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Abstract

The Dieudonné crystal of a p-divisible group over a semiperfect ring R can be endowed

with a window structure. If R satisfies a boundedness condition, this construction gives

an equivalence of categories. As an application we obtain a classification of p-divisible

groups and commutative finite locally free p-group schemes over perfectoid rings by

Breuil–Kisin–Fargues modules if p > 3.
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7 The crystalline equivalence 1988
8 Perfectoid rings 1992
9 Windows and modules for perfectoid rings 1996
10 Classification of finite group schemes 1999
Acknowledgements 2003
References 2003

1. Introduction

Let p be a prime. A semiperfect ring is an Fp-algebra R such that the Frobenius endomorphism

φR : R→ R is surjective. In the first part of this article we study the classification of p-divisible

groups over semiperfect rings by Dieudonné crystals and related objects. This was initiated in

[SW13]. In the second part we draw conclusions for perfectoid rings.

1.1 Crystalline Dieudonné windows

Every semiperfect ring R has a universal p-adic divided power extension Acris(R). By a lemma of

[SW13], this ring carries a natural structure of a frame Acris(R), which means that the Frobenius

of Acris(R) is divided by p on the kernel of Acris(R)→ R. This is not clear a priori because in

general Acris(R) has p-torsion.

The following result has been suggested in [SW13].
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Dieudonné theory over semiperfect rings and perfectoid rings

Theorem 1.1. Let R be a semiperfect ring. There is a natural functor

Φcris
R : BT(SpecR)→Win(Acris(R))

from p-divisible groups over R to windows over Acris(R), such that the underlying module of
Φcris
R (G) is given by the Dieudonné crystal of G.

See Theorem 6.3. The functor Φcris
R is a variant of the functor ΦR of [Lau13] from p-divisible

groups to displays for an arbitrary p-adic ring R, and of the functor ΦR of [Lau14] from p-divisible
groups to Dieudonné displays for a local Artin ring R with perfect residue field.

Our main result on the functor Φcris
R depends on the following boundedness condition. We

call R balanced if Ker(φR)p = 0, and we call R iso-balanced if there is a nilpotent ideal a ⊆ R
such that R/a is balanced. Every f -semiperfect ring in the sense of [SW13] is iso-balanced.

Theorem 1.2. If R is iso-balanced, the functor Φcris
R is an equivalence.

See Theorem 7.10. Theorem 1.2 implies that for iso-balanced semiperfect rings the crystalline
Dieudonné functor

DR : BT(SpecR)→ (Dieudonné crystals over SpecR)

is fully faithful up to isogeny. When R is f -semiperfect, this is proved in [SW13] using perfectoid
spaces.

Assume that R is a complete intersection in the sense that R is the quotient of a perfect ring
by a regular sequence. Then Acris(R) is p-torsion free, and windows over Acris(R) are equivalent
to Dieudonné crystals over SpecR with an admissible filtration in the sense of [Gro74]; this
filtration is unique if it exists. Thus for complete intersections, Theorem 1.2 means that the
functor DR is fully faithful and that its essential image consists of those Dieudonné crystals
which admit an admissible filtration. Full faithfulness is already proved in [SW13] as an easy
consequence of full faithfulness up to isogeny.

For a general semiperfect ring, Acris(R) can have p-torsion, and the functor DR cannot be
expected to be fully faithful. The phenomenon that passing from Dieudonné modules to windows
can compensate for this failure is familiar from the classification of formal p-divisible groups over
arbitrary p-adic rings by nilpotent displays, and from the classification of arbitrary p-divisible
groups over local Artin rings by Dieudonné displays.

1.2 Dieudonné modules via lifts
The proof of Theorem 1.2 relies on another construction of Dieudonné modules, which is
independent of the functors Φcris

R . A lift of an Fp-algebra R is a p-adically complete and p-torsion
free ring A with A/pA = R and with a Frobenius lift σ : A→ A. Then there is an evident frame
structure A and a functor

ΦA : BT(SpecR)→Win(A).

Here A-windows are equivalent to locally free Dieudonné modules over A in the usual sense. The
functor ΦA also induces a functor Φtor

A from commutative finite locally free p-group schemes over
R to p-torsion Dieudonné modules over A which are of projective dimension less than or equal
to 1 as A-modules. In general the properties of ΦA depend on the lift.

Theorem 1.3. If R is a complete intersection or balanced semiperfect ring, there is a lift A of
R such that the functors ΦA and Φtor

A are equivalences.
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See Theorem 5.7 and Corollary 10.14. When R is perfect, then A = W (R) is the unique lift
of R, and Theorem 1.3 holds by a result of Gabber. The general case is reduced to the perfect
case by a specialization argument along R[→ R, where R[ is the limit perfection of R.

We note that for an arbitrary Fp-algebra R with a lift (A, σ) the functor ΦA gives
an equivalence between formal p-divisible groups and nilpotent windows by [Zin01] and the
extensions of [Zin02] provided by [Lau08, Lau13]. So the new aspect of Theorem 1.3 is that it
applies to all p-divisible groups.

The functors Φcris
R and ΦA are related as follows. For every lift A of a semiperfect ring R

there is a natural homomorphism of frames

κ : Acris(R)→ A,

and the base change under κ of Φcris
R (G) coincides with ΦA(G).

Lemma 1.4. If R is a complete intersection or balanced semiperfect ring, there is a lift A of R
as in Theorem 1.3 such that κ induces an equivalence of the window categories.

See Proposition 5.10. Theorem 1.3 and Lemma 1.4 give Theorem 1.2 when R is balanced
or a complete intersection, and the general case follows by a deformation argument, using a
weak version of lifts for iso-balanced rings, for which an analogue of Lemma 1.4 holds; see
Proposition 7.8.

1.3 Breuil–Kisin–Fargues modules
Now let R be a perfectoid ring in the sense of [BMS16]. This class of rings includes all perfect
rings and all bounded open integrally closed subrings of perfectoid Tate rings in the sense of
[Fon13]. Let R[ be the tilt of R, which is a perfect ring, and Ainf = W (R[).

The kernel of the natural homomorphism θ : Ainf → R is generated by a non-zero divisor ξ.
In the following, a Breuil–Kisin–Fargues module for R is a finite projective Ainf -module M with
a linear map ϕ : Mσ

→M whose cokernel is annihilated by ξ.1 As an application of Theorem 1.2
we obtain the following result.2

Theorem 1.5. If p > 3, for each perfectoid ring R the category BT(SpecR) is equivalent to the
category of Breuil–Kisin–Fargues modules for R.

See Theorem 9.8. When R =OC for an algebraically closed perfectoid field C, the result is due
to Fargues [Far15, Far13]. Theorem 1.5 is a variant of the classical equivalence between p-divisible
groups over a mixed characteristic complete discrete valuation ring with perfect residue field and
Breuil–Kisin modules.

To prove Theorem 1.5 we consider the ring R/p, which is semiperfect and balanced. The
universal p-adic divided power extension Acris(R) coincides with Acris(R/p) as a ring and
carries a natural frame structure. The equivalence of Theorem 1.2 for R/p (which is covered
by Theorem 1.3 and Lemma 1.4 in this case) extends for p > 3 to an equivalence

BT(SpecR)→Win(Acris(R)).

1 In general these modules should be called minuscule Breuil–Kisin–Fargues modules, but since other Breuil–
Kisin–Fargues modules do not appear in this text, for simplicity we omit ‘minuscule’.
2 A different proof of Theorem 1.5, which also holds for p = 2, was given recently in [SW17, Theorem 17.5.2].
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Moreover there is a base change functor

(Breuil–Kisin–Fargues modules for R)→Win(Acris(R)),

which is an equivalence for p > 3 by a descent from Acris to Ainf that generalizes the ‘descent

from S to S’ used in the classical case. Theorem 1.5 follows. One can expect that Theorem 1.5

also holds for p = 2, but the present proof does not extend to that case directly.

As in the classical case, Theorem 1.5 induces a similar result for finite group schemes. Namely,

a torsion Breuil–Kisin–Fargues module for R is a triple (M, ϕ, ψ) where M is a p-torsion finitely

presented Ainf -module of projective dimension less than or equal to 1 with linear maps

ξAinf ⊗Ainf
M

ψ−→Mσ ϕ−→M

such that ϕ ◦ ψ and ψ ◦ (1 ⊗ ϕ) are the multiplication maps. If R is p-torsion free then ξ is

M-regular and ψ is determined by ϕ.

Corollary 1.6 (Theorem 10.12). If p > 3, for each perfectoid ring R the category of

commutative finite locally free p-group schemes over R is equivalent to the category of torsion

Breuil–Kisin–Fargues modules for R.

2. Notation

We fix a prime p.

An abelian group A is called p-adically complete if A ∼= lim
←−nA/p

nA.

A PD extension is a surjective ring homomorphism whose kernel is equipped with divided

powers. A p-adic PD extension is a PD extension of p-adically complete rings such that the

divided powers are compatible with the divided powers on pZp. Divided powers γ are also denoted

by γn(x) = x[n].

Following [Lau10], a frame S= (S,FilS,R, σ, σ1) consists of rings S and R=S/FilS such that

pS+ FilS⊆ RadS, together with a Frobenius lift σ :S→S and a σ-linear map σ1 : FilS→S

whose image generates the unit ideal.3 A window over the frame S is a collection M =

(M,FilM,F, F1) where M is a finite projective S-module, FilM ⊆ M is a submodule which

takes the form FilM = L ⊕ (FilS)T for some decomposition M = L ⊕ T , and F : M → M

and F1 : FilM → M are σ-linear maps such that the image of F1 generates M , and F1(ax) =

σ1(a)F (x) for a ∈ FilS and x ∈ M . We denote by Win(S) the category of windows over S.

A frame homomorphism α : S → S′ is a ring homomorphism S → S′ with FilS → FilS′

such that σ′α = ασ and σ′1α = u · ασ1 for a unit u ∈ S′. There is a base change functor

α∗ : Win(S)→Win(S′). If this functor is an equivalence, α is called crystalline.

A frame S is called a p-frame if pσ1 = σ on FilS, i.e. in the notation of [Lau10, Lemma 2.2]

we have θ = p. A PD frame is a p-frame S where S → R is a p-adic PD extension such that σ

preserves the resulting divided powers on the ideal FilS + pS. If in addition S is p-torsion free,

then (S, σ) is a frame for R in the sense of [Zin01].

3 Form a systematic perspective, it would be better to drop this condition; see for example [CL14, § 2.1]. The
condition is satisfied for all frames considered in this article.
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3. Dieudonné crystals and modules

In this section we fix notation and recall some standard results.
For a scheme X on which p is nilpotent, or more generally a p-adic formal scheme, let BT(X)

be the category of p-divisible groups over X, let D(X) be the category of locally free Dieudonné
crystals over X, and let DF(X) be the category of locally free Dieudonné crystals M over X
equipped with an admissible filtration FilMX ⊆MX as in [Gro74]; see [CL14, Definition 2.4.1].
Let

DX : BT(X)→ D(X) (3.1)

be the contravariant crystalline Dieudonné functor defined in [MM74] and in [BBM82], and let

DFX : BT(X)→ DF(X) (3.2)

be its extension defined by the Hodge filtration; see [CL14, Proposition 2.4.3]. If S = (S,FilS,
R, σ, σ1) is a p-torsion free PD frame as in § 2, the evaluation of the filtered Dieudonné crystal
at S gives a contravariant functor

ΦS : BT(SpecR)→Win(S), G 7→ (M,FilM,F, F1), (3.3)

where M = D(G)S , the submodule FilM ⊆ M is the inverse image of the Hodge filtration
Lie(G)∗ ⊆ D(G)R of G, F is induced by the Frobenius of G, and F1 = p−1F on FilM ; see
[Lau14, Proposition 3.17] or [CL14, Proposition 2.5.2].

