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Abstract

Chronic food insecurity remains a challenge globally, exacerbated by climate change-driven shocks such as
droughts and floods. Forecasting food insecurity levels and targeting vulnerable households is apriority for
humanitarian programming to ensure timely delivery of assistance. In this study, we propose to harness a machine
learning approach trained on high-frequency household survey data to infer the predictors of food insecurity and
forecast household level outcomes in near real-time. Our empirical analyses leverage the Measurement Indicators
for Resilience Analysis (MIRA) data collection protocol implemented by Catholic Relief Services (CRS) in
southern Malawi, a series of sentinel sites collecting household data monthly. When focusing on predictors of
community-level vulnerability, we show that a random forest model outperforms other algorithms and that
location and self-reported welfare are the best predictors of food insecurity. We also show performance results
across several neural networks and classical models for various data modeling scenarios to forecast food security.
We pose that problem as binary classification via dichotomization of the food security score based on two
different thresholds, which results in two different positive class to negative class ratios. Our best performing
model has an F1 of 81% and an accuracy of 83% in predicting food security outcomes when the outcome is
dichotomized based on threshold 16 and predictor features consist of historical food security score along with 20
variables selected by artificial intelligence explainability frameworks. These results showcase the value of
combining high-frequency sentinel site data with machine learning algorithms to predict future food insecurity
outcomes.

Policy Significance Statement

Up to 811 million people face hunger today, and climate-change risks exacerbating their vulnerability to
shocks such as drought and floods. Early warning systems are an essential tool to anticipate the incidence of
hunger and target assistance accordingly. This research demonstrates the feasibility and accuracy of a
forecasting system, which uses data from a network of embedded enumerators on the ground in combination
with sophistical machine learning algorithms. When used to predict food security outcomes, the model has an
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83% accuracy rate and generate accurate forecasts up to 4 months in the future. These results should inform
the scaling up of sentinel sites and strengthening of existing early warning systems in countries prone to
recurring food insecurity.

1. Introduction

Nearly 690 million people are hungry, or 8.9% of the world population, according to the Food and
Agriculture Organization (2020). The vulnerability of these populations, who often rely on subsistence
agriculture, is exacerbated by droughts, floods, and other shocks. This has a direct impact on human
capital accumulation. When deprived of their livelihoods, households (HHs) engage in negative coping
strategies, such as the depletion of productive assets or the reduction of food intake (Maxwell, 1996).
Nutritional deprivation experienced by children early in life can have lifelong consequences on their
educational achievements and wage-earning potential (Alderman et al., 2006).

To mitigate such adverse effects, it is crucial to earmark resources in a timely and targeted fashion, a
process that would be greatly facilitated by detailed predictions of which HHs are most likely to suffer
from food insecurity. These analytic efforts, in turn, rely on up-to-date data from either remote sensing or
embedded sentinel sites (Headey and Barrett, 2015).

Driven by this imperative, to date, there have been widespread efforts to predict food insecurity. These
include efforts to predict crop production based on satellite data (Lobell et al., 2011). These implicitly
focus on food availability, while food security is as much determined by allocation and affordability. A
recent publication (Yeh et al., 2020) uses publicly available satellite imagery trained onHH data to predict
asset levels, accounting for 70% of the observed variation. Yet the same algorithm struggles to capture
changes in these levels over time, given the amount of noise in the data. At the policy level, the Integrated
Phase Classification (IPC) System and Famine Early Warning System use a combination of geospatial
data and qualitative reports on the ground to issue forecasts of food security outcomes at the subnational
level. However, their predictive accuracy has been decidedly mixed (Choularton and Krishnamurthy,
2019). A recent study in Malawi uses HH survey data to predict food insecurity at the subnational level,
demonstrating significant gains in accuracy when introducing measures of assets and demographics on
top of geospatial data (Lentz et al., 2019).

We outline here the efforts to predict food security using a system of high-frequency (HF) sentinel sites
in southern Malawi. The Measurement Indicators for Resilience Analysis (MIRA) data collection
protocol uses embedded enumerators to collect monthly HH data on food security outcomes
(Knippenberg et al., 2019). These data are uploaded and immediately available for analysis. Using
predictive algorithms powered bymachine learning (ML), we demonstrate how this approach can provide
up-to-date forecasts of food security outcomes informed by timely, ground-truth data. The proposed
methodology is a proof of concept, demonstrating the use of HF data for now-casting food security
outcomes in the context of ongoing programmatic and policy decisions.

In this study, we propose an ML framework illustrated in Figure 1, to analyze and forecast the food
security status of the low-resource communities and HHs in Malawi. This study was a Microsoft AI for
Humanitarian Action project conducted using a dataset collected based on the MIRA protocol
designed by Catholic Relief Services (CRS) in collaboration with researchers at Cornell University.
Our results suggest that when predicting future food insecurity outcomes, the best-performing model
has an F1 of 81% and an accuracy of 83% in predicting food security outcomes, far better than a linear
equivalent. Most of the presented models demonstrate decent performance with at least 15 months of
data, reflecting the importance of capturing seasonal effects. Previous levels of food insecurity,
combined with 20 key indicators, are sufficient to predict future food insecurity. These can be collected
through a combination of remote sensing and rapid surveying, either in person or over the phone.
These results validate the predictive power of sentinel sites to inform the triggering and targeting of
assistance within communities.
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The paper is structured as follows: Section 2 provides a brief overview of the literature on resilience
measurement that guided the study. Section 3 provides the context for the HR data collection initiative,
MIRA. Section 4 summarizes the data, including the use of the reduced Coping Strategy Index (rCSI) as a
measure of food insecurity. Section 5 outlines the methodological validations, benchmarking the use of
ML algorithms against a logistic regression (LR), shortlisting a series of predictors, and predicting future
food security outcomes. Section 6 presents top predictors of food insecurity and the predictive perform-
ance of the model. Section 7 discusses the policy implications of these results. Section 8 concludes.

