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Abstract. In this paper, we reduce the logarithmic Sarnak conjecture to the {0, 1}-symbolic
systems with polynomial mean complexity. By showing that the logarithmic Sarnak
conjecture holds for any topologically dynamical system with sublinear complexity, we
provide a variant of the 1-Fourier uniformity conjecture, where the frequencies are
restricted to any subset of [0, 1] with packing dimension less than one.
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1. Introduction
In this paper, a topologically dynamical system (t.d.s. for short) is a pair (X, T ), where X
is a compact metric space endowed with a metric d and T : X → X is a homeomorphism.
Denote by M(X, T ) the set of all T-invariant Borel probability measures on X, which is
a non-empty convex and compact metric space with respect to the weak∗ topology. We
say a sequence ξ is realized in (X, T ) if there is an f ∈ C(X) and an x ∈ X such that
ξ(n) = f (T nx) for any n ∈ N. A sequence ξ is said to be deterministic if it is realized in
a t.d.s. with zero topological entropy. The Möbius function μ : N → {−1, 0, 1} is defined
by μ(1) = 1 and

μ(n) =
{
(−1)k if n is a product of k distinct primes

0 otherwise.
(1.1)

In this paper, N = {1, 2, . . .}, E (respectively E
log) stands for a finite average

(respectively a finite logarithmical average), that is,
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En≤NAn = 1
N

N∑
n=1

An and E
log
n≤NAn = 1∑N

n=1(1/n)

N∑
n=1

An

n
.

Here is the well-known conjecture by Sarnak [19].

Sarnak Conjecture. The Möbius function μ is linearly asymptotically disjoint from any
deterministic sequence ξ . That is,

lim
N→∞ En≤Nμ(n)ξ(n) = 0. (1.2)

The conjecture in the case when X is finite is equivalent to the prime number theorem
in arithmetic progressions. The conjecture in the case when T is a rotation on the circle
is equivalent to Davenport’s theorem [2]. The conjecture in many other special cases has
been established recently (see [8, 6, 12, 13] and references therein).

Tao introduced and investigated the following logarithmic version of the Sarnak
conjecture [21, 22] (see also [7, 18, 23, 24]).

Logarithmic Sarnak Conjecture. For any topological dynamical system (X, T ) with zero
entropy, any continuous function f : X → C, and any point x in X,

lim
N→∞ E

log
n≤Nμ(n)f (n) = 0. (1.3)

Now we let (X, T ) be a t.d.s. with a metric d. For any n ∈ N, we consider the so-called
mean metric induced by d:

dn(x, y) = 1
n

n−1∑
i=0

d(T ix, T iy)

for any x, y ∈ X. For ε > 0 and a subset K of X, we let

Sn(d, T , K , ε) = min
{
m ∈ N : there exists x1, x2, . . . , xm such that K ⊂

m⋃
i=1

Bdn(xi , ε)
}

,

where Bdn(x, ε) := {y ∈ X : dn(x, y) < ε} for any x ∈ X. We say (X, T ) has polynomial
mean complexity if there exists a constant k > 0 such that lim infn→+∞(Sn(d, T , X, ε)/
nk) = 0 for all ε > 0. The following is our main result.

THEOREM 1.1. The following statements are equivalent.
(1) The logarithmic Sarnak conjecture holds.
(2) The logarithmic Sarnak conjecture holds for any t.d.s. with polynomial mean

complexity.
(3) The logarithmic Sarnak conjecture holds for any {0, 1}-symbolic system with poly-

nomial mean complexity.

We now briefly describe the main ingredients in the proof of Theorem 1.1. It is clear that
statement (1) implies statement (2) which in turn implies statement (3). So it remains to
prove statement (2) implies statement (1) and statement (3) implies statement (2). To show
statement (2) implies statement (1), we use Tao’s result as a starting point, which states
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that the logarithmic Sarnak conjecture is equivalent to a conjecture involving the limit of
averages on nilmanifolds, see Conjecture 2.1. By assuming that Conjecture 2.1 fails, we
are able then to construct a system with polynomial mean complexity which does not
satisfy the logarithmic Sarnak conjecture, and hence prove that statement (2) implies
statement (1). To construct the system, we need to work on nilsystems and figure out the
complexity of polynomial sequences, see Proposition 2.5. Precisely, we will show that for
a given ε > 0, for any n ∈ N, the minimal number of ε-dense subsets of strings of lengths
n of the set of all polynomial sequences on G/� is bounded by a polynomial which
is only dependent on ε and G/�, where G/� is an s-step nilmanifold. With the help
of this proposition, we finish the construction and thus show that statement (2) implies
statement (1). To show statement (3) implies statement (2), we study a t.d.s. with the
small boundary property which was introduced by Lindenstrauss when studying mean
dimension. Proposition 2.10 plays a key role for the proof, which states that for a t.d.s.
(X, T )with polynomial mean complexity and a subset U with small boundary, each x ∈ X
is associated with a point in the shift space such that the complexity of the closure of the
associated points is less than or equal to that of (X, T ). The result of Lindenstrauss and
Weiss guarantees that if (X, T ) has zero entropy, then the product of X with any irrational
rotation on the circle has the small boundary property. By using Proposition 2.10 and some
simple argument, we finish the proof that statement (3) implies statement (2), and hence
the proof of Theorem 1.1.

While Theorem 1.1 does not provide a proof of the logarithmic Sarnak conjecture
directly, it does indicate that a t.d.s. with polynomial mean complexity is important for
the proof of the conjecture. So, it will be useful to understand the structure of a subshift
with polynomial mean complexity. We remark that we do not know if the polynomial
mean complexity for a subshift can be replaced by the polynomial block-complexity in
Theorem 1.1, which is extensively studied in the literature.

For a t.d.s. (X, T ) with a metric d, ε > 0, and a ρ ∈ M(X, T ), we let

Sn(d, T , ρ, ε)

= min
{
m ∈ N : there exists x1, x2, . . . , xm s.t. ρ

( m⋃
i=1

Bdn(xi , ε)
)
> 1 − ε

}
.

It is clear that Sn(d, T , ρ, ε) ≤ Sn(d, T , X, ε) for any ρ ∈ M(X, T ) and ε > 0. We say
a ρ ∈ M(X, T ) has sub-linear mean measure complexity if for any ε > 0,

lim inf
n→+∞

Sn(d, T , ρ, ε)
n

= 0. (1.4)

We say (X, T ) has sub-linear mean measure complexity if equation (1.4) holds for any
ρ ∈ M(X, T ). We emphasize that the sub-linear mean measure complexity is an invariant
in the measure-theoretic category. One can refer to [11, Proposition 2.2] for details.

By using the fact that the two-term logarithmic Chowla conjecture holds [21], that is,

lim
N→∞

1
ln N

N∑
n=1

μ(n+ h1)μ(n+ h2)

n
= 0 (1.5)
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for any 0 ≤ h1 < h2 ∈ N, and by using the method of the proof of Theorem 1.1 in [11], we
have the following theorem.

THEOREM 1.2. The logarithmic Sarnak conjecture holds for any t.d.s. with sub-linear
mean measure complexity. Consequently, the conjecture holds for any t.d.s. with sub-linear
mean complexity.

We remark that, at this moment, we are not able to show that the logarithmic Sarnak
conjecture holds for any t.d.s. with linear mean (measure) complexity. We also remark that
if for any k ∈ N the 2k-term logarithmic Chowla conjecture holds, that is,

lim
N→∞

1
ln N

N∑
n=1

μ(n+ h1)μ(n+ h2) . . . μ(n+ h2k)

n
= 0 (1.6)

for any non-negative integer 0 ≤ h1 ≤ h2 ≤ · · · ≤ h2k with an odd number j ∈
{1, 2, . . . , 2k} such that hj < hj+1, then the logarithmic Sarnak conjecture holds for
any t.d.s. with sub-polynomial (leading term cnk) mean measure complexity by using
the method of Theorem 1.2. Thus, by Theorem 1.1, we know that the logarithmic Sarnak
conjecture holds if the logarithmic Chowla conjecture holds. In fact, the two conjectures
are equivalent [21].

As an application of Theorem 1.2, one has the following result.

THEOREM 1.3. Let C be a non-empty compact subset of [0, 1] with packing dimension
< 1. Then

lim
H→+∞ lim sup

N→+∞
E

log
n≤N sup

α∈C
|Eh≤Hμ(n+ h)e(hα)| = 0, (1.7)

where e(t) := e2πit for any t ∈ R.

We remark that in [18, Theorem 1.13], McNamara proved that equation (1.7) holds for
a non-empty compact subset C of [0, 1] with upper box dimension < 1. So Theorem 1.3
strengthens the result in [18].

We say a t.d.s. (X, T ) has sub-polynomial mean measure complexity if for any τ > 0
and ρ ∈ M(X, T ),

lim inf
n→+∞

Sn(d, T , ρ, ε)
nτ

= 0

for any ε > 0. In [11], Huang, Wang, and Ye showed that the Sarnak conjecture holds for
any t.d.s. with sub-polynomial mean measure complexity. As an application of the above
result in [11], one has the following result.

THEOREM 1.4. Let C be a non-empty compact subset of [0, 1] with packing dimension
= 0. Then,

lim
H→+∞ lim sup

N→+∞
En≤N sup

α∈C
|Eh≤Hμ(n+ h)e(hα)| = 0. (1.8)

The paper is organized as follows. In §2, we prove Theorem 1.1. In §3, we prove
Theorem 1.3. In Appendixes A and B, we prove Theorems 1.2 and 1.4.
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2. Proof of Theorem 1.1
In this section, we prove Theorem 1.1. As we said in the introduction, it remains to prove
(2) �⇒ (1) which is done in §2.1, and (3) �⇒ (2) which is carried out in §2.2.