3.1 Explicit Dieudonné modules
Let R be an Fp-algebra. A lift of R is a pair (A, σ) where A is a p-adically complete and p-torsion
free ring with R = A/pA, and σ : A→ A is a Frobenius lift.

In the following let (A, σ) be a lift of R. A (locally free) Dieudonné module over A is a triple
M = (M,ϕ, ψ) where M a finite projective A-module and ϕ : Mσ

→ M and ψ : M → Mσ are
linear maps with ϕψ = p and ψϕ = p, where Mσ = M ⊗A,σA. We write DM(A) for the category
of Dieudonné modules over A.

Lemma 3.1. For (M,ϕ, ψ) ∈ DM(A) the R-module Coker(ϕ) is projective.

Proof. Let M̄ = M ⊗A R. There is an exact sequence of finite projective R-modules

M̄σ ϕ̄−→ M̄
ψ̄−→ M̄σ ϕ̄−→ M̄, (3.4)

and we have to show that Im(ψ̄) is a direct summand of M̄σ. This holds if and only if for each
maximal ideal m ⊂ R the base change of (3.4) to k = R/m is exact, or equivalently if the base
change to kper is exact.

Let ∆ : A → W (A) be the homomorphism with wn ◦ ∆ = σn, where wn is the nth
Witt polynomial; see [Bou83, IX, § 1.2, Proposition 2]. The composition of ∆ with the
homomorphism W (A)→ W (R)→ W (kper) is a homomorphism A→ W (kper) that commutes
with σ. Then M ⊗A W (kper) is a Dieudonné module whose reduction mod p is (3.4) ⊗R kper,
which is therefore exact as required. 2

We have a frame A = (A, pA,R, σ, σ1) with σ1(pa) = σ(a), and A is a p-torsion free PD frame
as defined in § 2. Using Lemma 3.1 one verifies that there is an equivalence of categories

Win(A)→ DM(A), (M,FilM,F, F1) 7→ (N,ϕ, ψ) (3.5)
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defined by N = FilM and ϕ(x⊗1) = F (x) for x ∈ FilM ; see [CL14, Lemma 2.1.15] with E = p.
Thus the functor ΦS of (3.3) for S = A can be viewed as a contravariant functor

ΦA : BT(SpecR)→ DM(A). (3.6)

In certain cases one can hope that ΦA is an equivalence of categories; see [deJ93] for the case of
complete regular local rings.

Remark 3.2. The functor ΦA always induces an equivalence between formal p-divisible groups
and ϕ-nilpotent Dieudonné modules, which correspond to F -nilpotent A-windows. This follows
from [Zin01] together with the extension of [Zin02, Theorem 9] to general base rings in [Lau08,
Lau13].

4. Semiperfect rings

Let p be a prime. Following [SW13], an Fp-algebra R is called semiperfect if the Frobenius
endomorphism φ : R → R is surjective. An isogeny of semiperfect rings is a surjective ring
homomorphism whose kernel is annihilated by a power of φ. Let R be semiperfect. There is a
universal homomorphism

R[→ R

from a perfect ring to R, and there is a universal p-adic PD extension

Acris(R)→ R.

Explicitly, we have R[ = lim
←−(R,φ), and Acris(R) is the p-adic completion of the PD envelope of

the natural map W (R[)→ R. We will often write J = Ker(R[→ R). Two classes of semiperfect
rings will play a special role: complete intersections and balanced rings.

4.1 Complete intersection semiperfect rings
Definition 4.1. A semiperfect ring R is called a complete intersection if R ∼= R0/J0 where R0

is a perfect ring and where the ideal J0 is generated by a regular sequence.

Lemma 4.2. Let R = R0/J0 as in Definition 4.1 where J0 is generated by the regular sequence
u = (u1, . . . , ur). The natural homomorphism R0 → R[ maps u to a regular sequence that
generates the kernel of R[→ R.

Proof. Since the ideal J0 is finitely generated, the J0-adic topology of R0 coincides with the
linear topology defined by the ideals φn(J0) for n > 0. Thus R[ is the J0-adic completion of R0.
Then the assertion is clear. 2

Remark 4.3. Lemma 4.2 implies that in Definition 4.1 one can take R0 = R[. It follows that for
a complete intersection semiperfect ring R the ring Acris(R) is p-torsion free; see for example
[CL14, Lemma 2.6.1].

4.2 Balanced semiperfect rings
Definition 4.4. A semiperfect ring R is called balanced if the ideal J̄ = Ker(φ : R→ R) satisfies
J̄p = 0, and R is called iso-balanced if R is isogenous to a balanced semiperfect ring.

Lemma 4.5. For a homomorphism of semiperfect rings α : R′→ R where R is balanced we have
Ker(α)p = φ(Ker(α)).
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Proof. Clearly φ(Ker(α)) ⊆ Ker(α)p. To prove the opposite inclusion, let x1, . . . , xp ∈ Ker(α)
be given, and choose yi ∈ R′ with φ(yi) = xi. Then α(yi) ∈ J̄ = Ker(φ : R → R). Since R is
balanced we have α(

∏
yi) = 0, thus

∏
xi = φ(

∏
yi) ∈ φ(Ker(α)) as required. 2

Lemma 4.6. A semiperfect ring R is balanced if and only if the ideal J = Ker(R[→ R) satisfies
Jp = φ(J).

Proof. If R is balanced then Jp = φ(J) by Lemma 4.5. The rest is clear. 2

Remark 4.7. For every semiperfect ring R there is a universal homomorphism to a balanced
semiperfect ring R → Rbal, namely Rbal = R[/Jbal where Jbal is the ascending union of the
ideals φ−n(J)p

n
for n > 0. The ring R is iso-balanced if and only if R→ Rbal is an isogeny.

Lemma 4.8. Let π : R′ → R be an isogeny of iso-balanced semiperfect rings. Then the ideal
Ker(π) is nilpotent.

Proof. The composition α : R′
π−→ R → Rbal is an isogeny since R is iso-balanced. Lemma 4.5

implies that Ker(α)p
n

= φn(Ker(α)), which is zero for large n. 2

Remark 4.9. A semiperfect ring R is called f -semiperfect [SW13, Definition 4.1.2] if it is
isogenous to the quotient of a perfect ring by a finitely generated ideal. Each f -semiperfect
ring R is iso-balanced. Indeed, assume that R = R0/J0 where R0 is perfect and J0 = (a1, . . . , ar)
is finitely generated. Let J1 be the union of φ−n(J0)p

n
for n > 0. Then R0/J1 is balanced.

Explicitly, J1 is generated by all monomials
∏
amii with mi ∈ Z[1/p] and mi > 0 such that∑

mi = 1, which implies that mi > 1/r for at least one i. Choose s such that ps > r. Then
φs(J1) ⊆ J0, hence R→ R0/J1 is an isogeny.

4.3 Lifts of semiperfect rings

Let R be a semiperfect ring, and let J = Ker(R[→ R).

Definition 4.10. A lift of R is a p-adically complete and p-torsion free ring A with A/pA = R
which carries a ring endomorphism σ : A→ A that induces φ on R.

Remark 4.11. The endomorphism σ : A→ A is unique if it exists. Indeed, the universal property
of the ring of Witt vectors [Gro74, ch. IV, Proposition 4.3] gives a unique homomorphism
ψ : W (R[)→ A that induces the projection R[ → R modulo p, and we have ψ ◦ σ = σ ◦ ψ by
the universal property. Moreover ψ is surjective, and the uniqueness of σ follows. This reasoning
shows that lifts A of R correspond to closed ideals J ′ ⊆ W (R[) such that σ(J ′) ⊆ J ′ and
J ′ ∩ pW (R[) = pJ ′ and J ′/pJ ′ = J .

Definition 4.12. A lift A of R is called straight if A = W (R[)/J ′ such that the set of all a ∈ J
with [a] ∈ J ′ generates J .

Lemma 4.13. Let R be a semiperfect ring which is a complete intersection or balanced, see
Definitions 4.1 and 4.4. Then a straight lift of R exists.

Proof. If R is a complete intersection, J is generated by a regular sequence (u1, . . . , ur); see
Lemma 4.2. Let J ′ = ([u1], . . . , [ur]) in W (R[). The ring A = W (R[)/J ′ is p-adically complete
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and p-torsion free with A/pA = R. The ideal J ′ is stable under σ since σ([ui]) = [ui]
p. Thus A

is a straight lift of R.
Assume that R is balanced. Let J ′ ⊆ W (R[) be the set of all Witt vectors a = (a0, a1, . . .)

with ai ∈ φi(J). We claim that J ′ is an ideal. Indeed, the ring structure of W (R[) is given by
(x0, x1, . . .)∗(y0, y1, . . .) = (g∗0(x, y), g∗1(x, y), . . .) where ∗ is + or×, with certain polynomials g∗n. If
the variables xi, yi have degree pi, then p+

n is homogeneous of degree pn, and p×n is bihomogeneous
of bidegree (pn, pn). Since R is balanced we have φ(J) = Jp; see Lemma 4.6. It follows that J ′ is
an ideal. We have J ′∩pW (R[) = pJ ′, and J ′ is the closure of the ideal generated by the elements
[a] for all a ∈ J . Clearly J ′ is stable under σ. Thus A = W (R[)/J ′ is a straight lift of R. 2

Lemma 4.14. If A is a lift of the semiperfect ring R, then σ : A→ A is surjective, and

lim
←−(A, σ) = W (R[).

Proof. The first assertion holds because the natural σ-equivariant homomorphism W (R[)→ A
is surjective, and σ is bijective on W (R[); see Remark 4.11. Let B = lim

←−(A, σ). Since A is
p-torsion free the same holds for B. We take the limit over σ of the exact sequence 0→ A −→
A→ An→ 0, where the first map is pn. It follows that B/pnB = lim

←−(An, σ), which implies that

lim
←−n(B/pnB) =B; moreover B/pB=R[. Therefore B = W (R[). 2

5. Dieudonné modules via lifts

Let R be a semiperfect ring and let A be lift of R; see Definition 4.10.

5.1 Frames associated to a lift
To the lift A of R we associate two frames. First, there is the p-torsion free PD frame

A = (A, pA,R, σ, σ1)

with σ1 = p−1σ; see § 3. Second, let

F̃ilA = Ker(A→ R
φ−→ R).

Lemma 5.1. We have σ(F̃ilA) ⊆ pA, and F̃ilA is a PD ideal of A.

Proof. Since σ is a lift of φ, for a ∈ A we have a ∈ F̃ilA if and only if σ(a) ∈ pA if and only if
ap ∈ pA. For a ∈ F̃ilA let b = ap/p ∈ A. We have to show that b ∈ F̃ilA, or equivalently that
σ(b) ∈ pA. But σ(b) = σ(a)p/p = pp−1(σ(a)/p)p. 2

Since R is semiperfect, σ induces an isomorphism A/F̃ilA
∼−→ R. By Lemma 5.1 we can define

a p-torsion free PD frame
A/φ = (A, F̃ilA,R, σ, σ1)

with σ1 = p−1σ. The endomorphism σ of A is a frame endomorphism σ : A→ A over φ : R→ R,
which factors into frame homomorphisms

A
ι−→ A/φ

π−→ A, (5.1)

where ι is given by the identity on A and by φ on R, while π is given by σ on A and by the
identity on R.
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Lemma 5.2. The frame homomorphism π : A/φ→ A is crystalline, i.e. it induces an equivalence
of the window categories.