2. Literature Review

We contribute to a rapidly growing literature that focuses on using new, systematized approaches to
improve predictions of food security. McBride et al. (2021) provide an excellent review of the existing
evidence, emphasizing that these predictive models should be built for purpose.

Food security is a key welfare indicator, sensitive to seasonal and spatial variation. Estimates of the
prevalence of food security are strongly correlated and depict similar trends over time, fluctuating
between a relatively abundant period and a “hungry season,” often immediately preceding the harvest
(Maxwell et al., 2014).ManyHHs oscillate in and out of food security throughout the year, a dynamic that
is not necessarily captured by annual or bi-annual HH surveys (Anderson et al., 2018).

In terms of methodological improvements to predict welfare outcomes, McBride and Nichols (2018)
highlight the use of ML algorithms to improve the performance of the Proxy Means Testing. The authors
argue that these algorithms should seek to optimize out-of-sample prediction byminimizing inclusion and
exclusion errors. Kshirsagar et al. (2017) use LASSO to shortlist 10 variables that can be used for a
predictive model of welfare, presenting a user-friendly approach that can be operationalized in the field.

Figure 1. Machine learning workflow developed to study food security status of households and
communities based on the Measurement Indicators for Resilience Analysis protocol.
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In the context of predicting food security indicators, Cooper et al. (2019) use geo-located data on child
nutrition combined with localized climate and governance indicators to map where droughts have the
largest effects on child stunting outcomes. Given the importance of data transparency and availability,
Browne et al. (2021) show how a random forest (RF) model trained on open access data can predict
contemporaneous and near-future food security outcomes in order to inform early warning systems.
Andree et al. (2020) draw from historical IPCs, available at the subnational level, to predict future
outcomes. Training the data on a series of geospatial and administrative indicators, the predictive
algorithm outperforms the IPC own forecasts based on expert opinion. Their proposed model allows
for a trade-off between inclusion and exclusion errors, reflecting policy preferences.

Maxwell et al. (2008) point out that a lack of HF food security data hinders early warning for food
security crises. To improve these predictions, Headey and Barrett (2015) emphasize the collection of HF
monthly or quarterly data, as opposed to the standard survey administered on an annual or biannual basis.
They recommend a panel design, like the one outlined by the Food Security InformationNetwork, arguing
that monitoring HHs over time would allow for the detailed examination of underlying determinants that
improve HH resilience.

One of the earliest attempts to operationalize the use of HF panel data was by Mude et al. (2009) to
inform an early warning model in northern Kenya. Knippenberg et al. (2019) use HF HH food security
data to demonstrate the cyclical and path dependent nature of HH food security. This predictive model
allows them to create a shortlist of HH characteristics that impact HH food security outcomes. Lentz et al.
(2019) use a log-linear model to predict food security outcomes in Malawi, using HH survey data
combined with geospatial and price data. The additional resolution allows their predictive model to
outperform IPC predictions.

3. Context: The MIRA Study

In the first few months of 2015, flooding in Malawi displaced an estimated 230,000 people, damaged
about 64,000 hectares of land, and destroyed the asset wealth of many. By August 2015, the floodwaters
receded and the majority of those displaced returned to their homes to rebuild their lives.

A consortium led by CRS was implementing the United in Building and Advancing Life Expectations
(UBALE) program in three of the poorest and disaster-prone districts inMalawi –Chikwawa, Nsanje, and
Rural Blantyre. UBALE was a 5-year, $63 million United States Agency for International Development
(USAID)/FFP-funded Development Food Assistance Program being managed by CRS-Malawi. UBALE
had a suite of overlapping interventions that aimed to sustainably reduce food insecurity and build
resilience by reaching 250,000 vulnerable HHs in 284 communities. The main activities of the project
included agriculture and livelihood, nutrition, and community disaster risk reduction activities, as well as
a capacity strengthening component to strengthen and enhance existing systems and structures. The
floods combined with the implementation of the UBALE program provided an excellent opportunity to
examine HH resiliency and the factors that influence resilience.

The MIRA study officially started in May 2016 with a baseline evaluation and was then piloted over
3 months in the Chikwawa District. A full survey was developed to capture the initial states, capacities of
HHs participating in the study, as well as shocks and stressors, and other HH characteristics, modeled on
traditional HH surveys (see Table 12). This full survey was administered as a baseline, midline, and
end line.

In addition, the researchers developed an HF questionnaire to be administered monthly. It was
designed as a resilience-focused, low-burden tool, taking less than 10 min to administer. By collecting
key indicators monthly, it provides essential information to trackHHwell-being trajectories over time in a
shock-prone environment.

Following the pilot, the MIRA protocol was rolled out to 2,234 HHs across all three districts under
the USAID-funded UBALE program. The selection of communities was randomized, stratified by
access to the Shire river as the pilot had revealed this to be an important determinant of HH’s
livelihood strategies. HHs within the community were selected at random from established registries
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which included all HHs in the community.1 For this second cohort, over 37 rounds of data have been
collected.