2.1. Proof of statement (2) implies statement (1) in Theorem 1.1. We have explained in
the introduction that the starting point of the proof is Tao’s result which gives an equivalent
statement of the logarithmic Sarnak conjecture. We will first introduce the result, then
derive some result concerning the complexity of polynomial sequences, and finally give
the proof. Let us begin with basic notions related to nilmanifolds.

Let G be a group. For g, h ∈ G, we write [g, h] = ghg−1h−1 for the commutator of
g and h, and we write [A, B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}. The
commutator subgroupsGj , j ≥ 1, are defined inductively by settingG1 = G andGj+1 =
[Gj , G]. Let s ≥ 1 be an integer. We say that G is s-step nilpotent if Gs+1 is the trivial
subgroup.

Recall that an s-step nilmanifold is a manifold of the formG/�, where G is a connected,
simply connected s-step nilpotent Lie group, and � is a cocompact discrete subgroup
of G. Tao shows that the logarithmic Sarnak conjecture is equivalent to the following
conjecture [22].

Conjecture 2.1. For any s ∈ N, an s-step nilmanifold G/�, a Lip-continuous function
F : G/� → C, and x0 ∈ G/�, one has

lim
H→+∞ lim sup

N→+∞
E

log
n≤N sup

g∈G
|Eh≤Hμ(n+ h)F (ghx0)| = 0.

Let G/� be an m-dimensional nilmanifold (that is, G is a connected, simply connected
s-step nilpotent Lie group with unit element e and � is a cocompact discrete subgroup of G)
and let G = G1 ⊃ · · · ⊃ Gs ⊃ Gs+1 = {e} be the lower central series filtration. We will
make use of the Lie algebra g over R of G together with the exponential map exp : g → G.
Since G is a connected, simply connected s-step nilpotent Lie group, the exponential map
is a diffeomorphism [1, 18]. A basis X = {X1, . . . , Xm} for the Lie algebra g over R is
called a Mal’cev basis for G/� if the following four conditions are satisfied.
(1) For each j = 0, . . . , m− 1, the subspace ηj := Span(Xj+1, . . . , Xm) is a Lie

algebra ideal in g, and hence Hj := exp ηj is a normal Lie subgroup of G.
(2) For every 0 < i ≤ s, there is li−1 such that Gi = Hli−1 . Thus, 0 = l0 < l1 < · · · <

ls−1 ≤ m− 1.
(3) Each g ∈ G can be written uniquely as exp(t1X1) exp(t2X2) . . . exp(tmXm) for

some ti ∈ R.
(4) � consists precisely of those elements which, when written in the above form, have

all ti ∈ Z.
Note that such a basis exists [1, 8, 16]. Now we fix a Mal’cev basis X = {X1, . . . , Xm}

of G/�. Define ψ : G → R
m such that if g = exp(t1X1) . . . exp(tmXm) ∈ G, then

ψ(g) = (t1, . . . , tm) ∈ R
m.
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Moreover, let |ψ(g)| = max1≤i≤m |ti |. The following metrics on G and G/� are intro-
duced in [8].

Definition 2.2. We define d : G×G → R to be the largest metric such that d(x, y) ≤
|ψ(xy−1)| for all x, y ∈ G. More explicitly, we have

d(x, y) = inf

{
n∑
i=1

min{|ψ(xi−1x
−1
i )|, |ψ(xix−1

i−1)|} : x0, . . . , xn ∈ G; x0 = x, xn = y

}
.

This descends to a metric on G/� by setting

d(x�, y�) := inf{d(x′, y′) : x′, y′ ∈ G; x′ = x (mod �); y′ = y (mod �)}.
It turns out that this is indeed a metric onG/� (see [8]). Since d is right-invariant (that is,
d(x, y) = d(xg, yg) for all x, y, g ∈ G), we also have

d(x�, y�) = inf
γ∈� d(x, yγ ).

The following lemma appears in [3, Lemmas 7.5 and 7.6].

LEMMA 2.3. Let G be a connected, simply connected s-step nilpotent Lie group. Then
there exist real polynomials P1 : R3 → R, P2 : R → R, and P3 : R2 → R with positive
coefficients such that for x, y, g, h ∈ G:
(1) d(gx, gy) ≤ P1(|ψ(g)|, |ψ(x)|, |ψ(y)|)d(x, y);
(2) |ψ(gn)| ≤ P2(n)|ψ(g)|nG , where nG is a positive constant determined by G;
(3) |ψ(gh)| ≤ P3(|ψ(g)|, |ψ(h)|).

Let G be a connected, simply connected s-step nilpotent Lie group with unit element e
and G = G0 = G1, Gi+1 = [G, Gi] be the lower central series filtration of G. It is clear
that {e} = Gs+1 = Gs+2 = · · · . By a polynomial sequence adapted to the lower central
series filtration, we mean a map g : Z → G such that ∂hi , . . . , ∂h1 g ∈ Gi for all i > 0 and
h1, . . . , hi ∈ Z, where

∂hf(n) := f(n+ h)f(n)−1

for any map f : Z → G and n, h ∈ Z. Let Poly(G) be the collection of all polynomial
sequences of G adapted to the lower central series filtration. It is well known that a
polynomial sequence g : Z → G adapted to the lower central series filtration has unique
Taylor coefficients gj ∈ Gj for each 0 ≤ j ≤ s such that

g(n) = g

(
n
0

)
0 g

(
n
1

)
1 . . . g

(
n
s

)
s ,

where
(
n
0

) ≡ 1 (see for example [9, Lemma B.9] and [10, p. 240, Theorem 8]). In this case,
we say that gi ∈ Gi for i = 0, 1, . . . , s is the coefficients of g.

Using Lemma 2.3(2) and (3), it is not hard to verify by induction that there exists a real
polynomial Q : Rs+2 → R with positive coefficients such that

|ψ(g(n))| ≤ Q(n, |ψ(g0)|, . . . , |ψ(gs)|) (2.1)

for n ∈ Z+.
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We note that for g, h ∈ G, g : Z → G defined by g(n) = gnh for each n ∈ N is a
polynomial sequence adapted to the lower central series filtration since

g(n) = gnh = h

(
n
0

)
(h−1gh)

(
n
1

)
.

For a non-empty subset K of G, we say g ∈ Poly(G) a polynomial sequence with
coefficients in K, if gi ∈ Gi ∩K for i = 0, 1, . . . , s, where {gi}si=0 are the coefficients
of g. Green, Tao, and Ziegler proved the following lemma (see [9, Lemma C.1] and [10,
p. 243, Proposition 12]).

LEMMA 2.4. Let G be a connected, simply connected s-step nilpotent Lie group and � be
a cocompact discrete subgroup of G. Then there exists a compact subset K of G such that
any polynomial sequence g ∈ Poly(G) can be factorized as g = g′γ , where g′ ∈ Poly(G)
is a polynomial sequence with coefficients in K and γ ∈ Poly(G) is a polynomial sequence
with coefficients in �.

Let X be a separable metric space with metric d and Y be a non-empty subset of XZ.
For any ε > 0, we let sn(Y , ε) be the minimal number such that there exist xi ∈ Y , 1 ≤
i ≤ sn(Y , ε) satisfying that for any y ∈ Y , there exists 1 ≤ i ≤ sn(Y , ε) with d(xi(k),
y(k)) < ε for all 0 ≤ k ≤ n− 1. Roughly speaking, sn(Y , ε) is the minimal number of
points which are ε-dense in Y [0, n− 1] = {(y0, . . . , yn−1) : y = (yi)i∈Z ∈ Y }.

Let G be a connected, simply connected s-step nilpotent Lie group andG/� be an s-step
nilmanifold. ForK ⊂ G, let Poly(K) be the collection of all polynomial sequences adapted
to the lower central series filtration with coefficients in K. The map π : Poly(G) →
{G/�}Z is defined by

π(g)(n) = g(n)� for all n ∈ Z.

Put Poly(G/�) = π(Poly(G)). We have the following.

PROPOSITION 2.5. Let G/� be an s-step nilmanifold. Then there exists k ∈ N depending
on G/� such that for each ε > 0, we find C(ε) > 0 depending on G/� and k satisfying
sn(Poly(G/�), ε) ≤ C(ε)nk for all n ∈ N.

To prove Proposition 2.5, we need the following lemma.

LEMMA 2.6. Let G be a connected, simply connected s-step nilpotent Lie group and K be
a non-empty compact subset of G. Then there is a real polynomial P : R → R depending
on G and K such that

d(g(n), g̃(n)) ≤ P(n) max{d(gi , g̃i ) : 0 ≤ i ≤ s} for all n ∈ N,

for any polynomials g(n) = g

(
n
0

)
0 g

(
n
1

)
1 . . . g

(
n
s

)
s and g̃(n) = g̃

(
n
0

)
0 g̃

(
n
1

)
1 . . . g̃

(
n
s

)
s adapted to

the lower central series filtration with coefficients g0, g1, . . . , gs , g̃0, g̃1, . . . , g̃s ∈ K .

