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Abstract

A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product
in product action. All such simple permutation groups are determined in this paper. This remarkable
conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the
permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective
connections between them, are explored in greater generality, with specific future applications in mind.
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1. Introduction

The main result of this paper is that a transitive simple subgroup of a finite symmetric
group is very rarely contained in a full wreath product in product action, so rarely that
all such cases can be explicitly tabulated here. In other words, apart from a short list
of exceptions, a simple subgroup of a finite wreath product in product action can never
be transitive. A brief summary of the product action of wreath products is provided
at the beginning of Section 2.

THEOREM 1.1. Let Q2 be a finite set, let T < W < SymQ such that T is a finite
simple group and W is permutationally isomorphic to a wreath product SymT wr§,
in product action. Then either T is intransitive or T, W, and |2| are as in Table 1.
Moreover, if T is transitive, then Ngymq (T) is an almost simple group.
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TaBLE 1. Transitive simple subgroups of wreath products
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This classification is reached after observing that, in Theorem 1.1, the set £ can
be identified with the Cartesian product I/ such that the action of W is compatible
with this identification. In order to make this idea precise, we introduce the concept
of a ‘Cartesian decomposition’ of a set, and we also notice that W can be viewed as
the full stabiliser in Sym 2 of a Cartesian decomposition of §2. Hence we reduce the
problem of classifying the pairs T, W in Theorem 1.1 to the problem of classifying
all Cartesian decompositions of finite sets that are invariant under the action of a
transitive, stmple group of permutations.

Let T be a finite simple group acting on a set S2. In the classification of T-invariant
Cartesian decompositions of 2 we use ideas that are familiar from the elementary
theory of permutation groups. Namely, we investigate how the subgroup lattice of
T might reflect the existence of a T-invariant Cartesian decomposition of €. In
Definition 1.3 we define the concept of a ‘Cartesian system of subgroups’, and in
Theorem 1.4 we establish a one-to-one correspondence between the set of T-invariant
Cartesian decompositions of 2 and the set of Cartesian systems with respect to a fixed
element of .

The concepts of Cartesian decompositions and Cartesian systems, and the bijective
connections between them, are explored in greater generality in Sections 2—4. Our
motivation in doing so is to provide with a theoretical background for a future inves-
tigation of Cartesian decompositions that are invariant under a transitive permutation
group.

Some of the concepts we use may be new to most of our readers. We define
a permutation group to be innately transitive if it has a transitive minimal normal
subgroup, and a transitive minimal normal subgroup of an innately transitive group is
referred to as a plinth. Most of the results of this paper are expressed in the context of
innately transitive groups. The structure of innately transitive groups is investigated
in [4]. The problem of finding innately transitive subgroups of wreath products in
product action is studied more extensively in [3]. Theorem 1.1 is equivalent to the
following result, which is formulated in terms of innately transitive groups. Here,
a permutation group is quasiprimitive if all of its minimal normal subgroups are
transitive.
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THEOREM 1.2. Let Q be a finite set, let G < W < Sym Q2 such that G is an innately
transitive group with a simple plinth T, and W is permutationally isomorphic to a
wreath product SymI" wr'S; in product action. Then T and W are as in Table 1, and
G is an almost simple quasiprimitive group.

Theorems 1.1 and 1.2 are easy consequences of Theorem 6.1 as explained at the
end of Section 6.

A Cartesian decomposition of a finite set 2 is a collection & of partitions I'y, ... , [y
of Qsuch that [yy N---Ny| = 1forall y, € Ty,...,y € I'. A Cartesian
decomposition is said to be homogeneous if its elements have the same size and this
common size is at least 2. The number of partitions in a Cartesian decomposition is
called the index. A Cartesian decomposition is said to be non-trivial if it has index
at least 2. In this paper, Cartesian decompositions are assumed to be non-trivial,
unless it is explicitly stated otherwise. If & is a Cartesian decomposition of €2, then 2
can be identified with the Cartesian product [ ].., I'. More information on Cartesian
decompositions is provided in [10], where a Cartesian decomposition & stabilised by
a permutation group G such that the elements of & form a single G-orbit is said to be
a system of product imprimitivity for G. A maximal subgroup W of Sym 2 or Alt 2
is said to be of product action type, or simply PA type, if W is the full stabiliser of a
non-trivial, homogeneous Cartesian decomposition of . If a permutation group G
is contained in such a W, then we also say that W is a maximal overgroup of G with
product action type, or simply PA type.

1tis, in general, a difficult problem to describe maximal overgroups with PA type of
a transitive permutation group. In the case where G itself is primitive, this question is
answered by [13], but [2] leaves this problem open for a quasiprimitive G. Clearly our
Theorem 1.2 gives a full classification of the maximal overgroups of product action
type for an innately transitive permutation group G with a simple plinth. This is
achieved by listing all non-trivial, homogeneous Cartesian decompositions stabilised
by G. We found that such decompositions can be identified by information about the
subgroups of the plinth. This motivates the following definition.