TheMIRA protocol has been adopted by several other CRS country programs to collect more datasets.
ThisML study jointly conducted byCRS andMicrosoft has led to the development of a scalableMIRAAI
model in CRS, which is planned to be used as one packaged solution in other programs in CRS as well. In
this paper, we focus our empirical analyses only on the Malawi dataset. However, once new datasets
become available, the proposed ML workflow can be used on MIRA datasets from these other locations.

4. MIRA Dataset in Malawi: Case Study

To leverage the panel feature of the MIRA dataset for forecasting purposes, we selected the HHs that
regularly participated in the MIRA program for at least 20 consecutive months from October 2017 to
November 2019. This selection scheme resulted in 1,886 HHs for whom the data are included in our data
science study described in the next sections. Table 1 outlines the difference in means across HHs that were
retained and those that dropped off after the baseline. HHs that dropped out were slightly younger on
average, had spent slightly less time in the village, and were more likely to rely on farming. With those
caveats in mind, the retained sample remained broadly representative of the HHs in the community. Thus,
in total, 37,720 observation records are available for our study. The visual distribution of the observations
across southern Malawi is illustrated in Figure 2.2

All of the HHs are based in southern Malawi. When enumerators meet with HHs to conduct HF or
annual surveys throughout the MIRA programs deployments, they keep records of HHs’ GPS locations
and survey timestamps. Table 2 shows the geographical coverage of the MIRA dataset where TA and
GVH denote Traditional Authorities and Group Village Headman. Table 3 shows some demographics
information about these HHs.

In this study, the outcome indicator for food security is the reduced coping strategy, rCSI, which is
computed based on the coping strategymodule questions outlined in Table 4. Our proposedmodels can be
used for other food security metrics of interest, as well. To compute the rCSI score, we use equation (1),
where s denotes a single coping strategy, S the set of coping strategies, ws weights assigned to each

Table 1. Comparison of the sample of retained HHs versus HHs that dropped

Continuous variable
(Retained,
n = 1,886)

(Dropped,
n = 348)

t-test
statistics p-value

HH size 5.492 5.546 �0.376 0.707
HH head age 44.59 43.0 1.812 0.07
Years in village 29.85 27.52 2.192 0.0284

Binary variable z-test statistics p-value

Primary income: crop farming 0.682 0.77 �3.287 0.001
Gender: female 0.492 0.531 �1.374 0.169
Participated in farmers group 0.166 0.181 �0.691 0.49

Abbreviation: HH, household.

1 Because the selection criteria for UBALE communities were nonrandom, specific household characteristics are not necessarily
generalizable beyond the context of the program.

2As previously noted, selection into the UBALE program was nonrandom, so these communities are not intended to be
representative of their districts.
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strategy, and days the number of days each strategy is used by the HHs in the past 7 days. Weights are
based on best practice in the literature (seeMaxwell, 1996) and are outlined in Table 4 for each strategy in
the coping strategy index module:

rCSI =
X

s∈S
ws �dayssð Þ: (1)

Figure 3a demonstrates the histogram of the rCSI score for the entire dataset when all HHs and time
steps are pooled together. Figure 3c,d shows the spatial distribution of rCSI scores across districts and TA
areas in southern Malawi. Temporal distribution of the average raw rCSI score and a binary version of it,
for two different thresholds of 16 and 19, are demonstrated in Figures 3b and 4a,b, respectively.

For further details of MIRA surveys, please see the snippets of the MIRA HF and annual survey
modules shown in Tables 11 and 12.

Figure 2. Malawi map and visual distribution of households.

Table 2. Measurement Indicators for Resilience Analysis coverage

Districts TAs GVHs Villages Households

3 10 69 111 1,886
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5. Methodology

In this study, we pursue two goals: (Step I) conduct feature importance analysis to derive community-level
insights on top predictors of food insecurity and (Step II) conduct food security forecasting to predict
future food security outcomes. In this section, we present ourML approaches and methodologies for each
of these goals.

Step I: Identifying key predictors

The first step is to calculate the top predictors of future food insecurity. To derive community-level
insights from theMIRA dataset inMalawi, we use the entire dataset to train and test classical MLmodels.
Then we select the top-performing model and apply a black-box interpretability technique, named
Shapley additive explanations (SHAP; Lundberg and Lee, 2017), to rank variables in terms of their
contribution to the predicted outcomes. The SHAP framework uses game-theoretical notions to determine
the contributions of predictor features to final predictions. This approach assumes that predictor features

Table 3. Basic HH demographics and livelihood information

Mean (SD) Range

HH size 5.49 (2.47) 1, 20½ �
HH head age 44.6 (15.1) 18, 80½ �
Years in village 29.86 (18.24) 1, 80½ �
Feature Categories with their percentages

HH head gender
Female: 45%; male: 55%
Primary income Crop farming: 73.2%; piece work: 19.8%; Zina: 1.84%;

domestic remittances: 1.74%; salaried employment: 1.5%;
livestock farming: 0.9%; fish farming: 0.56%; foreign remittances: 0.38%

Secondary income Crop farming: 32.4%; piece work: 45.7%; other: 5.4%;
domestic remittances: 5.4%, salaried employment: 1.94%,
livestock farming: 6.3%; fish farming: 1.67%; foreign remittances: 1.25%

Floor dwelling Smooth mud: 67.4%; sand: 21.3%; smooth cement: 10.85%; wood: 0.38%

Abbreviation: HH, household.