Proof. Let P1, P2, P3 be the real polynomials appearing in Lemma 2.3 and Q be the real
polynomial appearing in equation (2.1). Since K is compact, w = max{|ψ(g)| : g ∈ K} is
a positive real number. Put Q̃(n) = Q(n, w, w, . . . , w) and P̃2(n) = wnGP2(n), where
nG is the constant appearing in Lemma 2.3(2).
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Let g(n) = g

(
n
0

)
0 g

(
n
1

)
1 . . . g

(
n
s

)
s and g̃(n) = g̃

(
n
0

)
0 g̃

(
n
1

)
1 . . . g̃

(
n
s

)
s be two polynomials

adapted to the lower central series filtration with coefficients g0, . . . , gs , g̃0, . . . , g̃s ∈ K .
A simple computation yields

d(g(n), g̃(n)) ≤
s−1∑
i=0

d
(
g

(
n
0

)
0 . . . g

(
n
i−1

)
i−1 g̃

(
n
i

)
i . . . g̃

(
n
s

)
s , g

(
n
0

)
0 . . . g

(
n
i

)
i g̃

(
n
i+1

)
i+1 . . . g̃

(
n
s

)
s

)
=

s−1∑
i=0

d
(
g

(
n
0

)
0 . . . g

(
n
i−1

)
i−1 g̃

(
n
i

)
i , g

(
n
0

)
0 . . . g

(
n
i

)
i

)
≤

s−1∑
i=0

P1(|ψ(g
(
n
0

)
0 . . . g

(
n
i−1

)
i−1 )|, |ψ(g̃

(
n
i

)
i )|, |ψ(g

(
n
i

)
i )|)d(g̃(ni)i , g

(
n
i

)
i

)
≤

s−1∑
i=0

P1(Q̃(n), P̃2(
(
n
i

)
), P̃2(

(
n
i

)
))d
(
g̃

(
n
i

)
i , g

(
n
i

)
i

)
≤ P̃ (n)

s−1∑
i=0

d
(
g̃

(
n
i

)
i , g

(
n
i

)
i

)
(2.2)

for all n ∈ N, where P̃ (n) = ∑s−1
i=0 P1(Q̃(n), P̃2(

(
n
i

)
), P̃2(

(
n
i

)
)) is a polynomial of n.

Now we are going to show that there is a real polynomial P4 : R → R such that
d(g̃n, gn) ≤ P4(n)d(g̃, g) for all g, g̃ ∈ K . In fact, it follows from the fact

d(g̃n, gn) ≤
n−1∑
i=0

d(g̃ign−i , g̃i+1gn−i−1) =
n−1∑
i=0

d(g̃ig, g̃i+1)

≤
n−1∑
i=0

P1(|ψ(g̃i)|, |ψ(g̃)|, |ψ(g)|)d(g̃, g)

≤
n−1∑
i=0

P1(P̃2(i), w, w)d(g̃, g)

≤ P4(n)d(g̃, g)

(2.3)

for all n ∈ N, where P4(n) = ∑n−1
i=0 P1(P̃2(i), w, w) is a real polynomial of n. Summing

up, we obtain

d(g(n), g̃(n))
(2.2)≤ P̃ (n)

s−1∑
i=0

d
(
g̃

(
n
i

)
i , g

(
n
i

)
i

)
(2.3)≤ P̃ (n)

s−1∑
i=0

P4(
(
n
i

)
)d(g̃i , gi)

≤ P(n) max{d(gi , g̃i ) : 0 ≤ i ≤ s}
for all n ∈ N, where P(n) = P̃ (n)

∑s−1
i=0 P4(

(
n
i

)
) is a real polynomial of n. Then P(n) is

the real polynomial as required. This ends the proof of Lemma 2.6.
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Now we are ready to prove Proposition 2.5.

Proof of Proposition 2.5. By Lemma 2.4, there exists a compact subset K of G such that
any polynomial sequence g adapted to the lower central series filtration can be factorized
as g = g′γ , where g′ is a polynomial sequence adapted to the lower central series filtration
with coefficients in K and γ is a polynomial sequence with coefficients in �. Since K is
compact, by Lemma 2.6, there is a real polynomial P : R → R such that

d(g(j), g̃(j)) ≤ P(j) max{d(gi , g̃i ) : 0 ≤ i ≤ s} for all j ∈ N, (2.4)

and any polynomials g, g̃ ∈ Poly(G) with coefficients g0, . . . , gs , g̃0, . . . , g̃s ∈ K . It is
not hard to see that there exists k0 ∈ N and C > 1 such that

P(n) < Cnk0 for all n ∈ N. (2.5)

Since K is compact, for ε > 0, we let Nε(K) be the smallest number of open balls of
ratio ε needed to cover K. The upper Minkowski dimension or box dimension (see [17]) is
defined by

lim sup
ε→0

− log Nε(K)
log ε

.

This dimension of K is not larger than the usual dimension of G since K is a subset of G.
Hence, there exists a positive constant L such that

Nε(K) ≤ L

(
1

min{ε, 1}
)dim(G)+1

. (2.6)

Set

k = k0(s + 1)(dim(G)+ 1) and C(ε) =
(
L

(
2C

min{ε, 1}
)dim(G)+1)s+1

for ε > 0.

We are going to show that

sn(G/�, ε) ≤ C(ε)nk

for n ∈ N and ε > 0. To do this, let π be the projection from Poly(K) to Poly(G/�)
defined by π(g)(n) = g(n)� for all n ∈ Z. By Lemma 2.4, π is surjective and

d(g(j), g̃(j)) ≥ d(π(g)(j), π(̃g)(j)) for all j ∈ Z.

Hence,

sn(Poly(G/�), ε) ≤ sn(Poly(K), ε) for all n ∈ N and ε > 0. (2.7)

For τ > 0, we let Eτ be a finite subset of K such that

Eτ ≤ Nτ (K) and K ⊂
⋃
g∈Eτ

B(g, τ).

For 0 ≤ i ≤ s, we let E(i)τ be a subset of K ∩Gi such that

E(i)τ ≤ Nτ (K) and K ∩Gi ⊂
⋃
g∈Eiτ

B(g, 2τ). (2.8)
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Put Pτ to be the collection of all polynomial sequences g adapted to the lower central series
filtration with coefficients gi ∈ E(i)τ , i = 0, 1, . . . , s. Then for n ∈ N and ε > 0,

Pε/2Cnk0 =
s∏
i=0

E
(i)

ε/2Cnk0

(2.8),(2.6)≤
(
L

(
2Cnk0

min{ε, 1}
)dim(G)+1)s+1

= C(ε)nk . (2.9)

Now we fix n ∈ N and ε > 0. By equation (2.8), for any polynomial sequence
g ∈ Poly(K) with coefficients g0, . . . , gs ∈ K , we have that gi ∈ K ∩Gi . Thus, there
exists ḡ ∈ Pε/2Cnk0 with coefficients ḡ0 ∈ E(0)

ε/2Cnk0
, . . . , ḡs ∈ E(s)

ε/2Cnk0
such that

d(gi , ḡi )
(2.8)
<

ε

Cnk0
for all 0 ≤ i ≤ s.

Therefore,

d(g(0), ḡ(0)) = d(g0, ḡ0) <
ε

Cnk0
< ε

and for 1 ≤ j ≤ n− 1, one has

d(g(j), ḡ(j))
(2.4)≤ P(j) max{d(gi , ḡi ) : 0 ≤ i ≤ s} (2.5)

< Cjk0 × ε

Cnk0
≤ ε.

Hence,

sn(Poly(G/�), ε)
(2.7)≤ sn(Poly(K), ε) ≤ Pε/2Cnk0

(2.9)≤ C(ε)nk .

Since the above inequality holds for all n ∈ N and ε > 0, we end the proof of
Proposition 2.5.

With the above preparations, now we are in the position to prove Theorem 1.1.

Proof of (2) �⇒ (1) in Theorem 1.1. Assume that Theorem 1.1(2) holds, that is, the
logarithmic Sarnak conjecture holds for any t.d.s. with polynomial mean complexity. In
what follows, we aim to show that the logarithmic Sarnak conjecture holds.

Assume the contrary that this is not the case, then by Tao’s result [22], the
Conjecture 2.1 does not hold. This means that there exist an s ∈ N, an s-step nilmanifold
G/�, a Lip-continuous function F : G/� → C, and an x0 ∈ G/� such that

lim sup
H→+∞

lim sup
N→+∞

E
log
n≤N sup

g∈G
|Eh≤Hμ(n+ h)F (ghx0)| > 0. (2.10)

It is clear that ‖F‖∞ := maxx∈G/� |F(x)| > 0. Without loss of generality, we assume that

‖F‖∞ = 1. (2.11)

Now we add an extra point p to the compact metric space G/�. We then extend the
metric d on G/� to the space G/� ∪ {p} by letting d(p, x) = 1 for all x ∈ G/�. So,
(G/� ∪ {p}, d) is also a compact metric space. Let F̃ : (G/� ∪ {p})Z → C be defined
by F̃ (z) = F(z(0)) if z(0) ∈ G/� and 0 if z(0) = p. It is clear that F̃ is a continuous
function and

‖F̃‖∞ = 1 (2.12)

by equation (2.11).
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In what follows, we will find a point y ∈ (G/� ∪ {p})Z such that

lim sup
N→∞

|Elog
n≤Nμ(n)F̃ (σ

ny)| > 0, (2.13)

and the t.d.s. (Xy , σ) has polynomial mean complexity, where σ : (G/� ∪ {p})Z →
(G/� ∪ {p})Z is the left shift and Xy = {σny : n ∈ Z} is a σ -invariant compact subset
of (G/� ∪ {p})Z. Clearly, this is a contradiction to our assumption and thus proves that
statement (2) implies statement (1) in Theorem 1.1.