Proof. Let I be the kernel of the surjective homomorphism σ : A→ A. If we write A = W (R[)/J ′

(see Remark 4.11) then I = J ′/σ(J ′). Thus σ = pσ1 is zero on I. Since A is p-torsion free it
follows that σ1 : I → I is zero, and the lemma follows from the general deformation lemma
[Lau10, Theorem 3.2]. 2

Remark 5.3. The divided powers on F̃ilA, which exist by Lemma 5.1, induce divided powers
on the ideal (F̃ilA)/pA = Ker(φ : R→ R) of R. Thus the given lift A of R determines divided
powers on Ker(φ).

Lemma 5.4. If A is a straight lift of R in the sense of Definition 4.12, then the associated divided
powers on Ker(φ) are pointwise nilpotent.

Proof. Let J = Ker(R[→ R) and A = W (R[)/J ′. Since A is straight, there are generators ai of
J with [ai] ∈ J ′. The elements bi = φ−1(ai) + J of R generate the ideal Ker(φ). We claim that

b
[p]
i = 0, which proves the lemma. The element ci = [φ−1(ai)] + J ′ of A is an inverse image of bi.

We have cpi = [ai] + J ′ = 0 in A, thus c
[p]
i = 0 in A, and thus b

[p]
i = 0 in R. 2

5.2 Evaluation of crystals
We consider the functor

ΦA : BT(SpecR)→Win(A) (5.2)

given by (3.3) for S = A. Here Win(A) is equivalent to the category DM(A) of Dieudonné
modules over A by (3.5).

Proposition 5.5. If the divided powers on Ker(φ) given by Remark 5.3 are pointwise nilpotent,
then the commutative diagram of categories

BT(SpecR)
φ∗ //

ΦA
��

BT(SpecR)

ΦA
��

Win(A)
σ∗ // Win(A)

(5.3)

is cartesian.

Proof. The diagram (5.3) commutes by the functoriality of ΦA with respect to the frame
endomorphism σ : A→ A. The factorization (5.1) of σ induces the following extension of (5.3).

BT(SpecR)
φ∗ //

ΦA
��

BT(SpecR)
id //

ΦA/φ
��

BT(SpecR)

ΦA
��

Win(A)
ι∗ // Win(A/φ)

π∗

∼
// Win(A)

(5.4)

Here π∗ is an equivalence by Lemma 5.2. Thus (5.3) is equivalent to the left-hand square of (5.4).
For a p-divisible group G over R let M = ΦA/φ(G) in Win(A/φ). Then M ⊗AR is the value of
D(G) at the PD extension φ :R→R. Thus lifts of the Hodge filtration ofG under φ correspond to
lifts of the Hodge filtration of M under ι∗. The latter correspond to lifts of M under ι∗ by [Lau10,
Lemma 4.2], and the former correspond to lifts of G under φ by the Grothendieck–Messing
Theorem [Mes72] since the divided powers on Ker(φ) are pointwise nilpotent. 2
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Corollary 5.6. If the divided powers on Ker(φ) given by Remark 5.3 are pointwise nilpotent,
then the commutative diagram of categories

BT(SpecR[) //

Φ
W (R[)

��

BT(SpecR)

ΦA
��

Win(W (R[)) // Win(A)

is cartesian. 2

Proof. Proposition 5.5 gives the following cartesian diagram.

lim
←−(BT(SpecR), φ∗) //

lim
←−ΦA

��

BT(SpecR)

ΦA
��

lim
←−(Win(A), σ∗) // Win(A)

The upper limit category is equivalent to BT(SpecR[) by the obvious analogue of [Mes72, ch. II,
Lemma 4.16]; see also [deJ95, Lemma 2.4.4]. Since we have lim

←−(A, σ) = W (R[) by Lemma 4.14,

the lower limit category is equivalent to Win(W (R[)) by [Lau10, Lemma 2.12]. 2

Theorem 5.7. Let R be a semiperfect ring with a lift A such that the associated divided powers
on Ker(φ) given by Remark 5.3 are pointwise nilpotent. Then the functor ΦA is an equivalence.

Remark 5.8. If R is a complete intersection or balanced, there is a straight lift by Lemma 4.13,
and the associated divided powers on Ker(φ) are pointwise nilpotent by Lemma 5.4. Thus
Theorem 5.7 applies in these cases.

Proof of Theorem 5.7. Since R[ is a perfect ring, the functor ΦW (R[) is an equivalence by a
theorem of Gabber; see [Lau13, Theorem 6.4]. Every window over A can be lifted to a window
over W (R[). Indeed, the projections A → R and W (R[) → R[ → R induce bijective maps
of the sets of isomorphisms classes of finite projective modules, and thus the same holds for
W (R[)→ A. Hence a normal representation of an A-window in the sense of [Lau10, Lemma 2.6]
can be lifted to W (R[). Now Lemma 5.9 below applied to the diagram of Corollary 5.6 gives the
result. 2

Lemma 5.9. Let

A

f
��

ψ // C

g

��
B π // D

be a cartesian diagram of additive categories or of groupoids. If f is an equivalence and π is
essentially surjective, then g is an equivalence.

Proof. The case of additive categories is reduced to the case of groupoids using that a
homomorphism u : X → Y can be encoded by the automorphism

(
1 0
u 1

)
of X ⊕ Y . Consider

the groupoid case. We may assume that A is equal to the fibered product of C and B over D,
which is the category of triples (C, δ,B) with C ∈ C, B ∈ B, and δ : g(C) ∼= π(B).
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(1) The functor g is surjective on isomorphism classes: This holds for π and f .

(2) The functor ψ is surjective on isomorphism classes: Let C ∈ C. Find B ∈ B and δ : g(C) ∼=
π(B). Then A = (C, δ,B) satisfies ψ(A) = C.

(3) The functor g is faithful: We have to show that if C ∈ C and γ ∈ Aut(C) with g(γ) = id then
γ = id. Extend C to A = (C, δ,B) ∈ A. Then α = (γ, idB) lies in Aut(A) with f(α) = id.
Thus α = id and γ = id.

(4) The functor g is full: Let C,C ′ ∈ C and δ : g(C) ∼= g(C ′). Extend C ′ to A′ = (C ′, δ′, B′) ∈ A.
Let A = (C, δ′δ,B′) ∈ A. Then f(A) = B′ = f(A′), and idB′ lifts to a unique α : A ∼= A′,
which consists of (γ, idB′) with γ : C ∼= C ′ such that δ′ ◦ g(γ) = δ′δ, thus g(γ) = δ. 2

5.3 The passage to Acris

For a moment let R be an arbitrary semiperfect ring. By the universal property of Acris(R) there
is a unique lift of φ : R→ R to a PD endomorphism σ of Acris(R), and one verifies that σ is a
Frobenius lift. Let FilAcris(R) be the kernel of Acris(R)→ R. By [SW13, Lemma 4.1.8] there is
a unique functorial σ-linear map σ1 : FilAcris(R) → Acris(R) such that pσ1 = σ, which means
that

Acris(R) = (Acris(R),FilAcris(R), R, σ, σ1) (5.5)

is a p-frame, and even a PD frame; see § 2. A homomorphism of semiperfect rings R→ R′ induces
a strict frame homomorphism Acris(R)→ Acris(R

′).
Assume now that A is a lift of R as earlier. The universal property of Acris(R) gives a

homomorphism κ : Acris(R)→ A of extensions of R, and κ commutes with σ. Since A is p-torsion
free, κ is a frame homomorphism

κ : Acris(R)→ A. (5.6)

Proposition 5.10. If A is a straight lift of R in the sense of Definition 4.12, the frame
homomorphism κ is crystalline.

See also Proposition 7.8 below.

Proof. Let N ⊆ Acris(R) be the kernel of κ. Since A is p-torsion free we have N ∩ pnAcris(R) =
pnN . Since κ is continuous for the p-adic topology and A is p-adically complete, N is closed in
the p-adic topology of Acris(R), and it follows that N is p-adically complete. We have an exact
sequence 0 → N/p → Acris(R)/p → R → 0, and this is the PD envelope over Fp of the ideal
J = Ker(R[→ R).

Clearly N is stable under σ1. We claim that σ1 is nilpotent on N/p; cf. [SW13, Lemma 4.2.4].
Let A = W (R[)/J ′. The hypothesis means that there are generators ai of J such that [ai] ∈ J ′.
The ideal N/pN of Acris(R)/p is generated by the elements a

[n]
i for n> 1. The elements [ai]

[n] ∈N
satisfy

σ1([ai]
[n]) =

(pn)!

p · n!
[ai]

[pn]; (5.7)

see [SW13, Lemma 4.1.8]. Since the integer (pn)!/(p · n!) is divisible by p when n > p it follows
that σ1 ◦ σ1 = 0 on N/pN .

We consider the frames Bn = (Acris(R)/pnN,FilAcris(R)/pnN,R, σ, σ1) for n > 0. Since σ1

is nilpotent on N/pnN , the projection Bn → B0 = A is crystalline by the general deformation
lemma [Lau10, Theorem 3.2]. We have lim

←−Bn = Acris(R), and the proposition follows; see [Lau10,
Lemma 2.12]. 2
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Corollary 5.11. If the semiperfect ring R admits a straight lift A, there is an equivalence of

categories

BT(SpecR) ∼= Win(Acris(R)). (5.8)

Proof. By Theorem 5.7 and Proposition 5.10 we have equivalences

BT(SpecR)
ΦA−−→Win(A)

κ∗
←−Win(Acris(R)). 2

Remark 5.12. When Acris(R) is p-torsion free, the equivalence (5.8) is given by the functor ΦS of

(3.3) for S = Acris. A variant of this holds in general; see Corollary 6.5, which shows in particular

that the equivalence (5.8) does not depend on the choice of the lift A.

Corollary 5.13. If R is a complete intersection semiperfect ring, the functor DFSpecR of (3.2)

is an equivalence.

Proof. If R is a complete intersection, the ring Acris(R) is p-torsion free; see Remark 4.3.

Therefore we have a sequence of functors

BT(SpecR)
DFR−−→ DF(SpecR)

e−→Win(Acris(R))
κ∗−→Win(A),

where e is the evaluation functor, and the composition is ΦA. The functor e is an equivalence; see

[CL14, Proposition 2.6.4]. Here no connection appears because R[ is perfect, and thus ΩR[ = 0.

The functors κ∗ and ΦA are equivalences by Theorem 5.7 and Proposition 5.10. Thus DFR is an

equivalence as well. 2

Lemma 5.14. If the semiperfect ring R has a lift A, then the forgetful functor D(SpecR) →

DF(SpecR) is fully faithful.

Proof. For a PD extension S
π−→ R of Fp-algebras the Frobenius φS factors through a

homomorphism φS/R : R → S, i.e. φS/R ◦ π = φS . An object of DF(SpecR) is a triple (M,

F, V ) ∈ D(SpecR) together with a direct summand of MR whose base change under each φS/R
is determined by (M, F ); see [CL14, Definition 2.4.1]. The lift A of R makes φ : R→ R into a

PD extension, which we write as S→ R; see Remark 5.3. The corresponding φS/R is the identity

of R, and the lemma follows. 2

Corollary 5.13 together with Lemmas 4.13 and 5.14 gives the following.

Corollary 5.15 [SW13, Corollary 4.1.12]. If R is a complete intersection semiperfect ring, the

crystalline Dieudonné functor DSpecR is fully faithful.

6. Crystalline Dieudonné windows

In this section we associate to a p-divisible group over an arbitrary semiperfect ring R a window

over the frame Acris(R) of (5.5).
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6.1 Relative deformation rings
We need a relative version of the universal deformation of a p-divisible group. Let Λ→ R be a
homomorphism of Fp-algebras. (More generally one could take p-adic rings.)