Table 4. Coping strategy index module in the Measurement Indicators for Resilience Analysis high-
frequency survey and weights assigned to each strategy to compute rCSI score

Coping strategy index module

In the past 7 days, if there have been times when you did not have enough food
or money to buy food, how many days has your household had to:
– Rely on less preferred and less expensive foods? (w= 1)
– Borrow food, or rely on help from a friend or relative? (w= 2)
– Engage in piece work or other menial labor? (w= 1)
– Send children out to beg? (w= 4)
– Reduce the number of meals eaten in a day? (w= 1)
– Reduce the size of meals eaten in a day? (w= 1)

Abbreviations: rCSI, reduced Coping Strategy Index.
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are similar to players in a coalitional gamewhere the game payoff, which is the predicted probability in our
problem, is distributed among the features based on Shapley concepts in game theory. In the game theory
domain, the Shapley value is a solution concept of fairly distributing both gains and costs to several actors
working in a coalition. SHAP can be applied to a variety of MLmodels as discussed in Lundberg and Lee
(2017).

In this study, we focus on the rCSI score as the food security metric or the outcome indicator.Wemodel
the problem as a binary classification task where we convert the continuous outcome indicator into a
binary variable, y∈ 0, 1f g, based on a threshold, rCSI . Two cutoffs were used: rCSI = 16 is the mean
outcome in the dataset, splitting the sample into two halves. rCSI = 19 represents a level of acute food

(a) overall distribution of rCSI score: median is 16, only

9% of the records show no food insecurity status

(b) temporal distribution of rCSI score: food security

shows upward trends in October, November and December

(c) spatial distribution of rCSI across districts: among

three districts, Nsanje shows the lowest mean for food

insecurity status and Chikwawa shows the highest

mean and variation in rCSI score

(d) spatial distribution of rCSI score across TAs: among

all, Maseya shows the highest mean and Makhuwira

shows the lowest mean with high variation for food

insecurity score, Mlolo has highest variation

Figure 3. Reduced Coping Strategy Index score distributions.

(a) temporal distribution of mean binary rCSI score based

on threshold 19: food security shows upward trends in

October, November and December

(b) temporal distribution of mean binary rCSI score based

on threshold 16: food security shows upward trends in

October, November and December

Figure 4. Mean binary reduced Coping Strategy Index score distributions based on the two thresholds
19 and 16.
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insecurity that warrants provision of immediate humanitarian assistance.3 y= 1 represents the positive or
food insecure, class and y= 0 represents the negative or not food insecure class of HHs. We use all other
HH variables collected as predictor or input features, xi, to predict the outcome indicator, yi.

To train a predictive model, we use LR and RF approaches. The LR models the posterior probabilities
of the classes via a linear function in input features, that is, xi, while at the same time ensuring that they sum
to one and remain in 0, 1½ �. In contrast to the logistic model, regression trees can capture complex
interactions between features. Tree-based methods partition the feature space into a set of rectangles and
then fit a simple model (e.g., a constant) in each one. However, trees are noisy and suffer from high
variance. To improve the variance reduction, the RF is a reasonable choice as they are built based on a
large collection of de-correlated trees and averaging their results. More details about these classical ML
models can be found in Friedman et al. (2001).

Dataset preparation for ML is demonstrated visually in Figure 5a for more clarity. In Figure 5a, we
focus on one HH for demonstration; thus, we skip the vertical axis that indicates all HHs. The horizontal
axis denotes time steps, and the depth axis denotes all available variables including predictor features
(i.e., information captured in shock, assistance, and contextual data modules in MIRA surveys that might
influence the food security status of the HHs) and the outcome indicator (i.e., the rCSI score for which we
aim to make predictions). Each variable is demonstrated by a circle. Each arrow that is drawn on a row of
circles denotes one data point for which predictor features are associated with the rCSI score in the
corresponding time step.

Note that although this data preparation approach provides insights about the population, this scheme
for data point generation cannot be used for forecasting purposes since predictor features and the outcome
indicator come from the same time step for each data point. Moreover, the explicit temporal aspect of the
dataset is notmodeled for this analysis. Rather, we include themonthly information as one of the predictor

(a) rCSI score shown along with other independent

variables vs. time for each household

(b) randomized dataset split scheme along time and

household dimensions for demonstration

Figure 5.Machine learning dataset preparation and split scheme with cross-sectional data assumption
where independent variables are used as predictor features for the reduced Coping Strategy Index score
at the time step. Records are pooled together for HHs and time steps to generate a randomized data split.
The horizontal axis denotes time, the vertical axis denotes HHs, and the depth axis denotes independent

variables.

3While Maxwell et al. (2008) and Coates (2013) emphasize that food security thresholds are context-specific, the IPC technical
handbook uses a threshold of 19 to distinguish between a “stressed” and a crisis level (Partners, 2019).
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features and rely on inherent and implicit temporal information in the dataset. We change these
assumptions, in our second approach described in the next section, where we propose a forecasting
model at the HH level.

We denote the dataset as D= X, yð Þ where X∈ℝTN�f is a matrix of f predictor features recorded at
each of these T discrete time steps and N HHs. Each time step t∈ T½ � is 1-month long, and each location
n∈ N½ � denotes an HH that has participated and is included in our study. y∈ 0, 1f gTN denotes the
observation vector associated with all data points. Finally, we pool together the entire data points for all
HHs across all time steps and split into train/test portions randomly for ML modeling as illustrated in
Figure 5b.