DEFINITION 1.3. Let M be a transitive permutation group on a set  and w € S2.
We say that aset {K1, ... , K;} of subgroups of M is a Cartesian system of subgroups
of M with respect to w if

!
(1) K =M, and
i=1
) (ﬂk) M forall ief(l,...,I}.
J#i

A Cartesian system is said to be homogeneous if its elements are proper subgroups
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and they have the same size. A Cartesian system is non-trivial if it has at least two
subgroups. If M is an abstract group and ¥ = {K,, ..., K} is a set of subgroups
satisfying (2), then ¥ is called a Cartesian system of M.

In this paper Cartesian systems are assumed to be non-trivial unless explicitly stated
otherwise.

For a permutation group G < Sym$2, let CD(G) denote the set of G-invariant
Cartesian decompositions of 2. Cartesian systems provide a way of identifying the
set CD(G) from information internal to G.

THEOREM 1.4. Let G be an innately transitive permutation group on 2 with
plinth M. Then, for a fixed w € R, there is a one-to-one correspondence between the
set CD(G) and the set of G,-invariant Cartesian systems of M with respect to w.

Theorem 1.4 is an immediate consequence of Theorem 4.2 where an explicit one-
to-one correspondence is constructed.

The major results of this paper are presented in Section 6. There we study innately
transitive permutation groups with a non-abelian, simple plinth that preserve a Carte-
sian decomposition of the underlying set. The main result of Section 6 gives rise to a
complete description of maximal overgroups with product action type for such an in-
nately transitive group. Theorems 1.1-1.2 follow immediately from Theorem 6.1 (i),
where we give a detailed description of G-invariant homogeneous Cartesian decom-
positions of Q2 for innately transitive groups G with a simple plinth 7. In particular,
Table 3 contains the possibilities for G, T, W, |2|, and the isomorphism types of the
subgroups in the associated Cartesian system, as given by Theorem 1.4. Part (ii) of
Theorem 6.1 gives a detailed description of Cartesian decompositions & of © with
index at least 3 that are invariant under the action of an innately transitive group
with a non-abelian, simple plinth. In Table 4, we list the possibilities for the plinth,
|2/, the full stabiliser of & in Sym €2, and the isomorphism types of the elements in
the corresponding Cartesian system. In the case where G is primitive, Theorem 6.1
reduces to [13, Proposition 6.1 (ii)]. Problems similar to ours were also addressed
in [5].

Our notation concerning actions and permutation groups is standard. If G is a
group acting on $2 and A is a subset of L, then G, and G, denote the setwise and
the pointwise stabilisers of A, respectively. If G, = G then G* denotes the subgroup
of Sym A induced by G. If w € 2, then w® denotes the G-orbit {wf | g € G}.

2. Cartesian decompositions

Let " be a finite set with at least two elements, L < SymTI", [ > 2 an integer, and
H < S,. The wreath product L wr H is the semidirect product L' x H, where, for
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(x,...,x) e L'and o € S,, (x1, ... ,x,)"_‘ = (xy, ... ,Xp). The product action
of L wr H is the action of L wr H on I'! defined by

(}’17"' 7}’1)“”“‘10 = (Yi‘l’*" 7)’[‘1) and (yh--' 7}’[)6—1 = (yl"a"- 1‘yl")

forall (y1,...,y) el andx;,... ,x; € Lando € H. The important properties of
wreath products can be found in most textbooks on permutation group theory, see for
instance Dixon and Mortimer [7].

The full stabiliser W in Sym 2 of a homogeneous Cartesian decomposition & of
Q is isomorphic to SymI' wr S; acting in product action on I'! for I" € £. Moreover,
if {T’] > 3 then W is primitive on £, and if |I'| > 5 then W is a maximal subgroup
of Sym 2 or Alt Q2. As mentioned in Section 1, such maximal subgroups are usually
referred to as maximal subgroups of product action type. They form one of several
classes of primitive maximal subgroups of Sym Q2 and Alt 2, identified by the O’Nan—
Scott Theorem; see [12]. Thus an important part of classifying the primitive maximal
subgroups of Sym §2 or Alt Q containing a given (innately transitive) subgroup G is
finding all homogeneous Cartesian decompositions of €2 that are stabilised by G. Our
first result is that the plinth must leave invariant each partition in such a Cartesian
decomposition.

PROPOSITION 2.1. If G is an innately transitive group on a set Q with plinth M and
& e CD(G), then M(é’) =M.

PROOF. We let ' € & and show that each element of the G-orbit I'C is stabilised
by M. Suppose that {I"}, ... , ', } is the G-orbit in & containing I' € &. Set

Z={nn--Ny.Ilrnel, ... ,ym€ln}
and
Fi={loeT|oCy)|yel} for i=1,...,m.