Let AugΛ/R be the category of Λ-algebras A equipped with a Λ-linear homomorphism
A→ R, and let NilΛ/R ⊆ AugΛ/R be the full subcategory of all A such that A→ R is surjective
and JA = Ker(A → R) is a nilpotent ideal. For a p-divisible group G over R we consider the
deformation functor

DefG : NilΛ/R→ Set,

where DefG(A) is the set of isomorphism classes of deformations of G to A. If Λ = R, then
DefG is pro-represented by the twisted power series ring B = Λ[[Q]] ∈ AugΛ/R, where Q is the
projective Λ-module Lie(G∨)∗ ⊗Λ Lie(G)∗; see [Lau14, Proposition 3.11].

Lemma 6.1. Assume that G′ is a p-divisible group over Λ with an isomorphism G′⊗Λ R ∼= G. If
B = Λ[[Q]] represents DefG′ : NilΛ/Λ→ Set, then B also represents DefG : NilΛ/R→ Set.

Proof. For A ∈NilΛ/R the fiber product A′ =A×RΛ lies in NilΛ/Λ. Let LF(A) denote the category
of finite projective A-modules. Then the obvious functor LF(A′)→ LF(A) ×LF(R) LF(Λ) is an
equivalence. It follows that the natural map DefG′(A

′) → DefG(A) is bijective, which proves
the lemma. 2

Let ÑilΛ/R be the category of all A ∈ AugΛ/R such that A→ R is surjective and the ideal JA is

bounded nilpotent, i.e. there is an n> 1 with xn = 0 for all x ∈ JA. We define DefG : ÑilΛ/R→ Set
as before.

Lemma 6.2. In the situation of Lemma 6.1 the functor DefG on ÑilΛ/R is also represented by B.

Proof. LetA ∈ ÑilΛ/R. We have to show that the natural map Hom(B,A)→DefG(A) is bijective.
For each pair of homomorphisms f1, f2 : B → A in AugΛ/R there is a finitely generated ideal

b ⊆ JA such that the projection A→ Ā = A/b equalizes f and g. For each pair of deformations
G1, G2 of G over A the reduction map HomA(G1, G2) → EndR(G) is injective with cokernel
annihilated by pr for some r; see [Lau14, Lemma 3.4]. Thus there is a unique isogeny ψ : G1→ G2

which lifts pr idG. Its kernel is finitely presented; see [Lau14, Lemma 3.6]. Thus there is a finitely
generated ideal b ⊆ A such that Ker(ψ) and G1[pr] coincide over A/b, which means that G1 and
G2 map to the same element of DefG(A/b). Moreover G1 and G2 are equal as deformations of G
if and only if they are equal as deformations of G1 ⊗A A/b. In view of these remarks it suffices
to show that B(A)→ DefG(A) is bijective when R is replaced by R′ = A/b for varying finitely
generated ideals b. Then A lies in NilΛ/R′ , and the lemma follows from Lemma 6.1. 2

6.2 Construction of the crystalline window functor
Theorem 6.3. For semiperfect rings R there are unique functors

Φcris
R : BT(SpecR)→Win(Acris(R)), G 7→M = (M,FilM,F, F1)

which are functorial in R, such that the triple (M,FilM,F ) is given by the filtered Dieudonné
crystal DF(G) of (3.2) as usual, i.e. M = D(G)Acris(R), the submodule FilM ⊆M is the inverse
image of the Hodge filtration Lie(G)∗ ⊆ D(G)R, and F : M → M is induced by F : φ∗D(G)→
D(G).
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The existence of such a functor has been suggested in [SW13, Remark 4.1.9]. We call M the
crystalline Dieudonné window of G.

Proof. This is similar to [Lau14, Theorem 3.19].
Let G 7→ (M(G),FilM(G), F ) be as defined in the theorem. We have to find a functorial map

F1 : FilM(G)→ M(G) which gives a window M(G), and verify that F1 is unique. If Acris(R)
is p-torsion free then F1 and thus M(G) are well defined; see [Lau14, Proposition 3.17]. This
applies in particular when R is perfect since then Acris(R) = W (R).

In general let π : R[ → R be the projection. We write π∗ for the base change functor of
modules or windows from W (R[) to Acris(R). Note that p-divisible groups can be lifted under
φ : R → R by [Ill85, Theorem 4.4], and thus p-divisible groups can be lifted under π. Let
G ∈ BT(SpecR) be given. We choose a lift G1 ∈ BT(SpecR[) of G. Then M(G) = π∗M(G1)
as modules with Fil and F , and necessarily we have to define M(G) = π∗M(G1) as windows.
We have to show that this construction of F1 does not depend on the choice of G1, i.e. if
G2 ∈ BT(SpecR[) is another lift of G, then the composite isomorphism of modules

π∗M(G1) ∼= M(G) ∼= π∗M(G2)

preserves the homomorphisms F1 defined on the outer terms by the windows M(Gi).
We want to lift the situation to perfect rings. More precisely, we claim that one can find a

commutative diagram of rings

S′
u //

f
��

S

g

��
R[

π // R

where S and S′ are perfect, and p-divisible groups H1, H2 ∈ BT(SpecS′) together with an
isomorphism α : u∗H1

∼= u∗H2 over S and isomorphisms f∗Hi
∼= Gi over R[ for i = 1, 2 such that

α induces the given isomorphism π∗G1
∼= π∗G2 over R, i.e. the composition

π∗G1
∼= π∗f∗H1

∼= g∗u∗H1
g∗α−−→ g∗u∗H2

∼= π∗f∗H2
∼= π∗G2

is the given isomorphism. Then the homomorphisms F1 of H1 and of H2 coincide over S since S
is perfect, and by base change under g it follows that the homomorphisms F1 of G1 and of G2

coincide over R as required.
Let us prove the claim. Let G′ be a lift of G to R[, for example G′ = G1. Let B = R[[[Q]] be

the universal deformation ring of G′ as in § 6.1 and let G over B be the universal deformation.
By Lemma 6.2, B represents the deformation functor DefG on the category ÑilR[/R of

augmented algebras R[ → A → R such that the kernel of A → R is bounded nilpotent. The
system (φn : R→ R)n is a pro-object of ÑilR[/R with limit R[→ R in AugR[/R. Thus there are

homomorphisms βi : B→ R[ in AugR[/R with β∗i G ∼= Gi as deformations of G over R[.

We put S = R[ with g = π and S′ = Bper = lim−→(B,φ) with u = βper
1 and f = βper

2 . Let H1 be

the base change of G1 under R[ → B → S′ and let H2 be the base change of G under B → S′.
Then u∗H1

∼= G1
∼= u∗H2 and f∗H1

∼= G1 and f∗H2
∼= G2 as deformations of G. This proves the

claim; the required equality of isomorphisms π∗G1
∼= π∗G2 is automatic because the reduction

map Hom(G1, G2)→ End(G) is injective. 2

The functors Φcris
R are related with the functors ΦA of (5.2) as follows.
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Lemma 6.4. If A is a lift of the semiperfect ring R, there is a natural isomorphism of A-windows
κ∗ ◦ Φcris

R (G) ∼= ΦA(G), where κ is defined in (5.6).

Proof. The functor Φcris
R without F1 is given by the Dieudonné crystal evaluated at Acris(R).

Thus the functor κ∗ ◦ Φcris
R without F1 is given by the Dieudonné crystal evaluated at A. Since

A is p-torsion free, for the frame A the functor of forgetting F1 is fully faithful, and the lemma
follows. 2

Corollary 6.5. If the semiperfect ring R admits a straight lift A, the functor Φcris
R is an

equivalence and coincides with the equivalence of Corollary 5.11.

Proof. If A is a straight lift of R, the functor ΦA is an equivalence by Theorem 5.7 together with
Lemma 5.4, and the functor κ∗ is an equivalence by Proposition 5.10. By Lemma 6.4 it follows
that Φcris

R is an equivalence. The final assertion is clear. 2

Remark 6.6. Corollary 6.5 is a special case of Theorem 7.10 below. Corollary 6.5 applies in
particular when R is a complete intersection or balanced; see Lemma 4.13. For complete
intersections, Corollary 6.5 is essentially a restatement of Corollary 5.13, but the balanced case
contains new information.

Corollary 6.7. If R is an iso-balanced semiperfect ring, then the crystalline Dieudonné functor
DR : BT(SpecR)→ D(SpecR) is fully faithful up to isogeny.

For f -semiperfect rings, this is [SW13, Theorem 4.1.4]; see Remark 4.9.

Proof. To prove the assertion we may replace R by an isogenous ring; see [SW13, Proposition
4.1.5]. Thus we can assume that R is balanced, so R has a straight lift. For G ∈ BT(SpecR) and
Φcris
R (G) = M = (M,FilM,F, F1), the Dieudenné crystal D(G) is given by the pair (M,F ). For

G,G′ ∈ BT(SpecR) we have to show that the composition

Hom(G,G′)⊗Q→ Hom(M,M ′)⊗Q→ Hom((M,F ), (M ′, F ))⊗Q

is bijective. The first map is bijective without ⊗Q by Corollary 6.5, the second map is bijective
because the Acris(R)-module M is of finite type. 2

7. The crystalline equivalence

In this section we extend Corollary 6.5 to arbitrary iso-balanced semiperfect rings. Let R be a
semiperfect ring, and let J = Ker(R[→ R).

7.1 Weak lifts
We use a weak version of lifts which may have p-torsion.

Definition 7.1. A weak lift of R is a p-adically complete ring A with A/pA = R which carries
a ring endomorphism σ : A → A that induces φ on R, and a σ-linear map σ1 : pA → A with
σ1(p) = 1.

Remark 7.2. The maps σ and σ1 are unique if they exist. This is analogous to Remark 4.11.
There is a unique homomorphism ψ : W (R[)→ A of extensions of R, and ψ commutes with σ.
Since ψ is surjective, σ is unique. Then σ1(px) = σ(x) is unique as well.
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By definition, a weak lift A of R gives a PD frame A = (A, pA,R, σ, σ1).

Definition 7.3. A weak lift A of R is called straight if A = W (R[)/J ′ such that J is generated
by elements a with [a] ∈ J ′.

Lemma 7.4. For each straight weak lift A of R there is a unique homomorphism of PD frames

κ : Acris(R)→ A

over the identity of R.

Proof. The universal property of Acris(R) gives a PD homomorphism κ : Acris → A over the
identity of R, and κ commutes with σ. To show that κ is a frame homomorphism it suffices
to verify that κ(σ1(y)) = σ1(κ(y)) for generators y of the ideal FilAcris(R). A set of generators
of this ideal is formed by p and the elements [x][n] for generators x ∈ J and n > 1. We have
κ(σ1(p)) = 1 = σ1(κ(p)), moreover (5.7) gives

κ(σ1([x][n])) =
(np)!

p · n!
κ([x][np]) =

(np)!

p · n!
κ([x])[np] (7.1)

and

σ1(κ([x][n])) = σ1(κ([x])[n]). (7.2)

Since the weak lift A is straight, the generators x of J can be chosen such that [x] ∈ J ′. Then
κ([x]) = 0, and (7.1) and (7.2) are both zero. 2

Next we observe that every semiperfect ring has many straight weak lifts.

Definition 7.5. A descending sequence of ideals J0 ⊇ J1 ⊇ J2 ⊇ · · · of R[ is called admissible
if J0 = J and Jpi ⊆ Ji+1. In this case let W (J∗) ⊆W (R[) be the set of all Witt vectors a = (a0,
a1, a2, . . .) with ai ∈ Ji, which is an ideal by Lemma 7.6 below, and let A(J∗) = W (R[)/W (J∗).