Step II: Predicting future food insecurity

Having identified key predictors using a cross-sectional approach, to derive HH-level insights, we
propose to leverage the ML framework and time-series characteristics of the MIRA dataset. The goal
is to forecast the vulnerability of each HH to food insecurity based on their historical records. To that end,
we use the neural network (NN) architectures proposed in Wang et al. (2017) along with the RF model to
compare their performances in similar settings.

Figure 6 can be used as a visual demonstrator of the dataset preparation scheme. Each variable at each
time step is demonstrated by a circle. Figure 6a shows all the variables for one HH. Thus, we skipped the
vertical axis that indicates all HHs. The horizontal axis denotes time steps, and the depth axis denotes all
variables including predictor features (i.e., information captured in shock, assistance, and contextual data
modules in MIRA surveys that might influence HHs food security) and the outcome indicator (i.e., the
rCSI score for which we aim to make predictions).

We now allow a time window for predictor features to be used in the ML model. For example, in
Figure 6a, each parallelogram shows the variables and their time window used to predict the outcome
indicator. The parallelogram is connected to the corresponding outcome variable via an arrow. Depending
on the selected time window for the time series and the entire time covered by the dataset, we slide the
parallelogram to generate more data points for each HH. When identifying predictors, we used predictor

(a) rCSI score shown along with other independent variables vs.

time for each household. Boxes show how historical data isused

as predictor features for forecasting futurer CSI scores

(b) splitting the entire dataset based on time

demonstrated with dashed boxes.

Figure 6. Time-series data point preparation and split scheme. The horizontal axis denotes time, the
vertical axis denotes households, and the depth axis denotes independent variables.
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features and the outcome indicator from the same time step t; here, the outcome variable, food insecurity,
comes from the next time step tþ1 to ensure that the analysis is suitable for forecasting. Once all the data
points are generated, we split the data into train/test sets considering time order. In other words, we use the
data of all HHs from the very last time step as the test set and all other data points before the last time step
as the training set.

Figure 7 demonstrates the details of the layers for all NN models. Figure 7a shows the details of the
multilayer perceptron (MLP) model, which contains three hidden layers consisting of 500 fully
connected neurons. Each of the hidden layers is followed by a ReLU activation function to add
nonlinearity to the model. ReLU stands for rectified linear activation function, which is a piecewise
linear function that outputs the input directly if it is positive; otherwise, it outputs zero, if the input is
negative. The final layer is a softmax function to convert the output of the network to the values between
0 and 1. A softmax function is a generalization of the logistic function to multiple dimensions to
normalize the output of a network to a probability distribution over predicted output classes. The dashed
lines in the plot show the dropout rate, which denotes the regularization method used to avoid
overfitting during the training. Figure 7b shows the convolutional neural network (CNN). The main
building blocks in CNNs are convolutional layers, which are the basic process of applying a filter to an
input to produce an output activation. This operation has been shown to be effective in fields like
computer vision in extracting unique features. The network used in this study consists of two
convolutional layers with 6 and 12 filters followed by a sigmoid function to add nonlinearity to the
network. The final layer is a softmax layer to convert outputs properly for the binary classification task.
Figure 7c demonstrates the Resnet architecture in which some skip connections are introduced and
ReLU activation is used to add nonlinearity. Furthermore, batch normalization operations are con-
sidered to make artificial NNs faster and more stable through the normalization of the input layer by
re-centering and re-scaling. This model also contains a pooling layer that reduces the spatial size of the
representation to reduce the number of parameters and computation in the network. The final layer is a
softmax function.

6. Results

In this study, we aim to present a proof of concept to use ML predictive modeling and interpretability
frameworks in food security domain to develop insights for stakeholders. We evaluate several data
modeling scenarios and report validation results to reflect on the models’ performance and robustness. To
quantitatively evaluate the performance of trained ML models, we use standard metrics including
precision, recall, F1, and accuracy defined in Table 5. For some of our experiments in this study, we
only focus on F1 score, an aggregate metric that reflects simultaneously on both precision and recall

(a) MLP (b) CNN

(c) Resnet

Figure 7. Neural Nets used for time-series forecasting.
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metrics. It is computed as the harmonic mean of precision and recall, for which the equation is shown in
Table 5.

Step I results: Key predictors

In this section, we demonstrate the results of SHAP framework on top of RF predictive model. We also
evaluate performance of both RF model and the LR model as the baseline for comparison. After data
processing, 37,720 records and 126 predictor variables are available for our experiments. Due to space
consideration, we only show a selected list of variables in Table 3 and in the survey snippets in Tables 11
and 12. We have converted all the variables into monthly data. For the annual surveys, we assumed those
variables remained similar across different months in a specific year. These variables have been collected
annually since they are not expected to change at a fast pace. In this experiment, we apply fivefold cross-
validation and random shuffling on the dataset (Table 6). For each fold, an LRmodel and an RFmodel are
trained on 75% of theMalawi dataset and assessed on the unseen 25% of the data.We split the dataset in a
randomized way to create each fold. For the binarization of the rCSI score based on the threshold 16, the
class imbalance (ratio of positive to negative classes) in the dataset is 47.81% for the training set and
48.81% for the test set. For the threshold 19, these numbers are 39.01 and 40.52%.We report the average
performance across all folds.