We divide the remaining proof into two steps.
Step 1. The construction of the point y. First, we note that

|z| ≤
3∑
j=0

max
{

Re
(
e

(
j

4

)
z

)
, 0
}

for z ∈ C. Thus, by equation (2.10), there is β ∈ {0, 1
4 , 2

4 , 3
4 } such that

lim sup
H→+∞

lim sup
N→+∞

E
log
n≤N max

{
sup
g∈G

Re(e(β)Eh≤Hμ(n+ h)F (ghx0)), 0
}
> 0.

Thus, we can find τ ∈ (0, 1) with

E :=
{
H ∈ N : lim sup

N→+∞
E

log
n≤N max

{
sup
g∈G

Re(e(β)Eh≤Hμ(n+ h)F (ghx0)), 0
}
> τ

}
is an infinite set. Moreover, putting σ = τ 2/200 and by induction, we can find strictly
increasing sequences {Hi}∞i=1 of E and {Ni}∞i=1 of natural numbers such that for each i ∈ N,
one has

Hi < σNσ
i <

σ

10
Hσ
i+1, (2.14)

and there exist gn,i ∈ G for 1 ≤ n ≤ Ni satisfying

E
log
n≤Ni max{Re(e(β)Eh≤Hiμ(n+ h)F (ghn,ix0)), 0} > τ . (2.15)

For i ∈ N, let Mi = ∑Ni
n=1(1/n) and

Si =
{
n ∈ [1, Ni] ∩ Z : Re(e(β)Eh≤Hiμ(n+ h)F (ghn,ix0)) >

τ

2

}
. (2.16)

Then by equations (2.12) and (2.15), we have∑
n∈Si

1
n
>
τ

2
Mi . (2.17)

Notice that limN→+∞(
∑
n≤Nσ (1/n)/

∑
n≤N(1/n)) = σ . So, when i ∈ N is large enough,

we have ∑
n∈Si\[1,Nσi ]

1
n

(2.17)
>

τ

2
Mi −

∑
n≤Nσi

1
n
>
τ

2
Mi − 2σMi >

τ

4
Mi .

https://doi.org/10.1017/etds.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.22


780 W. Huang et al

Hence, we can select S′
i ⊂ Si \ [1, Nσ

i ] with each gap not less than 2Hi and∑
n∈S′

i

1
n
>
τMi

8Hi
(2.18)

for i ∈ N large enough.
Define y : Z → G/� ∪ {p} such that

y(n+ h) := ghn,ix0 for n ∈ S′
i , h = 1, 2, . . . , Hi , i ∈ N

and y(m) = p for m ∈ Z \⋃∞
i=1

⋃
n∈S′

i
{n+ 1, n+ 2, . . . , n+Hi}.

Clearly, y is well defined since Ni+1 > Ni +Hi by equation (2.14). Then one has by
equations (2.16) and (2.18) that

Re
(
e(β)

∑
n∈S′

i

1
n

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
)
>
τ 2

16
Mi

for i ∈ N large enough. This implies∣∣∣∣ ∑
n∈S′

i

1
n

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
∣∣∣∣ > τ 2

16
Mi (2.19)

for i ∈ N large enough. Moreover, for i ∈ N large enough,∣∣∣∣ ∑
n∈S′

i

1
n

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)−
∑
n∈S′

i

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
n+ h

∣∣∣∣
(2.12)≤

∑
n∈S′

i

∑
h≤Hi

(
1
n

− 1
n+ h

)
≤
∑
n∈S′

i

∑
h≤Hi

Hi

n(n+Hi)

≤
∑
n∈S′

i

Hi

n(Nσ
i +Hi)

≤
∑
n∈S′

i

Hi

nNσ
i

(2.14)≤ σ
∑
n∈S′

i

1
n

≤ τ 2

32
Mi .

Combining this inequality with equation (2.19), one has∣∣∣∣ ∑
Nσi <n≤Ni+Hi

μ(n)F̃ (σny)

n

∣∣∣∣ =
∣∣∣∣ ∑
n∈S′

i

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
n+ h

∣∣∣∣ ≥ τ 2Mi

32
(2.20)

for i ∈ N large enough. Thus,∣∣∣∣ 1
Mi

∑
n≤Ni

μ(n)F̃ (σny)

n

∣∣∣∣
≥ 1
Mi

∣∣∣∣ ∑
Nσi <n≤Ni+Hi

μ(n)F̃ (σny)

n

∣∣∣∣− 1
Mi

∑
n≤Nσ

i
or

Ni<n≤Ni+Hi

∣∣∣∣μ(n)F̃ (σny)n

∣∣∣∣
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(2.20)≥ τ 2

32
− ‖F̃‖∞

Mi

∑
Ni<n≤Ni+Hi

1
n

− ‖F̃‖∞
Mi

∑
n≤Nσi

1
n

(2.12)≥ τ 2

32
− Hi

Ni
− 2σ

(2.14)≥ τ 2

32
− 3σ

(2.14)≥ τ 2

100

for i ∈ N large enough. This deduces that

lim sup
N→∞

|Elog
n≤Nμ(n)F̃ (σ

ny)| ≥ τ 2

100
> 0.

Therefore, y is the point as required.
Step 2. (Xy , σ) has polynomial mean complexity. Recall that Xy = {σny : n ∈ Z} is a

compact σ -invariant subset of (G/� ∪ {p})Z. The metric on (G/� ∪ {p})Z is defined by

D(x, x′) =
∑
n∈Z

d(x(n), x′(n))
2|n|+2 (2.21)

for x = (x(n))n∈Z, x′ = (x′(n))n∈Z ∈ (G/� ∪ {p})Z. By Proposition 2.5, we can find
k > 1 such that

lim
n→+∞

sn(Poly(G/�), ε)
nk

= 0 for all ε > 0. (2.22)

Now we are going to show that

lim inf
n→+∞

Sn(D, σ , Xy , ε)
nk+1 = 0 for all ε > 0.

For n ∈ Z+ and −n ≤ q ≤ n, let Xn,q be the collection of all points z ∈ (G/� ∪ {p})Z
with

z(j) =
{
p if − n ≤ j < q,

g(j)� if q ≤ j ≤ n,

where g is some polynomial sequence of G adapted to the lower central series filtration;
and let X∗

n,q be the collection of all points z ∈ (G/� ∪ {p})Z with

z(j) =
{

g(j)� if − n ≤ j < q,

p if q ≤ j ≤ n,

where g is some polynomial sequence of G adapted to the lower central series filtration.
For i ∈ N, put ti = [Hi/2], where [u] is the integer part of the real number u. Then,

Xy ⊂
⋃

−ti≤q≤ti
Xti ,q ∪

⋃
−ti≤q≤ti

X∗
ti ,q ∪ {σ jy : −Hi ≤ j ≤ Hi}. (2.23)

In fact, since Hj+1 > Nj +Hj for all j ∈ N, one has

σny ∈
⋃

−ti≤q≤ti
Xti ,q ∪

⋃
−ti≤q≤ti

X∗
ti ,q ∪ {σ jy : −Hi ≤ j ≤ Hi} for all n ∈ Z (2.24)

by the construction of y. It is not hard to see that Xti ,q , X∗
ti ,q are all compact subsets of

(G/� ∪ {p})Z for each −ti ≤ q ≤ ti and i ∈ N by Lemma 2.4. Hence, the set in right part
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of equation (2.23) is also a compact subset of (G/� ∪ {p})Z. Now equation (2.23) follows
from equation (2.24).

Now we fix ε > 0. We have the following claim.

CLAIM. For i ∈ N large enough, one has:
(1) S[ti /2](D, σ , Xti ,q , ε) ≤ sti (Poly(G/�), ε/2) for all q ∈ [−ti , ti] ∩ Z;
(2) S[ti /2](D, σ , X∗

ti ,p, ε) ≤ sti (Poly(G/�), ε/2) for all q ∈ [−ti , ti] ∩ Z.

Proof of the Claim. We prove part (1) first. For i ∈ N and −ti ≤ q ≤ ti , we let πi,q :
Poly(G/�) → Xti ,q be defined by

πi,q(z)(j) =
{
p if − ti ≤ j < q,

z(j) otherwise,

for z ∈ Poly(G/�). For i ∈ N large enough, if z, z̃ ∈ Poly(G/�)with d(z(j), z̃(j)) < ε/2
for all −ti ≤ j ≤ ti , then for q ∈ [−ti , ti] ∩ Z,

D̄[ti /2](πi,q(z), πi,q (̃z)) = 1
[ti/2]

[ti /2]−1∑
l=0

D(σ lz, σ lz̃)

(2.21)= 1
[ti/2]

[ti /2]−1∑
l=0

∑
n∈Z

d(z(n+ l), z̃(n+ l))

2|n|+2

≤ 1
[ti/2]

[ti /2]−1∑
l=0

( ∑
|n|≤[ti /2]

d(z(n+ l), z̃(n+ l))

2|n|+2 +
∑

|n|>[ti /2]

d(z(n+ l), z̃(n+ l))

2|n|+2

)

≤ 1
[ti/2]

[ti /2]−1∑
l=0

(
ε

2
+ diam(G/�)

2ti /2

)
< ε, (2.25)

where we use the fact ti → +∞ as i → +∞ in the last inequality. Notice that the map πi,q
is surjective for all i ∈ N and −ti ≤ q ≤ ti . By equation (2.25), for i ∈ N large enough, one
has

S[ti /2](D, σ , Xti ,q , ε) ≤ sti

(
Poly(G/�),

ε

2

)
for all q ∈ [−ti , ti] ∩ Z.

By the similar arguments, one has part (2). This ends the proof of the Claim.