Then it is a routine calculation to check that X is a G-invariant partition of €2, and that
Ty,..., I-‘,,,} is a G-invariant Cartesian decomposition of . Moreover, |f‘i| = ||
forall i,andsince Ty, ... , [, forma G-orbit, |T;| = |I-‘,- | foralliandj. Itis also easy
to see thatif g € G, then g € G(r,. Since G, ¢, is a normal subgroup of G and
M is a minimal normal subgroup of G, either M < G¢,  r yor MNGi, 5, =1
Suppose that M N G¢, 5,y = 1, so M acts on the set (T, ..., ) faithfully.
Therefore M is isomorphic to a subgroup of S,,. Note that || = |I',|", and let p be
a prime dividing IT"y|. Then p™ divides |Z|. Since M is transitive on &, p™ | |M|.
However, M is isomorphic to a subgroup of S,,, and so p™ divides m!, which is a
contradiction to [13, Lemma 4.2). Hence M < Gy, . f.,, that is, each T is stabilised
by M, and so is each I';. Thus M stabilises I', and, since I' was chosen arbitrarily,
this shows that every element of & is stabilised by M. a
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LEMMA 2.2. Let M be a transitive subgroup of Sym 2 and let & € CD(M) such
that Mgy = M. Suppose that & = {T'y, ... ,T'}}, let w € Q be a fixed element, and
fori=1,...,llety, € I'; be such that w € y;. Set X,(&) = {K,,..., K|} where
Ki=M, fori=1,...,1. Then X,(&) is a Cartesian system of subgroups of M
with respect to w. Moreover, if o™ = &' for some m € M, then ¥,(&) = X (&)™

PROOF. Let us prove that ﬂLl K; = M,. Since the I'; are M-invariant partitions
of §2, the stabiliser of a point stabilises the block in I'; that contains this point. Hence
M, < K; for all i, and so M, < (); Ki. Now suppose that x € ("), K;. Then x
stabilises ¥y, ... , yi. Since & is a Cartesian decomposition, y, N --- N y; = {w}, and
so x stabilises w. Thus x € M,, andso ), K; = M,,.

Now we prove that (2) also holds. We may suppose without loss of generality
thati = 1. Letx ¢ M, 8, = y,...,. 86 =y and {§} =6 N---N§. If
{¢} = 8 Ny,N---Ny, then the transitivity of M on 2 implies that there exists z € M
withé* =¢ andsoéf =6, 8, =w, ..., 8 =W, whenceyj” =y forj=2,...,1
and y#” =y, thatis xz € ﬂj-:z K; and xzx 7! € K;. It follows that

!
x = xzx D 'xzx7x) € K, (ﬂ K,) ,
j=2
and we deduce that the first factorisation of (2) holds. The other factorisations can be
proved identically. Thus J£, (&) is a Cartesian system of M with respect to w.
If m € M and o = @™ then (o'} = y" N --- Ny and M,» = M7, which proves
that X, (&) = K, (&E)™. O

If M < SymQ and & € CD(M) such that M(s, = M, then, for a fixed w € Q,
we define the Cartesian system J¢,(&) with respect to w as in Lemma 2.2. The last
result of this section establishes one direction of the one-to-one correspondence in
Theorem 1.4.

LEMMA 2.3. Let G be an innately transitive group with plinth M acting on 2, and
let w € Q. If & € CD(G), then Mgy = M. Assume that X,(&) is the Cartesian
system of M with respect to w. Then X,,(&) is invariant under conjugation by G,
and the G,-actions on X,(&) and on & are equivalent.

PROOF. It follows from Proposition 2.1 that My, = M, and s0 we can use
Lemma 2.2 to construct ¥, (&) for w. Suppose that & = (I'y,..., 7). and let
X,(&) = {K,, ..., K} such that K; = M, where y; is the unique element of T,
containing w. If I;, I’; € & and g € G, such that T'¥ = T’; then w® = w, and so
v = y;. Hence

Kf= (M) =My=M, =K,

Yi

https://doi.org/10.1017/51446788700010156 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010156

7 Transitive simple subgroups of wreath products 61

and so ¥, (&) is invariant under conjugation by G,. This argument also shows that
the G,-actions on & and on ¥,,(&) are equivalent. O

3. Cartesian systems

In this section we summarise the most important properties of Cartesian systems
of abstract groups. The following lemma is useful when working with Cartesian
systems. If {K, ..., K|} is a Cartesian system for a group M and I C {1,...,1}
then let K, denote the subgroup K; = ()., K;. We use the convention that if ] = ¢}
then [ .1 Ki = M for any collection {K}; of subgroups in M.

LEMMA 3.1. Let {K\, ..., K|} be a (possibly trivial) Cartesian system for an ab-
stract group M, and let 1, J be subsets of {1, ..., ).

@) Ifxy,...,x; € M, then (), Kix; is a coset modulo K.
b) M: K= niel IM @ Kl
(©) KiK;=Kjns.

PROOF. If an intersection of (right) cosets is nonempty then it is a (right) coset
modulo the intersection of the relevant subgroups. The statement of (a) above and
the simple proof below make use of this fact. We prove the lemma by induction on
1. Notice that there is nothing to prove if / = 1. Our inductive hypothesis is that
I > 1 and the lemma holds for all Cartesian systems for M which consist of fewer
than [ subgroups. Thus (a) and (b) only have to be proved for the case I = {1, ..., 1}.
Put L = (.., Ki, and note that {K,, L} is also a Cartesian system for M (that is,
K\L =M).

We also know from the inductive hypothesis that (), , K:x; is a coset modulo L,
so for (a) it is sufficient to show that K;x, N Ly is never empty. In order to show this
we choose z € L such that K1z = K;x,y~}; this is possible, as KL = M. Then
Kyzy = Kixy, and so zy € K x,, and also zy € Ly. Hence zy € K;x; N Ly, and
consequently K;x; N Ly is non-empty.