The evaluation results for ML models performance are shown in Table 7 using LR and RF. The cutoff
threshold indicates the threshold values, rCSI , above which HHs are classified as food insecure,
converting the rCSI score to a binary variable. The RF model outperforms the LR across metrics and

Table 5. Evaluation metrics for performance of classifier

Metric Equation Interpretation

Precision TP
TPþFP Number of true positives, that is, vulnerable HHs identified, out of positive

predictions
Recall TP

TPþFN Number of true positives identified out of total vulnerable HHs

F1 2� precision�recall
precisionþrecall Harmonic mean of the precision and recall

Accuracy TPþTN
TPþFPþTNþFN Howwell the algorithm has classified positive and negative classes over total

cases

Abbreviation: HH, household.

Table 6. Comparing classical ML model performances based on random partitioning of the dataset

Country Malawi

Split Random: train 75%—test 25%

Cutoff threshold 16 19

Model LR RF LR RF

F1 0.69 0.81 0.60 0.76
Precision 0.70 0.81 0.68 0.81
Recall 0.67 0.80 0.53 0.72
Accuracy 0.70 0.82 0.72 0.82

Abbreviations: LR, logistic regression; ML, machine learning; RF, random forest.
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for both threshold values. We then apply the SHAP framework to tease out the most predictive variables
that inform future food insecurity.

In Figure 8a, we see the global summary results of the SHAP analysis. The SHAP value, shown on
the x-axis, indicates the contribution of each specific feature to themodel output for each data point. The
larger SHAP values correspond to larger contribution of the specific feature to the model outputs, which
are the predicted probability for vulnerability to food insecurity. Positive SHAP values correspond to
positive contribution to the predicted probabilities, and negative values indicate negative contribution
to probability predicted by themodel. The relative value of each feature is shownwith colors on the dots
where blue indicates small and red indicates large values. The features are demonstrated on the y-axis
where they are ordered globally based on their average level of contributions to the final predictions,
according to the corresponding SHAP values for the entire dataset, collectively. In this plot, overlapping
points are jittered in the y-axis direction to get a sense of the distribution of the Shapley values per
feature. We used the InterpretML 0.2.7 Python library for the SHAP implementation and generation of
summary and dependence plots. As shown in the plot, the locations of the HHs are among the top
features and have contributed significantly to the final predictions, and thus they have resulted in a
wider range of SHAP values. This reflects how food insecurity is a co-variate phenomenon, concen-
trated in specific areas where HHs are disproportionately poor and lack access to safety nets. Moreover,
this observation indicates that the models are location-specific, and thus they should be retrained for
each new site.

Future welfare and overall status are also among the top predictor features. To analyze these variables
further, we also show SHAP dependence plots. Figures 8c,d demonstrates that an increase in self-
evaluation of future welfare and overall status corresponds to a downward trend in SHAP values and
the corresponding vulnerability scores. The colors shown in the dependence plots indicate a second

(a) SHAP global summary results (b) SHAP dependence plots: month score

(c) SHAP dependence plots: household future welfare (d) SHAP dependence plots: household overall status

Figure 8. Shapley additive explanations global and dependence plots.
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feature, chosen automatically by the SHAP algorithm, that may have an interaction effect with the feature
we are plotting. If an interaction effect is present between this other feature and the feature we are plotting,
it will show up as a distinct vertical pattern of coloring. For the three variables shown in Figure 8, we do
not observe such meaningful interaction effects. The SHAP dependence plot for time variable is shown in
Figure 8b, where upward trends visible from October to February align with the patterns observed in
Figures 3b and 4a,b.

Step II results: Predicting future outcomes

To evaluate the performance of respective models, we report the F1 score. As before, the outcome
indicator is a binary variable using the threshold rCSI . In the plots shown in Figures 9 and 10, the y-axis
indicates the F1 score and the x-axis indicates time-series length used to prepare the dataset. In each plot,
there are five curves for the cases where (a) only the past rCSI score, (b) the rCSI score along with the
SHAP top 8 features from Step 1, (c) the rCSI score along with the SHAP top 20 features, (d) only the
SHAP top 8 features, or (e) only the SHAP top 20 features are used as the predictor features subset in ML
models. We transform the MIRA dataset into three-dimensional arrays where the first dimension
represents a record or data point generated based on the sliding window scheme shown in Figure 6.
Depending on the length of the time series used and the number of variables included in the experiment,
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Figure 9. Evaluation results versus time-series length (reduced Coping Strategy Index cutoff = 19).
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the training and test set sizes vary. For example, for case (c), the training set size is (13,202, 21, 12) and the
test set size is (1,886, 21, 12), where the first, second, and third dimensions show the number of records,
number of variables, and length of the time series used, respectively. Note that in case (c), variables used
include historical rCSI scores along with the SHAP selected 20 variables. For the MLP and RF models,
this multidimensional input array needs to be reshaped into (13,202, 252) and (1,886, 252), where the
second dimensions represent the number of time steps and variables used in an aggregate way. In this case,
for the threshold 19, the positive class represents 33.71 and 36.85% of the datasets, in the training set and
the test set, respectively. For the threshold 16, these numbers are 42.59 and 45.28%. We kept 10% of the
training data for validation. The test set is created based on the data from the last time step in November
2019. In the next section, we show the model’s robustness across multiple future time steps.