Hence, by the above Claim and equation (2.23), one has

S[ti /2](D, σ , Xy , ε) ≤ (2Hi + 1)+
ti∑

q=−ti
(S[ti /2](D, σ , Xti ,q , ε)+ S[ti /2](D, σ , X∗

ti ,q , ε))

≤ (2Hi + 1)+ (2ti + 1)sti

(
Poly(G/�),

ε

2

)
for i ∈ N large enough. Combining this with equation (2.22),
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lim inf
n→+∞

Sn(D, σ , Xy , ε)
nk+1 ≤ lim inf

i→+∞
S[ti /2](D, σ , Xy , ε)

[ti/2]k+1

≤ lim inf
i→+∞

(2Hi + 1)+ (2ti + 1)sti (Poly(G/�), ε/2)
[ti/2]k+1

= 0,

where we used the assumption ti = [Hi/2]. This implies that (Xy , σ) has polynomial
mean complexity, since the above inequality is true for all ε > 0. This ends the proof of
Step 2.

Remark 2.7. In the proof above, we use dynamics on infinite products. Precisely, we show
that if the logarithmic Sarnak’s conjecture does not hold, one can find a point in an infinite
product space (G/� ∪ {p})Z for which the logarithmic averages are almost equal to the
short uniform averages of the corresponding space G/�. We remark that the idea behind
the construction is similar to that in [4] where the authors also use dynamics on infinite
products. They show that what they call the strong MOMO property is equivalent to
Sarnak’s conjecture (see Corollary 9).

2.2. Proof of statement (3) implies statement (2) in Theorem 1.1. To get the proof, we
first discuss a t.d.s. with the so-called small boundary property, then we obtain a key
proposition for the proof, and finally we give the proof. We start with the notion of small
boundary property.

For a t.d.s. (X, T ), a subset E of X is called T-small (or simply small when there is no
diffusion) if

lim
N→+∞

1
N

N−1∑
n=0

1E(T nx) = 0

uniformly for x ∈ X. It is not hard to show that a closed subset E of X is small if and only
if ν(E) = 0 for all ν ∈ M(X, T ). For a subset U of X, we say U has a small boundary if
∂U is small. We say (X, T ) has a small boundary property if for any x ∈ X and any open
neighborhood V of x, there exists an open neighborhood W of x such that W ⊂ V and W
has a small boundary. The following lemma indicates that when X has the small boundary
property, then the logarithmic Sarnak conjecture can be verified through easier conditions.

LEMMA 2.8. Let (X, T ) be a t.d.s. with small the boundary property. Then the logarithmic
Sarnak conjecture holds for (X, T ) if and only if for any subset U of X with a small
boundary, one has

lim
N→+∞ E

log
n≤N1U(T nx)μ(n) = 0 (2.26)

for all x ∈ X.

Proof. First, we assume that equation (2.26) holds for any subset U of X with small
boundary and x ∈ X. For a given f ∈ C(X) and fixed δ > 0, let

ε = ε(δ) = sup
x,y∈X,d(x,y)<δ

|f (x)− f (y)|.
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Let P = {P1, P2, . . . , Pk} be a partition of X with diameter smaller than δ and each
element of P has a small boundary. For 1 ≤ i ≤ k, we fix points xi ∈ Pi and define
f̄ (x) = f (xi) if x ∈ Pi . Then, f̄ (x) = ∑k

i=1 f (xi)1Pi (x) and by equation (2.26),

lim
N→+∞ E

log
n≤Nf̄ (T

nx)μ(n) = 0

for all x ∈ X. Since ‖f̄ − f ‖∞ ≤ ε, we have

lim sup
N→+∞

|Elog
n≤Nf (T

nx)μ(n)|

≤ lim sup
N→+∞

|Elog
n≤Nf̄ (T

nx)μ(n)| + lim sup
N→+∞

E
log
n≤N‖f̄ − f ‖∞ · |μ(n)|

≤ ε

for all x ∈ X. By taking δ → 0 and then ε → 0, one has

lim
N→+∞ E

log
n≤Nf (T

nx)μ(n) = 0

for all x ∈ X. This implies the logarithmic Sarnak conjecture holds for (X, T ) since f is
arbitrary.

Conversely, we assume that the logarithmic Sarnak conjecture holds for (X, T ). Let U
be a subset of X with small boundary. Fix δ > 0. By a result of Shub and Weiss (see [20,
p. 537]), we can find ε > 0 such that for N large enough,

1
N

N∑
n=1

1B(∂U ,ε)(T
nx) ≤ δ

2

for all x ∈ X, where B(∂U , ε) = {y ∈ X : d(y, ∂U) < ε}. Moreover, for N large enough,

E
log
n≤N1B(∂U ,ε)(T

nx) = 1
MN

N∑
n=1

1B(∂U ,ε)(T
nx)

n

= 1
MN

(
SN(x)

N
+
N−1∑
j=1

Sj (x)

j

1
j + 1

)
≤ δ

(2.27)

for all x ∈ X, where we simply writeMN =∑N
n=1(1/n) and Sj (x) =∑j

n=1 1B(∂U ,ε)(T
nx)

for j ∈ N.
Using Urysohn’s lemma, there exists a continuous function h :X→R with 0 ≤h≤ 1

such that h(x) = 1 for x ∈ U \ B(∂U , ε) and h(x) = 0 for x ∈ X \ (U ∪ B(∂U , ε)
)
.

Since the logarithmic Sarnak conjecture holds for (X, T ), one has

lim
N→+∞ E

log
n≤Nh(T

nx)μ(n) = 0

for all x ∈ X. Combining this equality with equation (2.27), we obtain
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lim sup
N→+∞

|Elog
n≤N1U(T nx)μ(n)|

≤ lim sup
N→+∞

|Elog
n≤Nh(T

nx)μ(n)| + lim sup
N→+∞

E
log
n≤N |h(T nx)− 1U(T nx)|

≤ lim sup
N→+∞

E
log
n≤N1B(∂U ,ε)(T

nx) ≤ δ

for all x ∈ X. By taking δ → 0, we have

lim
N→+∞ E

log
n≤N1U(T nx)μ(n) = 0

for all x ∈ X. This ends the proof of Lemma 2.8.

The next lemma concerns the coding of a subset with small boundary.

LEMMA 2.9. Let (X, T ) be a t.d.s. and U be a subset of X with small boundary. For x ∈ X,
we associate an x̂ ∈ {0, 1}Z such that x̂(n) = 1 if T nx ∈ U and x̂(n) = 0 otherwise. Then
for δ > 0, there exist ε > 0 and Nδ ∈ N such that for all N ≥ Nδ and any x1, x2 ∈ X with
d̄N (x1, x2) < ε, one has

{0 ≤ n ≤ N − 1 : x̂1(n) �= x̂2(n)} ≤ 2δN .

Proof. We fix an δ ∈ (0, +∞) and a non-empty subset U of X with small boundary. By
a result of Shub and Weiss (see [20, p. 537]), there exist Nδ ∈ N and ε0 ∈ (0, +∞) such
that

sup
x∈X,N≥Nδ

1
N

N−1∑
n=0

1B(∂U ,ε0)(T
nx) < δ, (2.28)

where B(∂U , ε0) = {z ∈ X : d(z, z′) < ε0 for all z′ ∈ ∂U} if ∂U is not empty and
B(∂U , ε0) = ∅ if ∂U is empty.

We notice that U \ B(∂U , ε0) ∩X \ U = ∅ and (X \ U) \ B(∂U , ε0) ∩ U = ∅. Thus,
we can find ε ∈ (0, δ2) such that when x, y ∈ X with d(x, y) <

√
ε, if x ∈ U \ B(∂U , ε0)

(respectively x ∈ (X \ U) \ B(∂U , ε0)), then y ∈ U (respectively y ∈ X \ U ). We are
to show that ε is the constant as required. We fix N ≥ Nδ and x1, x2 ∈ X with
d̄N (x1, x2) < ε. Set

C = {0 ≤ n ≤ N − 1 : T nx1 ∈ B(∂U , ε0)}.
By equation (2.28), C ≤ δN . Put

A = {0 ≤ n ≤ N − 1 : d(T nx1, T nx2) <
√
ε}.

One has A ≥ (1 − √
ε)N and x̂1(n) = x̂2(n) for all n ∈ A \ C. Therefore,

{0 ≤ n ≤ N − 1 : x̂1(n) = x̂2(n)} ≥ A − C ≥ (1 − √
ε − δ)N .

Since δ >
√
ε, one has

{0 ≤ n ≤ N − 1 : x̂1(n) �= x̂2(n)} ≤ 2δN .

This ends the proof of Lemma 2.9.
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Recall that the metric on {0, 1}Z is defined by

d(x, y) =
∑
n∈Z

|x(n)− y(n)|
2|n|+2 (2.29)

for x = (x(n))n∈Z, y = (y(n))n∈Z ∈ {0, 1}Z. We have the following lemma which is key
for the proof of statement (3) implies statement (2) in Theorem 1.1.

Now we show a key proposition for the proof of statement (3) implies statement (2) in
Theorem 1.1.

PROPOSITION 2.10. Let (X, T ) be a t.d.s. and U be a subset of X with small boundary. For
x ∈ X, we associate an x̂ ∈ {0, 1}Z such that x̂(n) = 1 if T nx ∈ U and 0 if T nx ∈ X \ U .
Then for each δ > 0, we can find ε := ε(δ) > 0 such that SN(d, σ , X̂, δ) ≤ SN(d, T , X, ε)
forN ∈ N large enough, where X̂ = {x̂ : x ∈ X} and σ : {0, 1}Z → {0, 1}Z is the left shift.