For (b), it is enough to show that |M : K,| = |M : K,||M : L|, but this follows
from

i>1

IM| =I|KiL| = |K,||L|/\Ky N L] = K |L|/ K]
For an easy proof of (c) we first observe that
IKi Kyl = KK /1K N KL

It is obvious that K; K; C K;~; and, as K; N K; = Ky, one can calculate from (b)
and the last display that | K, K| = |K;n;|. This completes the proof of the lemma. [
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Note that, in Lemma 3.1 (a), if we choose x to be any element of (.., K;x;, then

K;x; = K;x holds, forall i € I.

iel

4. Cartesian systems and Cartesian decompositions

In a transitive group M < Sym 2, a subgroup K satisfying M, < K < M for
some w € §2 determines an M -invariant partition of £2 comprising the M-translates of
the K-orbit wX.

LEMMA 4.1. Let G be an innately transitive group on Q2 with plinth M, and let w be
a fixed element of Q. Suppose that ¥ = {K,, ..., K} is a G,-invariant Cartesian
system of subgroups of M with respect to w, and let Ty, ... , [, be the M-invariant
partitions of Q determined by K,, ... , K|, respectively. Then & = {I"y,... ,[}} is
a G-invariant Cartesian decomposition of 2, such that ¥,(&) = J . Moreover,
if M is non-abelian and the Cartesian system (K|, ... , K|} is homogeneous, then
the stabiliser W in Sym Q of & is a maximal subgroup of Sym Q or Alt Q such that
G W

PROOF. As M, £ K; < M, each T'; is an M-invariant partition of . For
i = 1,...,1 let y; be the unique element of I'"; containing w. In order to prove
that & is a Cartesian decomposition, we only have to show that

!
’ﬂ& =1 whenever 8§ €ly,...,8 €Tl
i=1
To see this, choose 8§, € Ty, ..., 8 € I'. Now §; = y" for some x; € M, and by
Lemma 3.1 (a), there exists some x € M suchthat K,.x;, = K;xfori =1,...,!l. Then

8 = y,'x' = {wk | k€ K;}' = {a)k, | k' € Kix;}
= {a)k, | kl (S K,'X} = {a)k I k e Ki}x = yix'
Thus

Ae=Are= (1)

i=1

and therefore we only have to prove that IﬂLl y,-| = 1. Note that w € y; for
i=1,...,1 Suppose that @ € y; N...N y for some ' € Q2. Then there is some
x € M such that w* = «’. Then x must stabilise yy, ... , ¥, and hence x € K for all
i=1,...,1l Since ﬂf‘:l K, = M,, it follows that x € M, and so w* = w. Thus
ﬂ£=1 v; = {w}, and & is a Cartesian decomposition.

https://doi.org/10.1017/51446788700010156 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010156

9] Transitive simple subgroups of wreath products 63

Since each I'; is an M-invariant partition of 2, & is invariant under M. Since
{Ki, ..., K|} is G -invariant, & is also G,-invariant, and so & is M G-invariant.
Since M is transitive, M G, = G. Therefore & is G-invariant. Note that

X ={M,,....,M,) and K (& ={M,, ..., M,}.

Thus ¢ = ¥,,(£), as required.
Since M is non-abelian, M is a direct product of isomorphic non-abelian, simple

groups. Hence fori = 1, ..., 1, the group M"" is also isomorphic to a direct product
of non-abelian simple groups. Moreover, M is transitive and faithful on I';, and so
IT';} 2 Sforalli. As {K\, ..., K;} is homogeneous, & is also homogeneous and W

is permutationally isomorphic to SymI" wrS; in product action for some set I" and
I 2 2. Hence the results of [12] show that W is a maximal subgroup of Sym € if
W £ Alt Q, and W is a maximal subgroup of Alt Q2 otherwise. Since & is G-invariant,
clearly G < W. O

THEOREM 4.2. Let G be an innately transitive group on 2 with plinth M. For a
fixed w € Q the map & v (&) is a bijection between the set CD(G) and the set
of G,-invariant Cartesian systems of subgroups of M with respect to w.

PROOF. Let ¥ denote the set of G,-invariant Cartesian systems of subgroups of M
with respect to w. In Lemma 2.2, we explicitly constructed a map ¥ : CD(G) — ¥
for which W(&) = J#,(&). We claim that ¥ is a bijection. Let # € €, let
[y, ..., ', be the M-invariant partitions determined by the elements K, ... , K, of
X ,and let & = {I"y,...,I}}. We proved in Lemma 4.1 that & is a G-invariant
Cartesian decomposition of € such that J£, (&) = J¢. Hence W is surjective.

Suppose now that &}, & € CD(G) is such that (&) = V(&) and let £ denote
this common Cartesian system. Let & be the set of M-invariant partitions determined
by the elements of .#". Then, by the definition of W(&}) in Lemma 2.2, §; = & and
&, = &. Thus W is injective, and so W is a bijection. a

Theorem 1.4 is an immediate consequence of the previous result.

5. Some factorisations of finite simple groups

To prove Theorem 1.1 we need first to prove some results about factorisations of
certain finite simple groups. If G is a group and A, B < G such that G = A B, then
we say that the expression G = A B or the set {A, B} is a factorisation of G. In {1] full
factorisations of almost simple groups were classified up to the following equivalence
relation. The factorisations G = A 1B, and G = A, B, of a group G are said to be
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equivalent if there are @ € Aut(G), and x, y € G such that {A,, B} = {AY", B)"}.
The following lemma shows that this equivalence relation can be expressed in a simpler
way.