For NN models, excluding rCSI score as time series, as shown in cases (d) and (e), deteriorates
performance significantly. Across configurations, case (c) is consistently among the top-performing
models. Most of the presented models demonstrate decent performance with at least 15 months of data.
This amount of data would capture all seasonal fluctuations. Time-series length also had a significant
impact on Resnet results.

All other metrics are summarized for the optimal setup, that is, using rCSIþ SHAP top 20 features and
time-series length of 15 months, in Table 7.
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Figure 10. Evaluation results versus time-series length (reduced Coping Strategy Index cutoff = 16).
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Robustness: Additional time steps

Even if model parameters can be updated in real time based on the most up-to-date data collected from the
field, there is value in forecasting several months into the future to inform the planned delivery of
assistance. To that end, we demonstrate the performance of our proposed approach up to 4 months in the
future in Table 8. Since the length of time series impacts the number of time steps available for training and
testing, we use a semi-optimal configurationwith a 12-month predictivewindowwhere eachHHhas eight
rounds of outcomes. This allows reasonable number of time steps available for training and testing. We
train our model on the first four time steps and leave the last four time steps for validation. Since we are
assigning more data to the validation set and fewer data to the training set, performance deteriorates
slightly, but 4 months out the model can still predict food insecure HHs with an F1 between 0.664 and
0.735 and an accuracy between 0.792 and 0.784.

Tables 9 and 10 show confusionmatrix for all time steps and both thresholds to demonstrate Type-I (false-
positive) and Type-II (false-negative) errors. For the threshold CSI = 19, the predictions show a consistent
false negative of 11% and a false positive of 30–35%. Lowering the threshold toCSI = 16 decreases the false
negative rate to 7%, but increases the false positive rate to between 34 and 45%. The false negatives are stable
across time steps, whereas the false positives increase. Were these predictions tied to the disbursement of
assistance, these different thresholds highlight the trade-off between exclusion error, where eligible HHs
would not receive assistance, and inclusion error, where noneligible HHs would receive assistance.

7. Policy Implications

These results provide a use case in how to leverage ML algorithms trained on HF data to predict future
levels of food insecurity.

The analysis allows us to shortlist which features have the greatest predictive power and should
accordingly be monitored. Previous food security as measured using rCSI is an informative feature,
indicating its persistence within HHs over time. Through the SHAP framework, we can infer that other
highly predictive features are location, current, and future subjective notions of welfare, seasonal
information, experienced shocks, and social assistance. While these should not be interpreted causally,
these results highlight that for the regions studied here, a small subset of 21 indicators out 126 accounts for

Table 7. Predictive performance using previous rCSI þ SHAP top 20 features and 15 months of data

Split Temporal: seven steps Train-1 step test

Cutoff threshold 19

Model MLP CNN Resnet RF

F1 0.74 0.71 0.69 0.73
Precision 0.72 0.67 0.69 0.78
Recall 0.75 0.77 0.69 0.69
Accuracy 0.8 0.77 0.77 0.81

Cutoff threshold 16

Model MLP CNN Resnet RF

F1 0.78 0.76 0.76 0.81
Precision 0.77 0.72 0.74 0.82
Recall 0.79 0.8 0.77 0.81
Accuracy 0.8 0.77 0.78 0.83

Abbreviations: CNN, convolutional neural network; MLP, multilayer perceptron; rCSI, reduced Coping Strategy Index; RF, random forest; SHAP,
Shapley additive explanations.
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Table 9. Confusion matrix for the threshold 19 and random forest results for robustness check
presented in Table 8

Predicted

ts = 1 Pos. Neg. ts = 2 Pos. Neg. ts = 3 Pos. Neg. ts = 4 Pos. Neg.

Actual Pos. 89% 11% Pos. 89% 11% Pos. 89% 11% Pos. 89% 11%
Neg. 30% 70% Neg. 35% 65% Neg. 34% 66% Neg. 34% 66%

Abbreviation: ts, time step.

Table 8. RF model performance across multiple steps ahead using rCSI þ SHAP top 20 features and
length of 12 months for time series

Split Temporal: four steps Train-4 step test

Model RF

Cutoff threshold 19

Time step F1 Precision Recall Accuracy

1 0.726 0.805 0.661 0.846
2 0.660 0.794 0.565 0.795
3 0.676 0.836 0.567 0.801
4 0.664 0.817 0.560 0.792

Overall 0.681 0.813 0.585 0.808

Cutoff threshold 16

Time step F1 Precision Recall Accuracy

1 0.748 0.805 0.698 0.811
2 0.733 0.832 0.655 0.786
3 0.734 0.831 0.658 0.783
4 0.735 0.828 0.660 0.784
Overall 0.737 0.824 0.667 0.791

Abbreviations: rCSI, reduced Coping Strategy Index; RF, random forest; SHAP, Shapley additive explanations.

Table 10. Confusion matrix for the threshold 16 and random forest results for robustness check
presented in Table 8

Predicted

ts = 1 Pos. Neg. ts = 2 Pos. Neg. ts = 3 Pos. Neg. ts = 4 Pos. Neg.

Actual Pos. 93% 7% Pos. 92% 8% Pos. 94% 6% Pos. 93% 7%
Neg. 34% 66% Neg. 44% 56% Neg. 43% 57% Neg. 44% 56%

Abbreviation: ts, time step.
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most of the variation in food insecurity. Monitoring these features can be done rapidly and at a low cost.
Location and prices can be monitored remotely, while other indicators can be solicited either through
in-person interviews or over the phone. Since rCSI is composed of five indicators, it could even be
collected cost effectively via short message service or interactive voice response.