Proof. We fix a δ > 0 and a non-empty subset U of X with small boundary. We are to find
ε ∈ (0, +∞) such that SN(d, σ , X̂, δ) ≤ SN(d, T , X, ε) for N large enough. To do this,
we choose L ∈ N and δ′ > 0 such that

4δ′L+ 2
2L

< δ. (2.30)

By Lemma 2.9, there exists ε := ε(δ′) > 0 such that for N ∈ N large enough and
x1, x2 ∈ X with d̄N (x1, x2) < ε, one has

{0 ≤ n ≤ N − 1 : x̂1(n) �= x̂2(n)} ≤ 2δ′N . (2.31)

Fix x1, x2 ∈ X with d̄N (x1, x2) < ε and put

CN = {0 ≤ n ≤ N − 1 : x̂1(n+ l) �= x̂2(n+ l) for some − L+ 1 ≤ l ≤ L− 1}.
By equation (2.31), we have for N ∈ N large enough,

CN ≤ 4δ′LN .

Notice that d(σnx̂1, σnx̂2) ≤ 1 for n ∈ CN . One has

d̄N (x̂1, x̂2) = 1
N

( ∑
n∈CN

d(σnx̂1, σnx̂2)+
∑

n∈[0,N−1]\CN
d(σnx̂1, σnx̂2)

)
(2.29)≤ 1

N

( ∑
n∈CN

1 +
∑

n∈[0,N−1]\CN

2
2L

)

= 1
N

(
CN + 2

2L
(N − CN)

)
(2.30)≤ 4δ′L+ 2

2L
< δ.

Therefore, SN(d, σ , X̂, δ) ≤ SN(d, T , X, ε) for N ∈ N large enough and ε is the constant
as required. This ends the proof of Proposition 2.10.

For a t.d.s. (X, T ), Lindenstrauss and Weiss [15] introduced the notion of mean dimen-
sion, denoted by mdim(X, T ). It is well known that for a t.d.s. (X, T ), if htop(T ) < ∞ or
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the topological dimension of X is finite, then mdim(X, T ) = 0 (see [15, Definition 2.6 and
Theorem 4.2]).

Now we are ready to finish the proof of Theorem 1.1.

Proof of Theorem 1.1: (3) �⇒ (2). Assume that Theorem 1.1(3) holds. Now we are going
to show that Theorem 1.1(2) holds. Assume the contrary that Theorem 1.1(2) does not hold,
then there exists a t.d.s. (X, T )with polynomial mean complexity such that the logarithmic
Sarnak conjecture does not hold for (X, T ).

Let (Y , S) be an irrational rotation on the circle. Then (X × Y , T × S) has polynomial
mean complexity as well as zero mean dimension and admits a non-periodic minimal factor
(Y , S). Hence, (X × Y , T × S) has small boundary property by [14, Theorem 6.2]. Since
the logarithmic Sarnak conjecture does not hold for (X, T ), neither does (X × Y , T × S).
By Lemma 2.8, there is a subset U of X × Y with small boundary and w ∈ X × Y such
that

lim sup
N→+∞

E
log
n≤N1U

(
(T × S)nw

)
μ(n) > 0.

Combining this with Proposition 2.10, the {0, 1}-symbolic system ({ẑ : z ∈ X × Y }, σ) has
polynomial mean complexity and

lim sup
N→+∞

E
log
n≤NF0(σ

nŵ)μ(n) > 0,

where F0(ẑ) = ẑ(0) for z ∈ X × Y , which contradicts the assumption that Theorem 1.1(3)
holds. This ends the proof of (3)�⇒(2) in Theorem 1.1, and hence the proof of
Theorem 1.1.

3. Proof of Theorem 1.3
In this section, we will prove Theorem 1.3. First, we recall the definition of packing
dimension. Let X be a metric space endowed with a metric d and E be a subset of X.
We say that a collection of balls {Un}n∈N ⊂ X is a δ-packing of E if the diameter of the
balls is not larger than δ, they are pairwise disjoint, and their centers belong to E. For
α ∈ R, the α-dimensional pre-packing measure of E is given by

P(E, α) = lim
δ→0

sup
{∑
n∈N

diam(Un)α
}

,

where the supremum is taken over all δ-packings of E. The α-dimensional packing measure
of E is defined by

p(E, α) = inf
{∑
i∈N

P(Ei , α)
}

,

where the infimum is taken over all covers {Ei}i∈N of E. Finally, we define the packing
dimension of E by

DimPE = sup{α : p(E, α) = +∞} = inf{α : p(E, α) = 0}.
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For x ∈ [0, 1] and r > 0, letB(x, r) = {y ∈ [0, 1], |x − y| < r}. To prove Theorem 1.3,
we need several lemmas. We begin with the following lemma (see [5]).

LEMMA 3.1. Let μ be a Borel probability measure on [0, 1]. Then,

Dim∗μ = inf{DimPE : E ⊂ [0, 1] with μ(Ec) = 0},
where Dim∗μ = ess sup lim supr→0(log μ(B(x, r))/log r).

We also need the following lemma [17, Theorem 2.1].

LEMMA 3.2. Let B = {B(xi , ri)}i∈I be a family of open balls in [0, 1]. Then there exists a
finite or countable subfamily B′ = {B(xi , ri)}i∈I ′ of pairwise disjoint balls in B such that⋃

B∈B
B ⊆

⋃
i∈I ′

B(xi , 5ri).

Let T be the unit circle on the complex plane C. Recall that e(t) = e2πt for any
t ∈ R. We will prove the following lemma by using Lemmas 3.1 and 3.2. Define
a metric d on [0, 1] × T such that d((x1, z1), (x2, z2)) = max{|x1 − x2|, |z1 − z2|} for
(x1, z1), (x2, z2) ∈ [0, 1] × T.

LEMMA 3.3. Let C be a compact subset of [0, 1] with DimPC < τ for some given τ > 0.
Then the t.d.s. T : C × T → C × T defined by T

(
x, e(y)

) = (
x, e(y + x)

)
satisfies for

any ρ ∈ M(C × T, T ) and any ε > 0,

lim inf
n→+∞

Sn(d , T , ρ, ε)
nτ

= 0.

Proof. Fix a constant τ0 with DimPC < τ0 < τ . For a given ρ ∈ M(C × T, T ), let m be
the projection of ρ onto the first coordinate. Fix ε ∈ (0, 1). To prove Lemma 3.3, it suffices
to demonstrate

lim inf
n→+∞

Sn(d , T , ρ, ε)
nτ

= 0.

First we note that m(C) = 1. Using Lemma 3.1, one has Dim∗m < τ0 and there exist a
subset C̃ of C and a constant rε ∈ (0, 1) such that:
(1) C̃ is compact and m(C̃) > 1 − ε;
(2) m(B(x, r)) > rτ0 for 0 < r ≤ rε and x ∈ C̃.

For any given integer n > ε/10rε , set Bn = {B(x, ε/10n)}x∈C̃ . By Lemma 3.2, there
exist pairwise disjoint balls B′

n = {B(xi , ε/10n)}i∈In in B such that

C̃ ⊂
⋃
i∈I ′

n

B

(
xi ,

ε

2n

)
.

Since ε/10n < rε , one deduces that

m

(
B

(
x,

ε

10n

))
>

(
ε

10n

)τ0

for all x ∈ C̃.
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Therefore, In is finite since elements in B′
n are pairwise disjoint. Precisely,

In ≤
(

10n
ε

)τ0

.

Now we put

Eε =
{(
xi , e

(
εj

4π

))
: i ∈ In and j ∈

{
0, 1, . . . ,

[
4π
ε

]}
,

where [4π/ε] is the integer part of 4π/ε. Then, for n > ε/10rε , it is not hard to verify that

Bd̄n

((
xi , e

(
εj

4π

))
, ε
)

⊃ B

(
xi ,

ε

2n

)
×
{
e(t) :

∣∣∣∣t − εj

4π

∣∣∣∣ < ε

4π

}
for i ∈ In and j ∈ {0, 1, . . . , [4π/ε]}. This implies that for n > ε/10rε , one has

ρ

( ⋃
y∈Eε

Bd̄n(y, ε)
)

≥ ρ

( ⋃
i∈In

B

(
xi ,

ε

2n

)
× T

)
= m

( ⋃
i∈In

B

(
xi ,

ε

2n

))
≥ m(C̃) ≥ 1 − ε,

and

Sn(d, T , ρ, ε) ≤ Eε ≤ In × 4π
ε

≤
(

10n
ε

)τ0

× 4π
ε

.

By the fact τ0 < τ , one has

lim inf
n→+∞

Sn(d, T , ρ, ε)
nτ

= 0.

This ends the proof of Lemma 3.3.

Now let p = (0, 0) be the origin of C. For a sequence y ∈ (T ∪ {p})Z, let

Gen(y) =
{
μ ∈ M((T ∪ {p})Z, σ) :

1
Ni −Mi

∑
Mi<n≤Ni

δσny → μ for Ni −Mi → +∞
}

,

where σ : (T ∪ {p})Z → (T ∪ {p})Z is the left shift. Put Xy = {σny : n ∈ Z}. Then
(Xy , σ) is a subsystem of ((T ∪ {p})Z, σ). It is not hard to see that for μ ∈ Gen(y),
μ(Xy) = 1, and thus we can identify Gen(y) with M(Xy , σ). We have

LEMMA 3.4. Let C be a non-empty compact subset of [0, 1] and y ∈ (T ∪ {p})Z. Assume
that the pair (y, C) meets the following property.