LEMMA 5.1. Let G be a group.

(i) If G = AB forsome A, B < G, then the conjugation action of A is transitive
on the conjugacy class B®, and B is transitive on A°.

(1i) The factorisations G = A B, and G = A, B; of G are equivalent if and only
if there is B € Aut(G) such that {A,, B} = (A%, B?).

PROOF. (i) As AB = G, we also have AN (B) = G. Since Ng (B) is a point
stabiliser for the conjugation action of G on the conjugacy class B, we obtain that A
is a transitive subgroup of G with respect to this action. Similar argument shows that
B is transitive by conjugation on A€,

(i) It is clear that if there is 8 € Aut(G) such that {A;, B} = {A}, B?} then the two
factorisations in the lemma are equivalent. Suppose that G = A|B; and G = A, B,
are equivalent factorisations. By assumption, there is @ € Aut(G) andx, y € G
such that {A,, B)} = {A%", B}”}. Then we have A% = (A%)C and BF = (B%)C, o

= (B$)% and B = (A$)C. Suppose without loss of generality that A¢ = (A")G
and BP = (B$)C. Since A; and AY are conjugate, there is some g € G such that
A} = A‘;, and Bf is conjugate to Bf. As G = (AB)® = A{B}, we have that A}
is transitive by conjugation on (Bf)¢ = Bf. Hence there is some a € A$ such that
A% = A = A2, and B = BY. Hence A, = A% * and B, = B * " Thus we
may take B as « followed by the inner automorphism corresponding to a™! g". O

If G is a group and A and B are subgroups then let
Ng({A, B}) = {g € G | (A%, B*} = {A, B}}.

In the proof of the following result we use the following simple fact, called Dedekind’s
modular law. If K, L, H are subgroups of a group G such that K < L, then

3) (HKYNL=HNL)K.

LEMMA 5.2. Let T be a finite simple group and A, B proper subgroups of T such
that |A| = |B| and T = AB. Then the following hold.

(i) The isomorphismrypesof T, A, and B are as in Table 2, and A, B are maximal
subgroups of T.
(i) There is an automorphism ® € Aut(T) such that ¥ interchanges A and B.
(iii) The group A N B is self-normalising in T.
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TABLE 2. Factorisations of finite simple groups in Lemma 5.2

T A, B
1 Ag A;
2 M, My,
3 PQ: (q) Q24(q)
4 | Sp,(q), g = 4even | Sp,(¢*).2

(iv) IfTisasinrowl, 2, or 4 of Table 2, then
Nauw) (A N B) = Nawn ({A, B}) =N,

say, and moreover TN = Aut(T).

PROOF. (i) Note that, since [A| = |B|, the factorisation T = AB is a full factori-
sation of T, that is, the sets of primes dividing {T'|, |A|, and | B| are the same. It was
proved in [1], that T, A, and B are as in [1, Table I]. It is easy to see that the only
possibilities where |A| = |B| are those in Table 2, and it follows that in these cases A
and B are maximal subgroups of T.

(ii) In each line of Table 2, the groups A and B are not conjugate, but there is
an outer automorphism o € Aut(T) which swaps the conjugacy classes AT and BT
(see the Atlas [6] for T = Ag, My, [9] for T = PQj(q), and [1, page 155] for
T = Sp,(¢)). By Lemma 5.1 (i), the group A is transitive in its conjugation action
on the conjugacy class B” and B is transitive on A7. Thus there is an element a € A
such that A°® = B and B°“ is conjugate in T to A. Since B is transitive on A7, there
is an element b € B such that A°®® = B and B°** = A. Therefore we can take ¥ as
o followed by the inner automorphism induced by the element ab.

(iii) Set C = A N B. First we prove that C is self-normalising in T. If T is
isomorphic to Ag or M), then the information given in the Atlas [6] shows that if N
is a proper subgroup of T properly containing C, then N is isomorphic to A or B. In
all cases A and B are simple, and so N7 (C) = C. If T = PQj (¢) then we obtain
from [9, 3.1.1 (vi)] that C = G;(g) and [9, 3.1.1 (iii)] yields that N+ (C) = C.

Now let T = Sp,(q) for g > 4, g even. Inthis case A = B = Sp,(¢*)-2. Consider
the fields F, and F,. as subfields of the field F,« and consider the field F, as a 4-
dimensional vector space V over F,. Let Ng p, : Foe > Fpeand Try 5, : Fpe = Fy
denote the norm and the trace map, respectively. For the basic properties of these
maps see [11, 2.3]. Using the fact that qu‘,/wq: x) = x7* forall x € 4+, we obtain
that x > qu, /8, (x) is an [ 2-quadratic form on V, such that

(e, ¥y > Negr (0 +9) + Negr, (0 + Ng s, (9)
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is a non-degenerate, symmetric, [,.-bilinear form with Witt defect 1 (we recall that
q is a 2-power). Hence Q = Try /s, oN,;q‘ /¢,» is an Fy-quadratic form V — [, and
f(x,y) = Qx+y)+ Q(x)+ Q(y), is anon-degenerate, symmetric [ -bilinear form
on V with Witt defect 1. Then without loss of generality we may assume that 7 is the
stabiliser of f in GL4(¢), A consists of elements of T that are F,.-semilinear, and B
is the stabiliser of Q.