The analysis also demonstrates the value added from collecting HF data that capture seasonal
fluctuations. Once 1 year of observations is included in the algorithm, the predictive power as measured
using the F1 metric increases significantly. This algorithm can predict outcomes up to 4 months in the
future, providing sufficient time for government agencies and humanitarians to mobilize and distribute
assistance. Unlike other ML efforts that focus on large administrative areas, this can be targeted at the
community level, and even down to HHs if necessary, based on their previous history of food insecurity.

Finally, this paper demonstrates a use case driven by imperatives on the ground, and one that is being
scaled up at the national level. By proving both cost effective and policy-relevant, the MIRA methodo-
logical approach has gained many adherents. It is being implemented in additional countries, including
Madagascar andEthiopia. TheWorld Bank, USAID, andDepartment for International Development have
all financedHFmonitoring systems inMalawi relying on sentinel sites, drawing from theMIRA protocol.
To ensure that these efforts are integrated into national institutions, CRS and its partners are currently
engaged with the government of Malawi to incorporate MIRA into its national resilience strategy.

8. Conclusion

In this study, we demonstrated how ML modeling combined with HF sentinel data can be leveraged to
predict future food insecurity. Twenty-one key predictors are sufficient to predict community and HH
food security outcomes up to 4 months into the future. Highlighting the importance of seasonality,
including at least 15 months of historical data boosts model performance significantly.

While our empirical analysis is based on HF MIRA survey data collected in southern Malawi, our
proposed methodology can be applied to other HF datasets. In particular, this paper serves as one more
exemplar of the value of embeddedHF sentinel sites tomonitor food security. Once in place and combined
with sophisticated algorithms, these can predict food security outcomes and present actionable knowledge
about low-resource communities for stakeholders and authorities. Such knowledge can inform more
targeted intervention programs.
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9. Annex

Table 11. MIRA high-frequency survey snippet.

Example of MIRA High-frequency Survey Questions

ACTUAL SHOCKS MODULE
– Were you affected by any large shocks over the past 12 months?
– To what extent have you been able to recover from the shock(s)?
– Which of these shocks was most responsible for the above effect? e.g., drought, flood, crop disease,

livestock disease, business failure, job loss, assistance termination, sale price fall, food price rise,
HH death, HH breakup, illness, theft
SELF-EVALUATION MODULE
– When you look ahead to one month from now, do you think you will be better/same/worse off?
– Overall, are you better/same/worse off than last month?
ASSETS CHANGES MODULE
– Have you purchased any large assets over the last month?
– Have you sold any assets over the last month?
– Have you gifted any assets over the last month?
– Did you have any other expenditures this last month?
– How many months of food do you have in storage?
COPING STRATEGY INDEX MODULE
In the past 7 days, if there have been times when you did not have enough food or money to buy food, how

many days has your household had to:
– Rely on less preferred and less expensive foods? (w= 1)
– Borrow food, or rely on help from a friend or relative? (w= 2)
– Engage in piece work or other menial labor? (w= 1)
– Send Children out to beg? (w= 4)
– Reduce number of meals eaten in a day? (w= 1)
– Reduce size of meals eaten in a day? (w= 1)
HOUSEHOLD HUNGER SCALE MODULE
In the past 30 days, how many days did you or any household member:
– Not have enough food or money to buy food?
– Go to sleep at night hungry because there was not enough food?
– Go a whole day and night without eating anything because there was not enough food?

e33-20 Shahrzad Gholami et al.

https://doi.org/10.1017/dap.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/dap.2022.25


Cite this article: Gholami S, Knippenberg E, Campbell J, Andriantsimba D, Kamle A, Parthasarathy P, Sankar R, Birge C
and Lavista Ferres J (2022). Food security analysis and forecasting: A machine learning case study in southern Malawi. Data &
Policy, 4: e33. doi:10.1017/dap.2022.25

Table 12. MIRA annual survey snippet.

Example of MIRA Annual Survey Questions

DEMOGRAPHICS MODULE
– Household size
– Household head age
– Has your household changed in size? Is it bigger or smaller?
LIVELIHOOD MODULE
– What is your primary source of income?
(Zina, crop-farming, domestic-remittances, fish-farming, foreign-remittances, livestock-farming, piece-

work, salaried-employment)
– What is your secondary source of income?
(crop-farming, domestic-remittances, fish-farming, foreign-remittances, livestock-farming, other, piece-

work, salaried-employment)
– Do you or any member of this household own any land that can be used for agriculture?
ASSETS MODULE
Household items that members of your household may own, does someone own:
– Bicycle
– Motorbike
– Mobile phone
– Electricity
ASSISTANCE MODULE (UBALE)
– Have you been visited by the agricultural extension agent in the last month?
– Have you ever taken part in SILC group activities?
– Have you ever been part of a farmer group?
FOOD DIVERSITY MODULE
– How often did your household eat yesterday during the day or at night? Category of food eaten:
– Any nsima, bread, rice, noodles, biscuits, or any other local foods made from millet, sorghum, maize,

rice, and/or wheat?
–Any Pumpkins, carrots, squash, orange/yellow fleshed sweet potatoes, or any other similar local foods?
–AnyWhite-fleshed sweet potatoes, potatoes, yams, manioc, cassava or any other foods made from roots

or tubers?
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