Lemma 7.6. Let J∗ be an admissible sequence of ideals of R[. Then W (J∗) is an ideal of W (R[),
and the ring A(J∗) is a straight weak lift of R.

Let A(J∗) = (A(J∗), pA(J∗), R, σ, σ1) be the corresponding PD frame.

Proof. As in the proof of Lemma 4.13 we see that W (J∗) is an ideal. This ideal is closed in
W (R[), and thus A = A(J∗) is p-adically complete. Since J0 = J we have A/pA = R. Clearly
W (J∗) is stable under the endomorphism σ of W (R[), so σ induces σ : A→ A. We have pA =
pW (R[)/(W (J∗)∩pW (R[)), and an element a ∈W (J∗) lies in pW (R[) if and only if a0 = 0. Since
the sequence J∗ is descending we have σ1(W (J∗)∩pW (R[)) ⊆W (J∗), so σ1 induces σ1 : pA→ A.
It follows that A is a weak lift, which is straight because for every a ∈ J we have [a] ∈W (J∗).2

Windows over A(J∗) are insensitive to bounded variations of J∗ in the following sense.

Lemma 7.7. Let J∗ and J ′∗ be two admissible sequences of ideals of R[ such that there is an n > 0
with J ′i+n ⊆ Ji ⊆ J ′i for all i> 0. Then there is a natural frame homomorphism π : A(J∗)→ A(J ′∗),
which is crystalline.
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Proof. The homomorphism π exists because Ji ⊆ J ′i . Let a = Ker(π) = W (J ′∗)/W (J∗). Then σ1

induces an endomorphism of a, and (σ1)n is zero on a because J ′i+n ⊆ Ji. The result follows from
the deformation lemma [Lau10, Theorem 3.2] if we find a sequence of ideals a = a0 ⊇ · · · ⊇ an = 0
which are stable under σ1 such that σ(am) ⊆ am+1 for m < n.

This sequence can be constructed as follows. We have φn(J ′i) ⊆ J ′p
n

i ⊆ J ′i+n ⊆ Ji and thus
Ji ⊆ J ′i ⊆ φ−n(Ji). For each m with 0 6 m 6 n let Km,i = J ′i ∩ φm−n(Ji). Then Km,∗ is an
admissible sequence, moreover J ′i = K0,i ⊇ K1,i ⊇ · · · ⊇ Kn,i = Ji and thus W (J ′∗) = W (K0,∗) ⊇
· · · ⊇ W (Kn,∗) = W (J∗). Let am = W (Km,∗)/W (J∗). Then am is stable under σ1 because Km,∗
is a decreasing sequence; see the proof of Lemma 7.6. We have σ(am) ⊆ am+1 because φ(Km,i) ⊆
Km+1,i. 2

7.2 The passage to Acris

Proposition 7.8. Assume that R is iso-balanced, and let Ji = Jp
i

for all i. Then the frame
homomorphism κ : Acris(R)→ A(J∗) is crystalline.

The homomorphism κ is given by Lemma 7.4. See also Proposition 5.10.

Proof. Let R → R′ be an isogeny with balanced R′ whose kernel is annihilated by φn. Then
R′ = R[/J ′ with φ(J ′) = J ′p and φn(J ′) ⊆ J ⊆ J ′. Let Ki = J ∩ φi(J ′) for i > 0. The sequence
K∗ is admissible. For i > 0 we have Kn+i = φn+i(J ′) ⊆ Ji ⊆ Ki. Thus the natural frame
homomorphism π : A(J∗)→ A(K∗) is crystalline by Lemma 7.7, and it suffices to show that the
composition

κ′ = π ◦ κ : Acris(R)→ A(K∗)

is crystalline. Let N = Ker(κ′).

Lemma 7.9. (i) The p-power torsion of A(K∗) is annihilated by pn.

(ii) For i > 0 we have N ∩pn+iAcris(R) ⊆ piN , in particular the p-adic topology of N is induced
by the p-adic topology of Acris(R).

(iii) The endomorphism σ1 : N/pN → N/pN is nilpotent.

Proof. Let J ′i = φi(J ′). Then J ′∗ is an admissible sequence of ideals of W (R[) with respect to
R′ = R[/J ′; note that R[ = R′[. We have Ki ⊆ J ′i with equality for i > n, so there is a projection
A(K∗) → A(J ′∗) whose kernel is annihilated by pn. The ring A(J ′∗) is the straight lift of R′

constructed in Lemma 4.13, which is p-torsion free. This proves (i), and (ii) follows.
Let us prove (iii). The ring Acris(R) is the p-adic completion of a W (R[)-algebra generated by

the elements [x][i] for x ∈ J and i > 1, and these elements map to zero in A(K∗). Thus for each
m > 1 the image of N in Acris(R)/pm is generated as an ideal by W (K∗) and the elements [x][i].
By (ii) it follows that N/pN is generated as an Acris(R)-module by W (K∗) and the elements
[x][i]. We check these elements separately.

First, the explicit formula (5.7) for σ1 implies that for x ∈ J the element (σ1)2([x][i]) lies in
pN ; see the proof of Proposition 5.10. Second, since φi(Kn) = Kn+i for i > 0, each element of
W (K∗)/pW (K∗) is represented by an element a = (a0, a1, a2, . . .) ∈W (K∗) with ai = 0 for i > n.
Then

(σ1)n+2(a) = (σ1)n+2([a0]) + · · ·+ (σ1)2([an])

lies in pN , using that ai ∈ Ki ⊆ J . Thus (σ1)n+2 is zero on N/pN , and Lemma 7.9 is proved. 2
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We continue the proof of Proposition 7.8. Since A(K∗) is p-adically complete, the ideal
N is closed in Acris(R), and thus N is p-adically complete by Lemma 7.9(ii). Since σ1 :
N → N stabilizes pmN , the ring Acris(R)/pmN carries a natural frame structure, denoted
by Acris(R)/pmN . We have Acris(R)/N = A(K∗) and Acris(R) = lim

←−Acris(R)/pmN . This limit
preserves the window categories by [Lau10, Lemma 2.12]. Thus it suffices to show that the frame
homomorphism Acris(R)/pmN → A(K∗) is crystalline for each m. Since σ1 : N/pmN → N/pmN
is nilpotent by Lemma 7.9(iii), this follows from [Lau10, Theorem 3.2]. 2

Theorem 7.10. If R is an iso-balanced semiperfect ring, the functor Φcris
R of Theorem 6.3 is an

equivalence of categories.

Proof. By Corollary 6.5 the theorem holds for balanced rings. An isogeny from R to a balanced
ring has nilpotent kernel by Lemma 4.5. Therefore it suffices to show the following. Let π :R′→R
be an isogeny of iso-balanced rings such that Ker(π)p = 0. If Φcris

R is an equivalence then so is
Φcris
R′ .

To prove this we use some auxiliary frames. Let J = Ker(R[→ R) and J ′ = Ker(R[→ R′),

thus Jp ⊆ J ′ ⊆ J . We define Ji = Jp
i

and J ′i = J ′p
i

for i > 0, and we define K0 = J ′ and Ki = Ji
for i > 1. Then J∗ is an admissible sequence with respect to R, while K∗ and J ′∗ are admissible
sequences with respect to R′. There are obvious frame homomorphisms

A(J ′∗)
a−→ A(K∗)

q−→ A(J∗),

where a lies over idR′ and q lies over π. Here a is crystalline by Lemma 7.7, using that Ki+1 ⊆
J ′i ⊆ Ki. We want to factor q over another frame F = (A, I,R, σ, σ1) with A = A(K∗), thus I is
the kernel of A(K∗)→ A(J∗)→ R. We only have to define σ1 : I → A. It is easy to see that the
natural map Ker(q)→ Ker(π) is bijective and that

I = Ker(q)⊕ pA

as a direct sum of ideals. We have Ker(q)p = 0, and σ(x) = 0 for x ∈ Ker(q). We extend the
homomorphism σ1 and the divided powers defined on pA to I by σ1(x) = 0 and x[p] = 0 for
x ∈ Ker(q). This defines a PD frame F as above. Together we have homomorphisms of PD
frames

A(J ′∗)
a−→ A(K∗)

b−→ F c−→ A(J∗)

over R′
id−→ R′

π−→ R
id−→ R, where c is given by q and b is given by idA. Since σ1 is zero on

Ker(c) = Ker(q), c is crystalline by [Lau10, Theorem 3.2].
Since A → R is a p-adic PD extension, the universal property of Acris(R) gives a unique

homomorphism κ̃ : Acris(R)→ A of PD extensions of R, and κ̃ commutes with σ. We claim that
κ̃ is a frame homomorphism Acris(R) → F , i.e. that κ̃ commutes with σ1. As in the proof of
Lemma 7.4 it suffices to show that κ̃(σ1(y)) = σ1(κ̃(y)) when y = [x][n] with x ∈ J and n > 1.
Let z = κ̃([x]) in A. Then z ∈ Ker(q) and thus z[np] = 0, moreover z[n] ∈ Ker(q) as well and
thus σ1(z[n]) = 0. Therefore (7.1) and (7.2) with κ̃ in place of κ show that κ̃(σ1(y)) = 0 and
σ1(κ̃(y)) = 0. Thus κ̃ is a frame homomorphism. Since a, b, c are PD homomorphisms, we obtain
a commutative diagram of frames

Acris(R
′)

Acris(π) //

κ
��

κ′

%%

Acris(R)

κ
��

κ̃

||
A(J ′∗)

a // A(K∗)
b // F c // A(J∗)
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where the homomorphisms κ are given by Lemma 7.4, and κ′ = a ◦κ. The two homomorphisms
κ are crystalline by Proposition 7.8. Since a and c are crystalline, the same holds for κ′ and κ̃.
We have the following commutative diagram of categories.

BT(SpecR′)
Φcris
R′ //

π∗

��

Win(Acris(R
′))

κ′
∼
//

��

Win(A(K∗))

b
��

BT(SpecR)
Φcris
R // Win(Acris(R))

κ̃
∼

// Win(F)

The functors BT(SpecR′) → Win(A(K∗)) and BT(SpecR) → Win(F) are given by the
Dieudonné crystal with an additional F1. Since Ker(π)p = 0, the ideal Ker(π) can be equipped
with the trivial divided powers. Then the projection A(K∗) = A → R′ is a homomorphism of
PD extensions of R. It follows that for G ∈ BT(SpecR) with associated M ∈ Win(F) there is
a natural isomorphism M ⊗A R′ ∼= D(G)R′ . By the Grothendieck–Messing theorem [Mes72] and
its trivial counterpart for the frame homomorphism b in [Lau10, Lemma 4.2] it follows that the
lifts of G under π and the lifts of M under b coincide; cf. the proof of Proposition 5.5. Therefore
if Φcris

R is an equivalence, the same holds for Φcris
R′ . This finishes the proof of Theorem 7.10. 2

8. Perfectoid rings

We use the definition of perfectoid rings of [BMS16] in a slightly different formulation. We begin
with an easy remark on perfect rings.

Lemma 8.1. Let S be a perfect ring and a ∈ S. Let J = (ap
−∞

) and I = Ann(a). Then J = φ(J)
and I = φ(I) = Ann(J) and I ∩ J = 0, thus we have an exact sequence

0→ S → S/I ⊕ S/J → S/(I + J)→ 0, (8.1)

where the first map is the diagonal map and the second map is the difference. The element
a ∈ S/I is a non-zero divisor. If S is a-adically complete, the same holds for S/I.