Fora € V\ {0} = IF;“ define the map s, : x +— xa. Then it is well-known that
S = {s, | a € F.} is a cyclic subgroup of GL4(g). A generator of S is called a Singer
cycle; see Satz I1.7.3 in Huppert [8]. Let Z denote the subgroup {s, | NW k(@) =1}
of S. Since the restriction of N[Fq4 /F, tO [F;,, is an epimorphism N,;q, [Fa [F:r‘ - lF;z,
and Z is the kernel of this epimorphism, we have that [Z| = g% + 1. If o is the
Frobenius automorphism x + x? of F then (s,)” = s, forall s, € S. Therefore o
normalises S, and, since S is cyclic, o also normalises Z. We claim that C = Z (o).
Since T = AB, |C| = 4(¢* + 1), and hence it suffices to prove that Z(c) < C. Itis
clear that o is F:-semilinear, and so o € A. Also

0@ () = Q") = Tre s, (Ne s, (6)) = Tre s, (N0 (0)7)
= Tre,r, (N e (0)) = Q).

Therefore o € B, and soo € C. Let a € Fg such that N‘qu /¥, (a) = 1. Then

05.(x)) = Q(xa) = Trs,r, (Neus, (x))
= Tre /s, (Nnr,ll/w,lz (INg /5, (a)) = Tre 5, (Nl}'q.;/ifqg (x)) = Q(x).

Thus s, € B. Since s, is also F.-linear, we obtain s, € C. Hence C = Z (o).

We will now prove that C is self-normalising in 7. First notice that g>+1 is divisible
by an odd prime r such that r { (g% — 1). Hence there is a unique subgroup R in Z
with order r. Since Z is the commutator subgroup of C, it is a characteristic subgroup
of C. Also R is the unique subgroup of Z with order r, and so R is characteristic in
Z. Thus R is characteristic in C and N7 (C) must normalise R. By [8, Satz I1.7.3 ],
Ny (R) = SC = S{o).

Let us now determine how much of S{o) is contained in T. Since TrL:q2 /F, 18
additive,

f &y =Trs e, (N[Fq4/!F,I,7 (x4 y") + Nep, 7 + Ne (yq))
q
= Tre o, ((Nes, &6 + )+ Noe o (6 + Nes, 0)) ) = £ (5, 9),

and hence the cyclic subgroup (o) isin T. Using (3), we have (S(oc))NT = (SNT){c).
Thus we need to compute SN T. If x € IF;4 such that f (xa, xb) = f (a, b) for all
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a, be Vthen
@ Tre s, (quuqu (@a+b)+ Ne 5. (@) + Np s, (b))
= Trg .5, (Nu:q“/prqz (xa+xb) + N /¢, (xa) + N r , (xb))
= Tre o5, (No e, 0 (Nor (@ B) + Ne g (@ + Ne e, 5)))
As observed above,
(u, v) > Ng . (u+v) + Nr_5, () + Ng 5, (v)

is a non-degenerate, symmetric, F.-bilinear form, and so it maps V x V onto [ ..
Hence (4) shows that y = NL;q,, /F (x) has the property that TrIFq2 £, (yu) = TrL;ql /5, (1)
forall u € Fp, thatis, yu+ y%u? = u+u?, forallu € Fp. Thus (yu+u)? = yu+u.
Hence u(y + 1) € F, for all u € Fp, and consequently y = 1. Thus if the map
s, preserves f then N[Fq,, [Fp (x) = 1. On the other hand from (4) it is clear that if
Ng,./s,(x) = 1 then multiplication by x preserves f. Since the norm is a group
epimorphism N Fa/fp i Fou = F7. it follows that the elements of norm 1 form a cyclic
group of order g% + 1. Hence SN T = Z and Ng,(,, ()N T = C, that is, C is
self-normalising in T.

(iv) Finally we assume that T is as in row 1, 2, or 4 of Table 2, and we prove the
assertion that Ny = N,, where N; = Nayr) (C) and N; = Nawry ({A, B}). Itis clear
that N; < N;, and so we only have to prove |N;| < |N,|. Since A and B are not
conjugate in 7, we have that N; N T = Ny (A) NNy (B) = AN B = C, and, since
C is self-normalising in T, we also have N; N T = C. Thus it suffices to prove that
TN, £ TN,, which follows immediately once we show that TN, = Aut(T). Since
N, interchanges A and B, we have that N = (Nayr) (A) N Nawr (B)) () where
0 € Aut(T) is as in (il). If T = Ag then [Naywr (4) : N7 (A)| = |Nawrn (B) :
Nr (B)| =2,and so TN, = Aut(T) (see [6]). If T = M;; then Npyry (A) = N7 (A)
and Nayr) (B) = N7 (B), and so TN, = Aut(T) (see [6]). If T = Sp,(q) then the
field automorphism group ® normalises A and B. If & € Aut(7) is as in (ii), then
Aut(T) = T (), and so we obtain that TN, = Aut(T). Hence if T is as inrow 1, 2,
or 4 of Table 2, then TN, = Aut(T), and TN, < TN, clearly holds. Thus N, = N,
follows. O

