rows ut B are also linearly independent, so that a choice of a further
submatrix Co is possible, the whole being nonsingular and written
Q~1. Owing to the chain of relations utA =ui+xB the first (m + 1)
rows of the product PA agree with the corresponding rows of XQ"1.
For example the i"' row gives

rui_1 A i^Y B — stt,_i B + rw,- B.

Hence (1) is identically true provided that the remaining {n — m — 1)
rows of X are identical with those of PA.Q. A canonical minimal
submatrix L)lh of X has now been semi-isolated, such that

where, for example,

LQ = 0, = I I , L2 =
r .
s r
. s

(2)

(3)
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m\ being the lowest index of row dependence. If X contains a second
such index m2, then m2 will in fact be lowest row-index in the sub-
matrix rAi + sBj; but it will emerge more directly by selecting a
new solution v0 of the equation uB = 0, and forming a new chain
(since /x > 1)

v0 B = 0, vx B = v0 A, ...., vnhA =0, ra2 ^ m^. (4)

T H E O R E M 4. The (m2 + 1) vectors v are linearly independent of
themselves and of the u vectors. Also all the vectors u^ B, vtB (i> 0) are
linearly independent.

Proof. Let vp be the first such vector which is linearly dependent
upon its predecessors u or v. (i) If no vector u with suffix higher
than p enters, let the relation be

v p
0 = 2 ar Vp_r + £ PrUp-r, O-O = 1-

r=0 r=0

Construct
wQ= aovo+pouo,
wx = a0 vx + aj v0 + j80 «! + ft u0, etc. ^ '

exactly as in Theorem 3. Then the w vectors will form a chain,
independent of the u vectors, such that

u;o=J=O, w0B=0, wxB= woA, , whA = 0, (6)

where h = p — 1 < m2. This contradicts the assumption. The proof
that the utB, ViB are unrelated is analogous to that in Theorem 3.
(ii) If however terms uq (q > p) enter the relation, write it as

YIuq+1 + + ym _-,umi (7)

where a0 = 1, y0 =$= 0, q > p. Let wP denote either side of this equality
and let h be defined by

p ^ h = p + nil — q < mi- (8)

From ^ = 7 0 ^ + + ym, _a Mm, further vectors wp+u wp+2, . . . ., wh

may be derived by successively adding unity to each suffix of w and
u, and deleting terms of suffix exceeding % . The concluding vector
is then wh = youmi. With those defined by (5) the whole set
tv0, wlt . . . . . wh is then a chain of index less than m1, which again
involves a contradiction. The proof that the ut B, v{ B are unrelated
is- analogous, starting with an identity such as (7) but with A
appearing as final factor of each term. Again a chain w0, .. .., wh

would exist, where w0, . . .., wp are defined by (5), and wp+1 , wh

by the rule just given. This proves the theorem.

V
2

r = 0
O-rVp-r +

P
2 jfi

r = 0
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This theorem allows us to take the vt to be the first (m2 + 1) rows
in Po, and the vi+x B the first m2 rows in Co. The result is

{rA
Lm..

where two canonical minimal submatrices have now been semi-
isolated. No new feature arises in further steps until all /x sub-
matrices Lm have been semi-isolated. Among themselves they are
completely isolated in the form

L = diag (Lmi, Lm,_ , Lm).

This exhausts all possible row dependence. Column dependence is
then sought in / / possible ways, but owing to the isolation of each
Lm. in its own row, such column dependence is independent of

columns occupied by L. The result is a submatrix

L' = diag (L'm., i / m V ) ,

and any further submatrix Xo not lying in the rows or columns of L
and L' must be nonsingular. This can be reduced to rational or
classical canonical form S say, and finally all remaining nonzero
elements other than those of L, L' and S can be removed by the
methods earlier explained.1

§ 6. Also, for directly obtaining the rational form of the nonsingular
portions of the pencil, vector chains of the same general type
ui+1A =u{B may be formed but for which u0 =j= 0, u0 A =j= 0, | A | =j= 0.
They must then be examined in descending order of their length,
as in the rational case2 for the collineatory group. The method is
sufficiently illustrated by the following example:

~uo~\ |~ r, s, ""I r%4"

(rA + sB) = r, s uxA
_aos, aiS, r + a2s_ _u2A_

In this example u3 = a0 u0 + o-i ^ I + 0-2 U2 is the first of such a chain
to be related to its predecessors.

1 Canonical Matrices (1932), 127-8.

- Canonical Matrices, 49.
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It is to be noted that in the example of §3(9) the chain
appearing in the first four rows of A is not a true minimal. The
failure is due to the presence of the lower element s in the first
column. Every vector satisfying u0 B = 0 must be of the form

[a, p, 0, 0, - j8,0],

where a, j3 are arbitrary constants. Taking a = 1, fi = 0, the shortest
chain is obtained as

u0 = [1, 0, 0, 0, 0, 0], ux = [0, 0, 0, 0, 1, 0], u2 = [0, 0, 0, 0, 0, 1]

where u0 B = u0 A — ux B = ux A — u2B = u2A = 0 .

I t may also be noted that the same method will furnish every
sub matrix of type

"~ r
s r

s r

due to a zero latent root, and belonging to the nonsingular core. All
such are found according to ascending value of e by use of every
vector u0 for which u0 B = 0 but which does not lead to a minimal
chain. A modified chain now appears, following the same law except
that it terminates abruptly with «,_! at a point where it is impossible
to satisfy the equation ueB = ue_iA by any vector ue.
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