Proof. Clearly J = φ(J), moreover I = Ann(a) ⊆ Ann(ap) = φ(I) ⊆ I, and thus I = φ(I) =
Ann(J). Since S is reduced we have I ∩ J = IJ = 0, and (8.1) is exact. Since I = Ann(a) =
Ann(a2) the element a ∈ S/I is a non-zero divisor. The last assertion follows from (8.1) because
S/J and S/(I + J) are annihilated by a. 2

The exact sequence (8.1) can also be expressed by the following cartesian and cocartesian
diagram of perfect rings.

S //

��

S/J

��
S/I // S/(I + J)

(8.2)

The following is contained in [GR17, Proposition 9.3.45].

Lemma 8.2. Let S be a perfect ring and let ξ = (ξ0, ξ1, . . .) ∈W (S) such that ξ0, . . . , ξr generate
the unit ideal of S. Then ξ is a non-zero divisor, and for n > 0 we have

ξW (S) ∩ pn+rW (S) = pn(ξW (S) ∩ prW (S)). (8.3)

In particular, ξW (S) is p-adically closed in W (S) and p-adically complete.
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Proof. Using Lemma 8.1 with a = ξ0 one reduces to the case where ξ0 = 0 or where ξ0 is a
non-zero divisor. In the second case ξ is a non-zero divisor, and ξW (S) ∩ pnW (S) = pnξW (S).
If ξ0 = 0 then ξ = pξ′, and the proof of (8.3) is finished by induction on r. The last assertion
follows easily. 2

Definition 8.3. For a perfect ring S, an element ξ = (ξ0, ξ1, . . .) ∈W (S) is called distinguished
if ξ1 ∈ S is a unit and S is ξ0-adically complete.

Remark 8.4. If a ring R is complete with respect to some linear topology and x ∈ R is
topologically nilpotent, then R is also x-adically complete; see the proof of [SPA16, Tag 090T].

Definition 8.5. A ring R is called perfectoid if there is an isomorphism R ∼= W (S)/ξ where S
is perfect and ξ ∈W (S) is distinguished.

Remark 8.6. Definition 8.5 is equivalent to [BMS16, Definition 3.5]; moreover for R = W (S)/ξ
as in Definition 8.5 we have

S = R[ := lim
←−(R/p, φ) (8.4)

canonically. Indeed, if R = W (S)/ξ then R/p = S/ξ0, the projective system R/p← R/p← · · ·
with arrows φ is identified with S/ξ0 ← S/ξp0 ← · · · where the arrows are the projection maps,
and (8.4) follows since S is ξ0-adically complete. Moreover R is p-adically complete because this
holds for W (S) and because ξW (S) is p-adically closed by Lemma 8.2. If π ∈ R is the image of

[ξ
1/p
0 ] ∈W (S) then πpR = pR. Thus R satisfies [BMS16, Definition 3.5]. Conversely, if the latter

holds, then R = W (R[)/ξ where R[ is perfect and ξ is distinguished. See also [GR17, 16.2.19].

Remark 8.7. If R = W (S)/ξ is perfectoid then the ring R/p = S/ξ0 is semiperfect and balanced
(Definition 4.4). This is straightforward.

Remark 8.8. The perfectoid ring R = W (S)/ξ is p-torsion free if and only if ξ0 ∈ S is a non-zero
divisor. Indeed, since p, ξ ∈W (S) are regular elements, the kernels of p : R→ R and of ξ0 : S→ S
are isomorphic.

Remark 8.9. If R = W (S)/ξ is perfectoid, the decomposition (8.2) of S with respect to a = ξ0

gives a similar decomposition of R. More precisely, let S1 = S/Ann(ξ0) and S2 = S/(ξp
−∞

0 ) and
S12 = S1⊗S S2. Then ξ ∈W (Si) is distinguished, and Ri = W (Si)/ξ is perfectoid. The sequence
(8.1) gives an exact sequence

0→W (S)→W (S1)⊕W (S2)→W (S12)→ 0. (8.5)

Since ξ is a non-zero divisor in W (S12), we obtain an exact sequence

0→ R→ R1 ⊕R2→ R12→ 0. (8.6)

Here R2 = S2 and R12 = S12 are perfect, while R1 is p-torsion free perfectoid.

As an easy consequence we observe the following.

Lemma 8.10. Every perfectoid ring R is reduced.
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Proof. By (8.6) we can assume that R is either perfect (thus reduced) or p-torsion free. For π ∈ R
as in Remark 8.6 we have πpR = pR, and φ : R/π → R/p is bijective. Hence, if a ∈ R satisfies

ap = 0 then a = πb. If R is p-torsion free it follows that bp = 0, thus a ∈ πnR for all n, whence

a = 0. 2

We need the following form of tilting.

Lemma 8.11. Let R be a perfectoid ring and B = R/p. The functor R′ 7→ R′/p from perfectoid

R-algebras to B-algebras has a left adjoint B′ 7→ B′]. If B′ is an étale B-algebra then R′ = B′]

is the unique p-adically complete R-algebra such that R′/p = B′ and R/pn→ R′/pn is étale for

all n.

Proof. Let R = W (S)/ξ where ξ is distinguished, thus S = B[ = lim
←−(B,φ), see Remark 8.6. For

a B-algebra B′ let B′] = W (B′[)/ξ. This defines the left adjoint functor. Assume that B → B′

is étale and let R′ = B′]. We have to show that R′/p = B′ and that R/pn → R′/pn is flat. Let

xn ∈ R/p be the image of ξ
1/pn

0 , so xn(R/p) is the kernel of φn : R/p→ R/p. Since B → B′ is

étale, the diagram of rings

B //

φn

��

B′

φn

��

B // B′

is cocartesian, in particular xnB is the kernel of φn : B′ → B′. It follows that B′ = B′[/ξ0 (see

[GD60, ch. 0, Proposition 7.2.7]) and thus R′/p = B′[/ξ0 = B′. We have R/pn = W (B[)/([ξn0 ],

pn, ξ) and similarly for R′. For fixed n let

C = W (B[)/([ξn0 ], pn), C ′ = W (B′[)/([ξn0 ], pn).

In order to verify that R/pn→ R′/pn is flat it suffices to show that C→ C ′ is flat, or equivalently

that C/p→ C ′/p is flat and that the associated graded rings satisfy grp(C
′) = grp(C)⊗C/pC ′/p

(local flatness criterion). But C/p = B[/ξn0
∼= B/xnr when pr > n, and grp(C) ∼= (C/p)[T ]/Tn;

and similarly for C ′. The assertion follows. 2

8.1 The ring Acris for perfectoid rings

Let R = W (S)/ξ be a perfectoid ring where S is perfect and ξ is distinguished. Let Ainf(R) =

W (S) and let Acris(R)→ R be the universal p-adic PD extension. We have Acris(R) = Acris(R/p)

as rings. If R is perfect then Acris(R) = Ainf(R) = W (R). If R is p-torsion free, which means that

the semiperfect ring R/p is a complete intersection in the sense of Definition 4.1 (see Remark 8.8),

then Acris(R) is p-torsion free. Let us verify that this also holds in general.

Proposition 8.12. Let R = W (S)/ξ be a perfectoid ring as above and Ri = W (Si)/ξ as in

Remark 8.9, for i = 1, 2, 12. We have an exact sequence

0→ Acris(R)→ Acris(R1)⊕W (R2)→W (R12)→ 0.

In particular, the ring Acris(R) is p-torsion free.
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Proof. Recall that

S1 = S/Ann(ξ0), S2 = S/(ξp
−∞

0 ) = R2, S12 = S1 ⊗S S2 = R12.

To simplify the notation, in the following we consider the empty index ∅ so that S∅ = S and
S∅2 = S2. For i = ∅ or i = 1 let Ai be the PD envelope of [ξ0]W (Si) ⊆W (Si) relative to pZp ⊂ Zp.
Then Acris(Ri) is the p-adic completion of Ai. The projection W (Si)→W (Si2) extends to a PD
homomorphism gi : Ai → W (Si2), and we have the following commutative diagram of rings,
where fi is the canonical map.

W (S)
f //

��

A
g //

��

W (S2)

��
W (S1)

f1 // A1
g1 // W (S12)

We claim that Coker(f)→ Coker(f1) is bijective, f1 is injective, and A1 is p-torsion free. Assume
this holds. The diagonal map W (S)→ W (S1) ×W (S2) is injective, thus W (S)→ W (S1) × A
is injective. Since f1 is injective, it follows that f is injective. Consider the homomorphisms of
complexes

[W (S)→W (S1)]
f∗−→ [A→ A1]

g∗−→ [W (S2)→W (S12)].

Here f∗ and g∗ ◦ f∗ are quasi-isomorphism, thus g∗ is a quasi-isomorphism. This remains true
after p-adic completion, and the lemma follows.

To prove the claim we need a closer look on the construction of A and A1. Let Λ0 = Zp[T ]
and let Λ = Zp〈T 〉 be the PD polynomial algebra, i.e. the Zp-subalgebra of Qp[T ] generated by
Tn/n! for n > 1. Define Λ0→W (S) by T 7→ [ξ0]. This extends to a PD homomorphism Λ→ A,
and the resulting homomorphisms

h : W (S)⊗Λ0 Λ→ A, h1 : W (S1)⊗Λ0 Λ→ A1

are surjective. Since ξ0 is a non-zero divisor in S1, the homomorphism h1 is bijective, and A1 is
torsion free.4

We consider the following ascending filtration of Λ and the associated filtrations of A and
of A1. For m > 0 let FmΛ = Λ ∩ p−mZp[T ]. Then Λ =

⋃
FmΛ, and grmΛ = FmΛ/Fm−1Λ is a

free Λ0/p-module of rank 1 generated by p−mT dm where dm is minimal such that pm divides dm!.
For i = ∅ or 1 let FmAi ⊆ Ai be the image of W (Si)⊗Λ0 F

mΛ and let grmAi = FmAi/F
m−1Ai.

The homomorphism hi induces surjective maps

Fmhi : W (Si)⊗Λ0 F
mΛ→ FmAi

and surjective maps
grmhi : Si ∼= W (Si)⊗Λ0 grmΛ→ grmAi

which map 1 ∈ Si to (p−mdm!)γdm([ξ0]). The transition homomorphisms

W (Si)⊗Λ0 F
m−1Λ→W (Si)⊗Λ0 F

mΛ

4 In more detail, since [ξ0] is not a zero divisor in W (S1), the ring A′1 = W (S1)⊗Λ0 Λ is the absolute PD envelope of
[ξ0]W (S1) ⊆W (S1); see [Ber74, p. 64, (3.4.8)]. Since ξ0 is not a zero divisor in S1 we have TorΛ0

1 (W (S1),Fp) = 0.
Then TorΛ0

1 (W (S1),Λ/p) = 0 because the Λ0-module Λ/p is isomorphic to the direct sum of infinitely many copies
of Fp[T ]/T p. Since Λ is p-torsion free it follows that A′1 is p-torsion free, and therefore A′1 = A1.
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are injective because

TorΛ0
1 (W (Si), grmΛ) ∼= Tor

Zp
1 (W (Si),Fp) = 0.

Since h1 is bijective it follows that Fmh1 is bijective for m > 0, which for m = 0 means that
f1 : W (S1)→ A1 is injective, moreover grmh1 is bijective for m > 1. We consider the following
commutative diagram of surjective maps.

S //

grmh
��

S1

grmh1∼=
��

grmA // grmA1

We claim that Ker(S→ S1) = Ann(ξ0) maps to zero in grmA. Indeed, choose r such that pr > dm.
For a ∈ Ann(ξ0) we have b = ap

−r ∈ Ann(ξ0) and therefore [a]γdm([ξ0]) = [bp
r−dm ]γdm([bξ0]) = 0.