We recall a couple of facts about automorphisms of PQJ (¢). Let T = PQj (q).
Then, as shown in [9, pp. 181-182], Aut(T) = © x &, where ® is the group
of field automorphisms of T, and © is a certain subgroup of Aut(7) containing the
commutator subgroup Aut(7T)’. We also have Out(T) = Aut(T)/ T = O/ TxPT/T,
and ®/T = S,, where m = 3 foreven g, and m = 4 forodd gq. Letw : © — S,
denote the natural epimorphism. The following lemma derives the information about
PQy (g) similar to that in Lemma 5.2 (iv).
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LEMMA 5.3. Let T = P2 (q), let A, B be subgroups of T suchthat A, B = Q(q)
and AB = T, and set C = A N B. Then the following hold.

(i) We have ® < Naur) (A) N Nawn) (B).
(i) The groups (Nayr) (A)NO)T/ T and (Npyr) (B)YNO)T/ T are conjugate to
the subgroup in column X of [9, Results Matrix], so that

7 (Nawer (A) N O) = 7 (Nawny (B) N O) = Z, x Z,.

(iii) We have ® < Nawr) (C) and (Nayr) (C) N ©OYT/T is conjugate to the
subgroup in column VII of [9, Results Matrix], so that # (Nayr (C) N O) = S; and

) [Nawer (€) : Nawery ({4, BY)| = 3.

(iv) We have TNawr) (1A, B)) = TO(P), where ¥ is as in Lemma 5.2 (ii), so that
7 (Nawr ({A, BN O)Y/ T = 1,.

PrOOF. Claims (i)-(ii) can easily be verified by inspection of [9, Results Matrix].
In (i11)) we only need to prove (5). Let Ny = Ny (C) and N, = Nawr ({A, B)).
Clearly N, < N;. By [9, Proposition 3.1.1 (vi)], C = G;(q), and [9, Proposi-
tion 3.1.1 (iii)] shows that 7(N; N ®) = S;. From [9, Results Matrix] we obtain
w(N,N @) = Z,. As in the proof of Lemma 5.2, we have NN T =N, NT = C. As
T = kerm this implies Ny Nkerr = NyNkerx,andso [N;NO| = 3-|N,NO|. Since
& < N, N N; we have N,© = N,0 = Aut(T), and so |N;| = 3 - |N,|, as required.
In (iv) we notice that T®(?) < TNaywr ({A, B}). On the other hand, (iii) implies
that |T® ()] = | TNawr, ({A, B}) |, hence equality follows. O

6. Innately transitive groups with a non-abelian, simple plinth

In this section we prove our second main theorem, namely Theorem 1.1, which is
a consequence of the following result.

THEOREM 6.1. Let G be an innately transitive permutation group on Q with a non-
abelian, simple plinth T, let w € 2, & € CD(G), and let W be the stabiliser of & in
Sym . Then |&| < 3 and the following hold.

(i) Suppose that & is homogeneous. Then |&| = 2, W is a maximal subgroup of
SymQor Alt2, and G, T, W, the subgroups K € X_,(&), and |2| are as in Table 3.
In particular, the set J,(&) contains two isomorphic subgroups. Moreover, the group
G is quasiprimitive and T is the unique minimal normal subgroup of G. Moreover
exactly one of the following holds:

(@ ICD(G)} = 1;
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TABLE 3. Homogeneous Cartesian decompositions preserved by almost simple groups

L G [ 7 1 W T & ] 1 ]

1 As < G < PILL,09) As Sewr S, As 36
2 M € G < Aut(My3) M, Sz wrS, My, 144
PQS(q) < G < PQF(g)® (¥) N
3 ®: field automorphisms PQ(g) S;’/z_"’ng‘? .\:’rgz Q1(q) (%) qo(g* — 1)?
¢ is as in Lemma 5.2 (ii) =@q
S
3| se@ <G <A@ | 4D 1 sppopwrs [Se2] gt - 12
=

TABLE 4. Cartesian decompositions with index 3 preserved by almost simple groups

L7 7 W T (&) [ ] [
Sn, X 8y, % Spy
SPsa(2) | ni = 1Sp4,(2) : Spp(®) - 2

—

Sp2a(4) <2, 0;0(2), O:gt‘(z) ny-np-n3

az?2 ny = [Sp,,(2) : 0,,(2)]
n3 = |8p,,(2) : 04, ()
2| PQI3) Sioo X Stz X Sagazt | 27(3), Z8 x PSL4(3), PQ; (2) | 34,390, 137, 600
S|20 X Szg X S36 G2(2), O; (2), 02(2) 120, 960
31 Sp(2) Sa40 X Sag X Sz Ga(2), 05(2), Of (@ 241, 920
s Si20 % Sse X S36 G;(2), 072, 0O (2 241, 920
5120 x Sy X S72 G2(2), Og 2), Og- (2), 241, 920

(b) ICD(G)| =3, Tisasinrow 3 of Table 3, G < T® where © is the group of
field automorphisms of T.
(il) Suppose that |&\ = 3. If W is the stabiliser in SymQ of &, then T, W, the
elements of X,,(&), and |2| are as in Table 4.