Property (∗)—there exist {m1 < n1 < m2 < n2 . . .} ⊂ Z, {θk}k≥1 ⊂ C, and {φk}k≥1 ⊂
[0, 1] such that:
(1) limi→∞ ni −mi = +∞;
(2) y(j) = p for j ∈ Z \⋃i∈N[mi , ni);
(3) y(mi + j) = e(φi + jθi) for all i ≥ 1 and 0 ≤ j < ni −mi .
Then, any element in Gen(y) supports on the compact subset

C̃ = {(ze(iθ))i∈Z ∈ T
Z : θ ∈ C, z ∈ T} ∪ {p}Z.
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Proof. Assume that (y, C) meets Property (∗) and set

Z = {z ∈ (T ∪ {p})Z : z(−1) = p, z(0) ∈ T}.
It is clear that Xy \⋃n∈Z σnZ ⊂ C̃. To prove the lemma, it is enough to show that
μ(C̃) = 1 for all μ ∈ Gen(y). Since Gen(y) = M(Xy , σ), it is enough to show that
μ(Z) = 0 for all μ ∈ Gen(y).

Now we fix a μ ∈ Gen(y). Then there exist M1 < N1, M2 < N2, . . . such that
limi→+∞ Ni −Mi = +∞ and

lim
i→+∞

1
Ni −Mi

∑
Mi<n≤Ni

δσny = μ.

Since Z is an open subset of (T ∪ {p})Z, we have

μ(Z) ≤ lim inf
i→+∞

1
Ni −Mi

∑
Mi<n≤Ni

δσny(Z)

= lim inf
i→+∞

{Mi < n ≤ Ni : σny ∈ Z}
Ni −Mi

= lim inf
i→+∞

{Mi < n ≤ Ni : y(n− 1) = p, y(n) ∈ T}
Ni −Mi

= lim inf
i→+∞

{j ∈ N : Mi < mj ≤ Ni}
Ni −Mi

= 0,

where the last equality follows from Property (∗)(1). This ends the proof of Lemma 3.4.

The next lemma follows easily from the previous ones.

LEMMA 3.5. Assume that C is a non-empty compact subset of [0, 1] with DimPC < τ

and y ∈ (T ∪ {p})Z. If (y, C) meets Property (∗) as in Lemma 3.4, then the t.d.s. (Xy , σ)
satisfies

lim inf
n→+∞

Sn(d, T , ρ, ε)
nτ

= 0

for all ε > 0 and ρ ∈ M(Xy , σ).

Proof. Fix a pair (y, C) which meets Property (∗) as in Lemma 3.4. Then all measures in
Gen(y) support on a compact set,

C̃ = {(ze(iθ))i∈Z ∈ T
Z : θ ∈ C, z ∈ T} ∪ {p}Z.

It is clear that C̃ is a σ -invariant compact subset of (T ∪ {p})Z, that is, (C̃, σ) is a t.d.s.
Notice that (C̃, σ) is a factor of (C × T ∪ {p}, T ), where T : C × T ∪ {p} → C × T ∪
{p} with T (p) = p and T (x, e(y)) = (x, e(y + x)) for (x, e(y)) ∈ C × T. The lemma is
immediately from Lemma 3.3.
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The final lemma we need is the following one.

LEMMA 3.6. If there exist a non-empty compact subset C of [0, 1] and β ∈ R such that

lim sup
H→+∞

lim sup
N→+∞

E
log
n≤N max

{
Re
(

sup
α∈C

e(β)Eh≤Hμ(n+ h)e(hα)
)

, 0
}
> 0, (3.1)

then there is y ∈ (T ∪ {p})Z such that (y, C) meets Property (∗) as in Lemma 3.4 and

lim sup
N→∞

|Elog
n≤Nμ(n)F̃ (σ

ny)| > 0, (3.2)

where F̃ : (T ∪ {p})Z → C is the continuous function defined by F̃ (z) = z(0) if z(0) ∈ T

and 0 if z(0) = p.

Proof. By the assumption in equation (3.1) and the similar arguments as in the proof
of Theorem 1.1 (2) �⇒ (1), we can find τ ∈ (0, 1), strictly increasing sequences
{Hi}i∈N, {Ni}i∈N of natural numbers, series {αi,j }Nij=1 ⊂ R, i = 1, 2, 3 . . . , and β ∈
{0, 1

4 , 2
4 , 3

4 } such that for each i ∈ N, one has

Hi < σNσ
i <

σ

10
Hσ
i+1 where σ = τ 2

200
(3.3)

and

E
log
n≤Ni max{Re(e(β)Eh≤Hiμ(n+ h)e(hαn,i )), 0} > τ . (3.4)

For i ∈ N, let Mi = ∑Ni
n=1(1/n) and

Si =
{
n ∈ [1, Ni] : Re(e(β)Eh≤Hiμ(n+ h)e(hαn,i )) >

τ

2

}
. (3.5)

Then by equation (3.4), one has ∑
n∈Si

1
n
>
τ

2
Mi . (3.6)

Notice that limN→+∞(
∑
n≤Nσ (1/n)/

∑
n≤N(1/n)) = σ . We have∑

n∈Si\[1,Nσi ]

1
n

(3.6)
>

τ

2
Mi −

∑
n≤Nσi

1
n
>
τ

2
Mi − 2σMi−1

(3.3)
>

τ

4
Mi

for i ∈ N large enough. Then we can choose S′
i ⊂ Si \ [1, Nσ

i ] such that each gap in S′
i is

not less than 2Hi and ∑
n∈S′

i

1
n
>
τMi

8Hi
(3.7)

for i ∈ N large enough. Define y : Z → T ∪ {p} such that

y(j) = e
(
(j − n)αn,i

)
if j ∈ [n+ 1, n+Hi] for some i ≥ 1 and n ∈ S′

i ,

and y(j) = p for other j, where p is the zero of C. It is not hard to see that y is well defined
and meets Property (∗).
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Now we are going to show that equation (3.2) holds. Combining equations (3.5) with
(3.7), one has

Re
(
e(β)

∑
n∈S′

i

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
n

)
>
τ

2
×Hi ×

∑
n∈S′

i

1
n
>
τ 2

16
Mi (3.8)

for i ∈ N large enough. Then,∣∣∣∣ ∑
n∈S′

i

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
n

−
∑
n∈S′

i

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
n+ h

∣∣∣∣
≤
∑
n∈S′

i

∑
h≤Hi

(
1
n

− 1
n+ h

) ≤
∑
n∈S′

i

∑
h≤Hi

Hi

n(n+Hi)

≤
∑
n∈S′

i

Hi

nNσ
i

(3.3)≤ σ
∑
n∈S′

i

1
n

(3.3)≤ τ 2

32
Mi

for i ∈ N large enough. Combining this inequality with equation (3.8), one has∣∣∣∣ ∑
Nσi <n≤Ni+Hi

μ(n)F̃ (σny)

n

∣∣∣∣ =
∣∣∣∣ ∑
n∈S′

i

∑
h≤Hi

μ(n+ h)F̃ (σn+hy)
n+ h

∣∣∣∣
≥ Re

(
e(β)

∑
n∈S′

i

∑
h≤Hi

μ(n+ h)y(n+ h)

n

)
− τ 2Mi

32

≥ τ 2Mi

32
for i ∈ N large enough. Thus,

|Elog
n≤Niμ(n)F̃ (σ

ny)| ≥
∣∣∣∣ 1
Mi

∑
n≤Ni+Hi

μ(n)F̃ (σny)

n

∣∣∣∣− 1
Mi

∑
Ni<n≤Ni+Hi or

n≤Nσ
i

∣∣∣∣μ(n)F̃ (σny)n

∣∣∣∣
≥ τ 2

32
− 2σ − Hi

Ni

(3.3)≥ τ 2

100
> 0

for i ∈ N large enough. Therefore, y is the point as required. This ends the proof of
Lemma 3.6.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Assume that Theorem 1.3 is not valid. Then there exists a
non-empty compact subset C of [0, 1] with DimPC < 1 such that

lim sup
H→+∞

lim sup
N→+∞

E
log
n≤N sup

α∈C
|Eh≤Hμ(n+ h)e(hα)| > 0.

Thus, we can find β ∈ {0, 1
4 , 2

4 , 3
4 } such that

lim sup
H→+∞

lim sup
N→+∞

E
log
n≤N max

{
sup
α∈C

Re(e(β)Eh≤Hμ(n+ h)e(hα)), 0
}
> 0.
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By Lemma 3.6, there is y ∈ (T ∪ {p})Z such that (y, C) meets Property (∗) as in
Lemma 3.4 and

lim sup
N→∞

|Elog
n≤Nμ(n)F̃ (σ

ny)| > 0, (3.9)

where F̃ : Xy → R is a continuous function defined by F̃ (z) = z(0) if z(0) ∈ T and 0 if
z(0) = p. Then, by Lemma 3.5 and the assumption DimPC < 1, the t.d.s. (Xy , σ) satisfies

lim inf
n→+∞

Sn(d, σ , ρ, ε)
n

= 0 for any ε > 0 and ρ ∈ M(Xy , σ).

By Theorem 1.2,

lim
N→∞ E

log
n≤Nμ(n)F̃ (σ

ny) = 0.

This conflicts with equation (3.9) and the theorem follows. We end the proof of
Theorem 1.3.
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A. Appendix. Proof of Theorem 1.2
In this appendix, we prove Theorem 1.2 following the arguments of the proof of [11,
Theorem 1.1’].