It follows that grmA→ grmA1 is bijective for m > 1, and thus A/F 0A→ A1/F
0A1 is bijective,

which means that Coker(f)→ Coker(f1) is bijective as required. 2

9. Windows and modules for perfectoid rings

As earlier, let R = W (S)/ξ be a perfectoid ring where S is perfect and ξ is distinguished. The
rings Ainf(R) = W (S) and Acris(R) carry natural frame structures:

Ainf(R) = (Ainf(R),FilAinf(R), R, σ, σinf
1 ),

where FilAinf(R) = ξAinf(R) and σinf
1 (ξa) = σ(a), and

Acris(R) = (Acris(R),FilAcris(R), R, σ, σ1),

where FilAcris(R) is the kernel of Acris(R)→ R, and σ1(a) = p−1σ(a); this is well defined since
Acris(R) is p-torsion free by Proposition 8.12. The natural map Ainf(R)→ Acris(R) is a frame
homomorphism

λ : Ainf(R)→ Acris(R). (9.1)

Indeed, let c = σ1(ξ) in Acris(R). Then c ≡ [ξ0]p/p+ [ξ1]p mod pAcris(R) and thus c ≡ [ξ1]p mod
pAcris(R) + FilAcris(R), so c is a unit since ξ1 is a unit. We have σ1 ◦ λ = c · λ ◦ σ1 on ξAinf(R),
so λ is a c-homomorphism of frames in the sense of [Lau10]. If R is perfect, λ is the identity and
c = 1.

9.1 Descent of windows under λ
We need the following standard lemma. For a ring A let LF(A) be the category of finite projective
A-modules.

Lemma 9.1. Let A1→ A3← A2 be rings with surjective homomorphisms and A = A1 ×A3 A2.
Then the corresponding diagram of categories

LF(A) //

��

LF(A2)

��
LF(A1) // LF(A3)

is 2-cartesian.
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Proof. For a flat A-module M and Mi = M⊗AAi the natural map M →M1×M3M2 is bijective.
Thus the functor LF(A)→ LF(A1)×LF(A3) LF(A2) is fully faithful. For given Mi ∈ LF(Ai) and
isomorphisms M1 ⊗A1 A3

∼= M3
∼= M2 ⊗A2 A3 let M = M1 ×M3 M2. We have to show that

M ∈ LF(A) and that M ⊗A Ai→Mi is bijective. One can choose a finite free A-module F and
compatible surjective maps gi : Fi → Mi where Fi = F ⊗A Ai. Indeed, clearly one can arrange
that g1 or g3 is surjective, and then take the direct sum. Next one can find compatible maps
si : Mi→ Fi with gisi = id. Indeed, choose s1, which induces s3, and use that F2→ F3 ×M3 M2

is surjective to get s2. This gives compatible isomorphisms Fi ∼= Mi ⊕Ker(gi), so M is a direct
summand of F , and the assertion follows. 2

Lemma 9.2. Let R be a perfectoid ring. For R1, R2, R12 as in Remark 8.9 the natural diagrams
of window categories

Win(Ainf(R)) //

��

Win(Ainf(R2))

��
Win(Ainf(R1)) // Win(Ainf(R12))

(9.2)

and

Win(Acris(R)) //

��

Win(Acris(R2))

��
Win(Acris(R1)) // Win(Acris(R12))

(9.3)

are 2-cartesian.

Proof. The rings R, R1, R2, R12 form a cartesian diagram with surjective maps, and the same
holds for the associated rings Ainf and Acris, the latter by Proposition 8.12. Thus the diagrams
of frames that arise from (9.2) and (9.3) by deleting ‘Win’ are cartesian with surjective maps in
all components. Using Lemma 9.1 the assertion follows easily. 2

Proposition 9.3. If p > 3, for every perfectoid ring R the functor

λ∗ : Win(Ainf(R))→Win(Acris(R)) (9.4)

associated to (9.1) is an equivalence of categories.

Proof. By Lemma 9.2 we can assume that R is either perfect or p-torsion free. In the perfect
case λ is bijective. Let R = W (S)/ξ where S is perfect and ξ is distinguished. If R is p-torsion
free, (p, ξ) is a regular sequence in W (S), and λ∗ is an equivalence by [CL14, Proposition 2.3.1]
(which requires p > 3). 2

9.2 Breuil–Kisin–Fargues modules
Let R = W (S)/ξ be perfectoid as before. In the following we write Ainf = Ainf(R) = W (S).

Definition 9.4. A (locally free) Breuil–Kisin–Fargues module for R is a pair (M, ϕ) where M
is a finite projective Ainf -module and where ϕ : Mσ

→ M is a linear map whose cokernel is
annihilated by ξ. We denote by BK(R) the category of Breuil–Kisin–Fargues modules for R.
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In the case R = OK for a perfectoid field K, free ϕ-modules over Ainf are studied by Fargues
[Far15] in analogy with the classical theory of Breuil–Kisin modules [Kis06], and are called
Breuil–Kisin–Fargues modules in [BMS16]. Here we only consider minuscule ϕ-modules, which
correspond to p-divisible groups. When R is a perfect ring, then A = W (R), and BK(R) is the
category of Dieudonné modules over R in the usual sense.

Lemma 9.5. For (M, ϕ) ∈ BK(R) the R-module Coker(ϕ) is projective.

Proof. Cf. Lemma 3.1. Let N = Mσ and M̄ = M⊗AR and N̄ = N⊗AR. There is a unique linear
map ψ : M → Mσ such that ϕ ◦ ψ = ξ, and we obtain an exact sequence of finite projective
R-modules

N̄
ϕ̄−→ M̄

ψ̄−→ N̄
ϕ̄−→ M̄. (9.5)

We have to show that Im(ψ̄) is a direct summand of N̄. This holds if and only if for each maximal
ideal m ⊂ R the base change of (9.5) to k = R/m is exact. We have p ∈ m, so k is a perfect
field of characteristic p. The natural homomorphism A → Ainf(k) = W (k) maps ξ to p. Thus
M ⊗A W (k) is a Dieudonné module over k, and it follows that the base change of (9.5) under
R→ k is exact as required. 2

Lemma 9.5 implies that there is an equivalence of categories

Win(Ainf(R))→ BK(R), (9.6)

given by (M,FilM,F, F1) 7→ (M, ϕ) with M = FilM and ϕ(1 ⊗ x) = ξF1(x), see [CL14,
Lemma 2.1.15]. The inverse functor is determined by M = Mσ and FilM = {x ∈M | ϕ(x) ∈ ξM}
and F (x) = 1⊗ ϕ(x) for x ∈M .

Remark 9.6. The frame Ainf(R) depends on the choice of ξ, but the functor

BK(R)→Win(Ainf(R))→Win(Acris(R))

defined as the composition of (9.4) and the inverse of (9.6) is independent of ξ as is easily verified.

9.3 p-divisible groups over perfectoid rings
Let R be a perfectoid ring. The functor ΦS of (3.3) for S = Acris(R) defined by evaluation of the
crystalline Dieudonné module is a functor

Φcris
R : BT(SpecR)→Win(Acris(R)).

Proposition 9.7. If p > 3 then the functor Φcris
R is an equivalence.

Proof. Since the ring Acris(R) = Acris(R/p) is torsion free by Proposition 8.12, there is another
frame

Acris(R/p) = (Acris(R/p),FilAcris(R/p), R/p, σ, σ1)

defined by FilAcris(R/p) = FilAcris(R) + pAcris(R) and σ1(x) = p−1σ(x). The identity is a strict
frame homomorphism j : Acris(R)→ Acris(R/p) over the projection π : R→ R/p, and we obtain
a commutative diagram of functors

BT(SpecR)
Φcris
R //

π

��

Win(Acris(R))

j

��
BT(SpecR/p)

Φcris
R/p // Win(Acris(R/p))
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where Φcris
R/p is the functor ΦS for S = Acris(R/p). Here Φcris

R/p coincides with the functor of

Theorem 6.3, but this is not needed. Since R/p is a balanced semiperfect ring (see Remark 8.7),
the functor Φcris

R/p is an equivalence by Corollary 5.11; see also Remark 5.12.

For G ∈ BT(SpecR/p) and M = Φcris
R/p(G) there is a natural isomorphism of R-modules

M ⊗Acris(R/p) R
∼= D(G)R. Since p > 3, the divided powers on the ideal pR are topologically

nilpotent. By the Grothendieck–Messing theorem [Mes72] and by [Lau10, Lemma 4.2] it follows
that lifts of G under π and lifts of M under j correspond to lifts of the Hodge filtration in the
same way. Therefore the functor Φcris

R is an equivalence. 2

Theorem 9.8. If p > 3, for every perfectoid ring R there is an equivalence

BT(SpecR) ∼= BK(R)

between p-divisible groups and Breuil–Kisin–Fargues modules.

Proof. We have a chain of functors

BT(SpecR)→Win(Acris(R))←Win(Ainf(R)) ∼= BK(R), (9.7)

where the last equivalence is (9.6). For p > 3 the two arrows are equivalences by Propositions 9.7
and 9.3. 2

The equivalence of Theorem 9.8 is independent of the choice of the generator ξ of the kernel
of Ainf → R; see Remark 9.6.

10. Classification of finite group schemes

The equivalence between p-divisible groups and Breuil–Kisin–Fargues modules over perfectoid
rings induces a similar equivalence for finite group schemes. For a scheme X let pGr(X) be the
category of commutative finite locally free p-group schemes over X.

10.1 A category of torsion modules
If A is a p-adically complete and p-torsion free ring, let T(A) be the category of finitely presented
A-modules of projective dimension less than or equal to 1 which are annihilated by a power of p.

Lemma 10.1. For a homomorphism of p-adically complete and p-torsion free rings A→ A′ and
M ∈ T(A) we have M ⊗A A′ ∈ T(A′).

Proof. Let 0 → Q
u−→ P → M → 0 be exact where P and Q are finite projective A-modules.

Let prM = 0. There is a homomorphism w : P → Q such that uw = pr and wu = pr. Let
Q′ = Q ⊗A A′ etc. Since Q′ is p-torsion free it follows that 0→ Q′ → P ′ → M ′ → 0 is exact,
thus M ′ ∈ T(A′). 2

The category T(A) can be described in terms of the rings A/pn as follows.

Lemma 10.2. Let A be a p-adically complete p-torsion free ring, An = A/pn. Let M be a
finite A-module annihilated by pr. We have M ∈ T(A) if and only if for every exact sequence
0→ Qn→ Pn→M → 0 where Pn is a finite projective An-module with n > r, the An−r-module
Qn/p

n−rQn is finite projective.
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Proof. Assume that M ∈ T(A) and let 0→ Qn → Pn → M → 0 be as in the lemma. Choose
a finite projective A-module P with P/pn = Pn and let Q be the kernel of P → M . Then Q is
finite projective over A, and Qn = Q/pnP . We have pnP ⊆ pn−rQ, and thus Qn/p

n−r = Q/pn−r

is finite projective over An−r. Conversely, assume that the condition on M holds and let 0 →
Q → P → M → 0 be exact where P is finite projective over A. For n > r let Pn = P/pn

and Qn = Q/pnP . Then the An-module Q̃n = Qn+r/p
nQn+r is finite projective, and we have

Q̃n+1/p
n = Q̃n. It follows that Q = lim

←−Qn = lim
←− Q̃n is finite projective over A. 2

The category T(A) satisfies fpqc descent in the following sense.