PROOF. Suppose that & € CD(G). Then Proposition 2.1 implies that Ty =
T. Let ] be the index of &, and let #,(&) = {K,, ..., K;} be the corresponding
Cartesian system for 7. Then the definition of (&) implies that if I > 3 then
{Ki, ..., K} is a strong multiple factorisation of the finite simple group 7. Strong
multiple factorisations of finite simple groups are defined and classified in [1}; in
particular it is proved that [ < 3.

(a) If I = 3 then [1, Table V] shows that K;, K,, K3 have different sizes. Thus if
& is homogeneous then | = 2 and the factorisation T = K, K is as in Lemma 5.2.
Hence T, K, K,, and |2} are as in Table 3. The maximality of W follows from
Lemma 4.1.

Let us now prove that G is quasiprimitive. As T is transitive on 2, we have
Csyma(T) = N7 (T,) / T.; see [7, Theorem 4.2A]. On the other hand, T, = K, N K3,
and Lemma 5.2 shows that Nr (K, N Kz) = K; N K, = T,,. Hence Cgyma(T) = 1,
and so T is the unique minimal normal subgroup of G. Hence G is an almost simple

https://doi.org/10.1017/51446788700010156 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010156

70 Robert W. Baddeley, Cheryl E. Praeger and Csaba Schneider [16]

quasiprimitive group acting on 2.

Now we prove that the information given in the G-column of Table 3 is correct.
Since T is the unique minimal normal subgroup of G, we have that G is an almost
simple group and T < G < Au(7T). Let N = Nayun ({Ki, K2}). Note that
G = TG, and G, < N. On the other hand, N has the property that, since A and B
are not conjugate in T,

TNAN =N (K)NNy (Ky) = Ki\NK, =T,

and so the T-action on 2 can be extended to TN with point stabiliser N. Thus
G < TN. By Lemmas 5.2 (iv) and 5.3 (iv), for T = Aq, My, PQ§ (9), and Sp,(9),
we have TN = PI'L,(9), Aut(M;,), PQgL(q)(D(ﬁ) (where @ is the group of field
automorphisms and # is as in Lemma 5.2 (ii)), and Aut(Sp,(g)). respectively. Hence
the assertion follows.

Finally we prove the claim concerning |CD(G)|. Suppose that L, L, < T is
such that |L,| = |L,|, LiL, = T and L, " L; = T,. By [1], the full factorisation
T = KK, is unique up to equivalence, Lemma 5.1 (ii) shows that there is an
element @ € Aut(T) such that {K,, K»}* = {L;, Ly}, and so a € Nayr) (T,) =
Nawry (K1 N K3). Lemma 5.2 (iii) implies that if 7 is as in row 1, 2, or 4 of Table 3
then Nawr) ({ K1, K2}) = Nawr (T,) and so {L, L} = {K,, K»2}* = {K), K,}. Thus
|CD(G)| = 1 in these cases, as asserted.

Suppose now that T = P23 (g) for some g. Then we obtain from Lemma 5.3 (iii)
that [Nawr) (7.) : Nawrn (K1, K2}) | = 3, and so the Nayr) (T,)-orbit containing
{Ki., K3} has 3 elements, which gives rise to 3 different choices of Cartesian systems
with respect to w. Let &, &, and &; denote the corresponding Cartesian decompo-
sitions of €, such that & = &|. We computed above that Cgyno(7T) = 1, and this
implies that Ngymo (T) = Aut(T) N Sym 2. In other words, N = Ngymq (T) is the
largest subgroup of Aut(7) that extends the T-action on 2. Since T is a transitive
subgroup of N, we have N = TN,,. As T, is a normal subgroup of N, it follows that
N < TNaur) (T,,). On the other hand,

| TNawr) (To) * Nawey (T) | = 1T : TN Naweny (T) | = [T :Ne (L) | =T : T,

by Lemma 5.2 (iii). This shows that the T-action on £2 can be extended to TNay 7 (T.,)
with point stabiliser N a7y (T,). In other words, TNaury (T,) is the largest subgroup
of Aut(T) that extends the T-action on £2. The stabiliser of &) in TNayr) (T,) is
TNawr (K1, K2}). Hence if G < Aut(T) is such that T < G and G leaves the
Cartesian decomposition & invariant, then G < TNayr ({K), K32}) = T®(F), by
Lemma 5.3 (iii). If CD(G) # {&} then, G leaves &), &3, and &; invariant. Therefore
G lies in the kernel of the action of TNayr (T,,) on {&, &, &}. Hence G < T®, as
required.
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(b) Suppose that |&| = 3. Then {K),, K, K3} is a strong multiple factorisation
of T. Therefore using [1, Table V] we obtain that T, K,, K,, K3, and the degree
|2 = |T : K, N K,N K3| of G are as in Table 4. O

The proof of Theorem 1.1 is now easy, as Theorem 6.1 implies that Csyma(T) =1,
and s0 Nsym o (T) is an almost simple group with socle T. For the proof of Theorem 1.2,
notice that W is the full stabiliser of a Cartesian decomposition & of Q2. As G < W,
the Cartesian decomposition & is also G-invariant. Hence Theorem 6.1 implies the
required result.
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