Let (X, T ) be a t.d.s. with a metric d and sub-linear mean measure complexity. To prove
that the logarithmic Sarnak conjecture holds for (X, T ), it is sufficient to show

lim sup
i→+∞

∣∣∣∣ 1∑Ni
n=1(1/n)

Ni∑
n=1

μ(n)f (T nx)

n

∣∣∣∣ < 7ε (A.1)

for any ε ∈ (0, 1) and f ∈ C(X) with maxz∈X |f (z)| ≤ 1, x ∈ X and {N1 < N2 < N3 <

· · · } ⊆ N such that the sequence E
log
n≤Ni δT nx weakly∗ converges to a Borel probability

measure ρ.
To this aim, we will find L ∈ N, {x1, x2, . . . , xm} ⊂ X and jn ∈ {1, 2, . . . , m} for

n = 1, 2, 3, . . . such that that for large i,∣∣∣∣ 1
Mi

Ni∑
n=1

μ(n)f (T nx)

n
− 1
Mi

Ni∑
n=1

(
1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

)∣∣∣∣ < 5ε (A.2)

and ∣∣∣∣ 1
Mi

Ni∑
n=1

(
1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

)∣∣∣∣ < 2ε. (A.3)

It is clear that equation (A.1) follows by equations (A.2) and (A.3). Equations (A.2)
and (A.3) will be proved in Lemmas A.1 and A.2) respectively, where we write Mi =∑Ni
n=1(1/n) for i ∈ N.
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To prove the two lemmas, we first choose ε1 > 0 such that ε1 < ε2 and

|f (y)− f (z)| < ε when d(y, z) <
√
ε1. (A.4)

Since E
log
n≤Ni δT nx weakly∗ converges to ρ, it is not hard to verify ρ ∈ M(X, T ). So, the

measure complexity of (X, d , T , ρ) is sub-linear by the assumption of the theorem, and
thus there exists L > 0 such that

m = SL(d , T , ρ, ε1) < εL. (A.5)

This means that there exist x1, x2, . . . , xm ∈ X such that

ρ
( m⋃
i=1

BdL(xi , ε1)
)
> 1 − ε1 > 1 − ε2.

Put U = ⋃m
i=1 BdL(xi , ε1) and E = {n ∈ N : T nx ∈ U}. Then U is open and so

lim inf
i→+∞

1
Mi

∑
n∈E∩[1,Ni ]

1
n

= lim inf
i→+∞

1
Mi

Ni∑
n=1

δT nx(U)

n
≥ ρ(U) > 1 − ε1. (A.6)

For n ∈ E, we choose jn ∈ {1, 2, . . . , m} such that T nx ∈ BdL(xjn , ε1). Hence, for
n ∈ E, we have dL(T nx, xjn) < ε1, that is,

1
L

L−1∑
�=0

d
(
T �(T nx), T �(xjn)

)
< ε1,

and so we have

#{� ∈ [0, L− 1] : d(T �(T nx), T �xjn) ≥ √
ε1} < L

√
ε1 < Lε. (A.7)

Thus, for n ∈ E,

1
L

L−1∑
�=0

|f (T �(T nx))− f (T �xjn)|

≤ 1
L

(
ε#{� ∈ [0, L− 1] : d(T �(T nx), T �xjn) <

√
ε1} (A.8)

+ 2#{� ∈ [0, L− 1] : d(T �(T nx), T �xjn) ≥ √
ε1}
)

< 3ε,

by using the inequality in equation A.4, equation (A.7), and the assumption maxx∈X |f (x)|
≤ 1.

For each n /∈ E, we simply set jn = 1.
We first establish Lemma A.1.

LEMMA A.1. For all sufficiently large i,∣∣∣∣ 1
Mi

Ni∑
n=1

μ(n)f (T nx)

n
− 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

∣∣∣∣ < 5ε.
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Proof. As maxx∈X |f (x)| ≤ 1, it is not hard to see that

lim sup
i→+∞

∣∣∣∣ 1
Mi

Ni∑
n=1

μ(n)f (T nx)

n
− 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T n+�x)
n

∣∣∣∣ = 0. (A.9)

By equation (A.6), once i is large enough,

1
Mi

∑
n∈E∩[1,Ni ]

1
n
> 1 − ε2 > 1 − ε. (A.10)

Now, ∣∣∣∣ 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T n+�x)
n

− 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

∣∣∣∣
≤ 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

|f (T �(T nx))− f (T �xjn)|
n

≤ 1
Mi

∑
n∈[1,Ni ]\E

1
L

L−1∑
�=0

|f (T �(T nx))− f (T �xjn)|
n

+ 1
Mi

∑
n∈E∩[1,Ni ]

1
L

L−1∑
�=0

|f (T �(T nx))− f (T �xjn)|
n

<
2
Mi

∑
n∈[1,Ni ]\E

1
n

+ 3ε
Mi

∑
n∈E∩[1,Ni ]

1
n

(by equation (A.8))

<
2
Mi

∑
n∈[1,Ni ]\E

1
n

+ 3ε.

Combining this inequality with equation (A.10), when i is large enough,

∣∣∣∣ 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T n+�x)
n

− 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

∣∣∣∣
< 5ε.

(A.11)

So the lemma follows by equations (A.9) and (A.11). This ends the proof of Lemma A.1.

Now we proceed to show Lemma A.2.

LEMMA A.2. For all sufficiently large i,∣∣∣∣ 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

∣∣∣∣ < 2ε.
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Proof. By Cauchy’s inequality,∣∣∣∣ 1
Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

∣∣∣∣2

≤ 1
Mi

Ni∑
n=1

1
n

∣∣∣∣ 1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

∣∣∣∣2

≤ 1
Mi

Ni∑
n=1

1
n

m∑
j=1

∣∣∣∣ 1
L

L−1∑
�=0

μ(n+ �)f (T �xj )

∣∣∣∣2

≤ 1
L2

m∑
j=1

L−1∑
�1=0

L−1∑
�2=0

f (T �1xj )f (T
�2xj )

Mi

Ni∑
n=1

μ(n+ �1)μ(n+ �2)

n
.

Note that Mi ≈ log Ni . Since the two-term logarithmic Chowla conjecture holds [21], we
have

lim
i→∞

1
Mi

Ni∑
n=1

μ(n+ �1)μ(n+ �2)

n
= 0

for any 0 ≤ �1 �= �2 ≤L−1. Combining this equality with the fact that maxx∈X |f (x)|
≤ 1, one has that for sufficiently large i,∣∣∣∣ 1

Mi

Ni∑
n=1

1
L

L−1∑
�=0

μ(n+ �)f (T �xjn)

n

∣∣∣∣2

< ε +
m∑
j=1

1
L2

L−1∑
�=0

m∑
j=1

|f (T �xj )f (T �xj )|
Mi

Ni∑
n=1

|μ(n+ �)μ(n+ �)|
n

≤ ε + m

L2

L−1∑
l=0

1
Mi

Ni∑
n=1

1
n

= ε + m

L
(A.5)
< 2ε.

This ends the proof of Lemma A.2.

B. Appendix. Proof of Theorem 1.4
In this appendix, we prove Theorem 1.4. As in the proof of Theorem 1.3, we let p be the
zero of C. For a sequence y ∈ (T ∪ {p})Z, we putXy = {σny : n ∈ Z}, where σ is the left
shift. To this aim, we give a lemma first.

LEMMA B.1. If there exist a non-empty compact subset C of [0, 1] and β ∈ R such that

lim sup
H→+∞

lim sup
N→+∞

En≤N max
{

sup
α∈C

Re(e(β)Eh≤Hμ(n+ h)e(hα)), 0
}
> 0, (B.1)
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then there is y ∈ (T ∪ {p})Z such that (y, C) meets Property (∗) in Lemma 3.4 and

lim sup
N→∞

|En≤Nμ(n)F̃ (σny)| > 0, (B.2)

where F̃ : Xy → C is a continuous function defined by F̃ (z) = z(0) if z(0) ∈ T and 0 if
z(0) = p.

Proof. It follows by a similar arguments of the proof of Lemma 3.4.

Now we are going to prove Theorem 1.4.

Proof of Theorem 1.4. Assume the contrary that Theorem 1.4 does not hold. Then there
exists a non-empty compact subset C of [0, 1] such that DimPC = 0 and

lim sup
H→+∞

lim sup
N→+∞

En≤N sup
α∈C

|Eh≤Hμ(n+ h)e(hα)| > 0.

Thus, there is β ∈ {0, 1
4 , 2

4 , 3
4 } with

lim sup
H→+∞

lim sup
N→+∞

En≤N max
{

sup
α∈C

Re(e(β)Eh≤Hμ(n+ h)e(hα)), 0
}
> 0.

By Lemma B.1, there is y ∈ (T ∪ {p})Z such that (y, C)meets Property (∗) in Lemma 3.4
and

lim sup
N→∞

|En≤Nμ(n)F̃ (σny)| > 0, (B.3)

where F̃ : Xy → R is a continuous function defined by F̃ (z) = z(0) if z(0) ∈ T and 0 if
z(0) = p. By Lemma 3.5, the t.d.s. (Xy , σ) satisfies

lim inf
n→+∞

Sn(d, σ , ρ, ε)
nτ

= 0 for any ε > 0, τ > 0 and ρ ∈ M(Xy , σ),

since DimPC = 0. Using the result of [11], one has

lim sup
N→∞

|En≤Nμ(n)F̃ (σny)| = 0.

This conflicts with equation (B.3) and the theorem follows. This ends the proof of
Theorem 1.4.
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