Lemma 10.3. Let A→ A′ be a homomorphism of p-adically complete p-torsion free rings such
that A/p→ A′/p is faithfully flat. Let A′′ and A′′′ be the p-adic completions of A′ ⊗A A′ and
A′⊗AA′⊗AA′. Then T(A) is equivalent to the category of pairs (M ′, α) where M ′ ∈ T(A′) and
α : M ′ ⊗A A′ ∼= A′ ⊗AM ′ is an isomorphism that satisfies the usual cocycle condition over A′′′.

Proof. Lemma 10.1 gives a functor M 7→ (M ′, α). By the local flatness criterion A/pn→ A′/pn

is faithfully flat for each n. It follows that the functor M 7→ (M ′, α) is fully faithful, moreover
each (M ′, α) with M ′ ∈ T(A) comes from an A-module M annihilated by a power of p, and it
remains to show that M ∈ T(A). This is an easy consequence of Lemma 10.2. 2

The category T(A) preserves projective limits of nilpotent immersions as follows.

Lemma 10.4. Let A = lim
←−nA

n for a surjective system A1
← A2

← · · · of p-adically complete

p-torsion free rings such that Ker(An+1
→ An) is nilpotent for each n. Then the obvious functor

ρ : T(A)→ lim
←−n T(An) is an equivalence.

Proof. For M ∈ T(A) let 0→ Q→ P →M → 0 be exact where P and Q are finite projective
over A. By the proof of Lemma 10.1 the base change under A → An gives an exact sequence
0→ Qn → Pn →Mn

→ 0. Since P = lim
←−n P

n and Q = lim
←−nQ

n it follows that M = lim
←−nM

n.
In particular the functor ρ is fully faithful.

Conversely, let Mn ∈ T(An) with isomorphisms Mn+1 ⊗An+1 An ∼= Mn be given. Let M =
lim
←−nM

n and choose a homomorphism P → M where P is finite projective over A such that

P 1
→M1 is surjective, Pn = P ⊗AAn. Then Pn→Mn is surjective by Nakayama’s lemma. The

module Qn = Ker(Pn→Mn) is finite projective over An, and Qn = Qn+1⊗An+1An by the proof
of Lemma 10.1. It follows that Q= lim

←−nQ
n is finite projective over A, and 0→Q→ P →M → 0

is exact, thus M ∈ T(A). The base change under A→ An of the last sequence remains exact, so
Mn = M ⊗A An. 2

10.2 Torsion Breuil–Kisin–Fargues modules
Let R = W (S)/ξ be a perfectoid ring where S is perfect and ξ is distinguished. We write again
Ainf = Ainf(R) = W (S), and FilAinf = Ker(Ainf → R) = ξAinf .

Definition 10.5. A torsion Breuil–Kisin–Fargues module for R is a triple (M, ϕ, ψ) where M ∈
T(Ainf) and where

FilAinf ⊗Ainf
M

ψ−→Mσ ϕ−→M (10.1)

are linear maps such that ϕ ◦ ψ and ψ ◦ (1 ⊗ ϕ) are the multiplication maps. We denote by
BKtor(R) the category of torsion Breuil–Kisin–Fargues modules over R.
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Remark 10.6. For a homomorphism of perfectoid rings R→ R′ there is an obvious base change
functor BKtor(R)→ BKtor(R

′); see Lemma 10.1.

Remark 10.7. If R is p-torsion free, (p, ξ) is a regular sequence in Ainf , thus ξ is M-regular for
each M ∈ T(Ainf), and torsion Breuil–Kisin–Fargues are equivalent to pairs (M, ϕ) where the
cokernel of ϕ is annihilated by ξ.

Remark 10.8. For a locally free Breuil–Kisin–Fargues module M = (M, ϕ) as in Definition 9.4
there is a unique ψ as in (10.1). In the following we will view M as a triple (M, ϕ, ψ).
A homomorphism u : M→M′ in BK(R) is called an isogeny if it becomes bijective over A[1/p].
Then u is injective, and its cokernel lies in BKtor(R).

Étale descent. By an abuse of notation, let (SpecR/p)ét denote the site of all affine étale
R/p-schemes, with surjective families as coverings. For an étale R/p-algebra B′ there is a unique
homomorphism of perfectoid rings R→R′ with R′/p=B′; see Lemma 8.11. We define presheaves
of rings Ainf and R on (SpecR/p)ét by

R(SpecB′) = R′, Ainf(SpecB′) = Ainf(R
′).

For varying étale R/p-algebras B′, the categories LF(R′) of locally free R′-modules form a
fibered category LF(R) over (SpecR/p)ét. Similarly we have fibered categories LF(Ainf), T(Ainf),
BK(R), BKtor(R), BT(SpecR), and pGr(SpecR) over (SpecR/p)ét; see Lemma 10.1 for T(Ainf).

Lemma 10.9. The presheaves of rings Ainf and R on (SpecR/p)ét are sheaves. The fibered
categories LF(R), LF(Ainf), T(Ainf), BK(R), BKtor(R), BT(SpecR), and pGr(SpecR) over
(SpecR/p)ét are stacks.

Proof. Let x = [ξ0] ∈ A := Ainf and let I = (x, p) as an ideal of A. Then A is I-adically complete.
Let B = R/p. We fix a faithfully flat étale homomorphism B→ B′ and write A′ = Ainf(B

′) and
A′′ = Ainf(B

′ ⊗B B′) and A′′′ = Ainf(B
′ ⊗B B′ ⊗B B′). The reduction modulo In of A → A′

is étale, and the reductions modulo In of A′ ⊗A A′ → A′′ and of A′ ⊗A A′ ⊗A A′ → A′′′ are
isomorphisms. Since the category LF(A) is equivalent to lim

←−n LF(A/In), étale descent of locally
free modules shows that Ainf is a sheaf and LF(Ainf) and BK(R) are stacks. A similar argument
shows that R is a sheaf and that LF(R), pGr(SpecR), and BT(SpecR) are stacks.

We claim that A is x-adically complete and that the quotients A/xn are p-adically complete
and p-torsion free. Indeed, this is clear when R is perfect and thus x = 0, or when R is torsion
free; in that case (x, p) is a regular sequence in A. In general, we use the exact sequence (8.5)
where A = W (S). Let Ai = W (Si). Since x is zero in A2 and in A12 we get an exact sequence
0→ A/xn→ A1/x

n⊕A2→ A12→ 0. Here all rings except possibly A/xn are p-adically complete
and p-torsion free, thus the same holds for A/xn. The limit over n shows that A is x-adically
complete. The claim is proved.

Lemma 10.4 implies that T(A) is equivalent to lim
←−n T(A/xn), and similarly for A′ and A′′

and A′′′. The homomorphism A/(xn, p)→ A′/(xn, p) is faithfully flat étale, hence Lemma 10.3
implies that T(A/xn) is equivalent to the category of modules in T(A′/xn) with a descent datum
in T(A′′/xn). This proves that T(A) and BKtor(R) are stacks. 2

Let us now continue the discussion of Remark 10.8.

Lemma 10.10. For M ∈ BKtor(R), Zariski locally in Spec(R/p) there is an isogeny of locally free
Breuil–Kisin–Fargues modules with cokernel M.
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Proof. This is similar to [Kis06, Lemma (2.3.4)]. We have to find locally in Spec(R/p) a surjective
map N→M where N is a locally free Breuil–Kisin–Fargues module. One can choose finite free
A-modules Q and N of equal rank and a commutative diagram with surjective vertical maps

FilAinf ⊗Ainf
N

g //

1⊗π
��

Q
f //

ρ

��

N

π

��
FilAinf ⊗Ainf

M
ψ // Mσ //ϕ // M

such that f ◦ g and g ◦ (1 ⊗ f) are the multiplication maps. Assume that u : Nσ
→ Q is an

isomorphism with ρu = σ∗(π). Then N = (N, fu, u−1g) solves the problem. It is easy to see that
u exists locally in SpecA and therefore also locally in Spec(R/p). 2

Lemma 10.11. For H ∈ pGr(SpecR), Zariski locally in Spec(R/p) there is an isogeny of p-
divisible groups with kernel H.

Proof. We have to find locally in Spec(R/p) an embedding of H into a p-divisible group. By
[BBM82, Theorem 3.1.1] such an embedding exists Zariski locally in Spec(R), and therefore also
Zariski locally in Spec(R/p). 2

Theorem 10.12. If p > 3, for every perfectoid ring R there is an equivalence

pGr(SpecR) ∼= BKtor(R).

Proof. This follows from Theorem 9.8 as in [Kis06, Theorem (2.3.5)]. More precisely, let
pGr(SpecR)◦ be the category of all H ∈ pGr(SpecR) with are the kernel of an isogeny in
BT(SpecR), and let BKtor(R)◦ be the category of all M ∈ BKtor(R) which are the cokernel of
an isogeny in BK(R). The corresponding fibered categories pGr(SpecR)◦ and BKtor(R)◦ over
(SpecR/p)ét have associated stacks pGr(SpecR) and BKtor(R) by Lemmas 10.10 and 10.11.
Moreover pGr(SpecR)◦ (respectively BKtor(R)◦) is equivalent to the full subcategory of the
derived category of the exact category BT(SpecR) (respectively BK(R)) whose objects are
isogenies G0

→ G1 (respectively isogenies M1→M0). Thus the equivalence of fibered categories
BT(SpecR) ∼= BK(R) given by Theorem 9.8 induces an equivalence pGr(SpecR) ∼= BKtor(R). 2

10.3 Torsion Dieudonné modules
For completeness we record a similar classification of finite group schemes in the context of §§ 3
and 5.

Let R be an Fp-algebra and let (A, σ) be a lift of R as in § 3. A torsion Dieudonné module
over A is a triple M = (M,ϕ, ψ) where M ∈ T(A) and ϕ : Mσ

→ M and ψ : M → Mσ are
linear maps with ϕψ = p and ψϕ = p. We write DMtor(A) for the category of torsion Dieudonné
modules over A.

An étale ring homomorphism R→ R′ extends to a unique homomorphism of lifts (A, σ)→
(A′, σ); each A/pr → A′/pr is the unique étale homomorphism that lifts R→ R′.

Lemma 10.13. The functors ΦA′ : BT(SpecR′) → DM(A′) of (3.6) for all étale R-algebras R′

induce functors
Φtor
A′ : pGr(SpecR′)→ DMtor(A

′). (10.2)

If all functors ΦA′ are equivalences, then so are the functors Φtor
A′ .
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Proof. The functor ΦA induces a functor from the category of all H ∈ pGr(SpecR) which are
the kernel of an isogeny of p-divisible groups to the category of all M ∈ DMtor(A) which are the
cokernel of an isogeny of locally free Dieudonné modules. For given H or M, such isogenies exist
locally in SpecR. The lemma follows by descent; see Lemma 10.3. 2

Corollary 10.14. For a semiperfect ring R with a lift (A, σ) as in Theorem 5.7, the functor
Φtor
A : pGr(SpecR)→ DMtor(A) is an equivalence.

Proof. For each étale R-algebra R′ with associated lift A′ the resulting divided powers on the
kernel of φ : R′ → R′ are induced from the divided powers on the kernel of φ : R → R and
are thus pointwise nilpotent. Hence ΦA′ is an equivalence by Theorem 5.7, and Lemma 10.13
applies. 2

Acknowledgements
The author thanks Peter Scholze and Thomas Zink for fruitful discussions and the referee for
helpful comments.

References

Ber74 P. Berthelot, Cohomologie cristalline des schémas de charactéristique p > 0, Lecture Notes in
Mathematics, vol. 407 (Springer, Berlin–New York, 1974).
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