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Abstract

A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product
in product action. All such simple permutation groups are determined in this paper. This remarkable
conclusion is reached after a definition and detailed examination of 'Cartesian decompositions' of the
permuted set, relating them to certain 'Cartesian systems of subgroups'. These concepts, and the bijective
connections between them, are explored in greater generality, with specific future applications in mind.
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1. Introduction

The main result of this paper is that a transitive simple subgroup of a finite symmetric
group is very rarely contained in a full wreath product in product action, so rarely that
all such cases can be explicitly tabulated here. In other words, apart from a short list
of exceptions, a simple subgroup of a finite wreath product in product action can never
be transitive. A brief summary of the product action of wreath products is provided
at the beginning of Section 2.

THEOREM l.l. Let Q be a finite set, let T < W < Sym£2 such that T is a finite
simple group and W is permutationally isomorphic to a wreath product Sym T wr S;
in product action. Then either T is intransitive or T, W, and \Q\ are as in Table 1.
Moreover, if T is transitive, then Nsym Q (T) is an almost simple group.
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TABLE 1. Transitive simple subgroups of wreath products

[2]

1
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3

4

T
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M,2

^i(q)
Sp4(g), q ^ 4,q even

W

S6wrS2

St2 wrS2

S,W,-0WrS2

S,2(,2_1)WrS2

im
36
144

d = (4, 9
4 - 1)

<7 V - I)2

This classification is reached after observing that, in Theorem 1.1, the set £2 can
be identified with the Cartesian product F ' such that the action of W is compatible
with this identification. In order to make this idea precise, we introduce the concept
of a 'Cartesian decomposition' of a set, and we also notice that W can be viewed as
the full stabiliser in Sym fi of a Cartesian decomposition of Q. Hence we reduce the
problem of classifying the pairs T, W in Theorem 1.1 to the problem of classifying
all Cartesian decompositions of finite sets that are invariant under the action of a
transitive, simple group of permutations.

Let T be a finite simple group acting on a set Q. In the classification of T-invariant
Cartesian decompositions of Q we use ideas that are familiar from the elementary
theory of permutation groups. Namely, we investigate how the subgroup lattice of
T might reflect the existence of a ^-invariant Cartesian decomposition of Q. In
Definition 1.3 we define the concept of a 'Cartesian system of subgroups', and in
Theorem 1.4 we establish a one-to-one correspondence between the set of T-invariant
Cartesian decompositions of £1 and the set of Cartesian systems with respect to a fixed
element of £2.

The concepts of Cartesian decompositions and Cartesian systems, and the bijective
connections between them, are explored in greater generality in Sections 2-4. Our
motivation in doing so is to provide with a theoretical background for a future inves-
tigation of Cartesian decompositions that are invariant under a transitive permutation
group.

Some of the concepts we use may be new to most of our readers. We define
a permutation group to be innately transitive if it has a transitive minimal normal
subgroup, and a transitive minimal normal subgroup of an innately transitive group is
referred to as a plinth. Most of the results of this paper are expressed in the context of
innately transitive groups. The structure of innately transitive groups is investigated
in [4]. The problem of finding innately transitive subgroups of wreath products in
product action is studied more extensively in [3]. Theorem 1.1 is equivalent to the
following result, which is formulated in terms of innately transitive groups. Here,
a permutation group is quasiprimitive if all of its minimal normal subgroups are
transitive.
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THEOREM 1.2. Let Q be a finite set, let G < W < Sym £2 such that G is an innately
transitive group with a simple plinth T, and W is permutationally isomorphic to a
wreath product Sym F wr S; in product action. Then T and W are as in Table 1, and
G is an almost simple quasiprimitive group.

Theorems 1.1 and 1.2 are easy consequences of Theorem 6.1 as explained at the
end of Section 6.

A Cartesian decomposition of a finite set Q is a collection £ of partitions F i, . . . , F;
of £2 such that \y\ n • • • D yt\ = 1 for all yi e Vu • • • ,Yi £ F/. A Cartesian
decomposition is said to be homogeneous if its elements have the same size and this
common size is at least 2. The number of partitions in a Cartesian decomposition is
called the index. A Cartesian decomposition is said to be non-trivial if it has index
at least 2. In this paper, Cartesian decompositions are assumed to be non-trivial,
unless it is explicitly stated otherwise. If £ is a Cartesian decomposition of £2, then £2
can be identified with the Cartesian product Yir^s ^- More information on Cartesian
decompositions is provided in [10], where a Cartesian decomposition £ stabilised by
a permutation group G such that the elements of £ form a single G-orbit is said to be
a system of product imprimitivity for G. A maximal subgroup W of Sym £2 or Alt £2
is said to be of product action type, or simply PA type, if W is the full stabiliser of a
non-trivial, homogeneous Cartesian decomposition of £2. If a permutation group G
is contained in such a W, then we also say that W is a maximal overgroup of G with
product action type, or simply PA type.

It is, in general, a difficult problem to describe maximal overgroups with PA type of
a transitive permutation group. In the case where G itself is primitive, this question is
answered by [13], but [2] leaves this problem open for a quasiprimitive G. Clearly our
Theorem 1.2 gives a full classification of the maximal overgroups of product action
type for an innately transitive permutation group G with a simple plinth. This is
achieved by listing all non-trivial, homogeneous Cartesian decompositions stabilised
by G. We found that such decompositions can be identified by information about the
subgroups of the plinth. This motivates the following definition.

DEFINITION 1.3. Let M be a transitive permutation group on a set Q and w e £2.
We say that a set {K \, . . . , K[) of subgroups of M is a Cartesian system of subgroups
of M with respect to a> if

(i) n ^ < = M < ° and

(2) Kt(f] Kjj = M for all i e { 1 , . . . , / } .

A Cartesian system is said to be homogeneous if its elements are proper subgroups
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and they have the same size. A Cartesian system is non-trivial if it has at least two
subgroups. If M is an abstract group and Jf = {Ku ... , Kt} is a set of subgroups
satisfying (2), then Jff is called a Cartesian system of M.

In this paper Cartesian systems are assumed to be non-trivial unless explicitly stated
otherwise.

For a permutation group G ^ Sym £2, let CD(G) denote the set of G-invariant
Cartesian decompositions of Q. Cartesian systems provide a way of identifying the
set CD(G) from information internal to G.

THEOREM 1.4. Let G be an innately transitive permutation group on Q. with
plinth M. Then, for a fixed a> 6 £2, there is a one-to-one correspondence between the
set CD(G) and the set of Gw-invariant Cartesian systems ofM with respect to co.

Theorem 1.4 is an immediate consequence of Theorem 4.2 where an explicit one-
to-one correspondence is constructed.

The major results of this paper are presented in Section 6. There we study innately
transitive permutation groups with a non-abelian, simple plinth that preserve a Carte-
sian decomposition of the underlying set. The main result of Section 6 gives rise to a
complete description of maximal overgroups with product action type for such an in-
nately transitive group. Theorems 1.1-1.2 follow immediately from Theorem 6.1 (i),
where we give a detailed description of G-invariant homogeneous Cartesian decom-
positions of Q for innately transitive groups G with a simple plinth T. In particular.
Table 3 contains the possibilities for G, T, W, |£2|, and the isomorphism types of the
subgroups in the associated Cartesian system, as given by Theorem 1.4. Part (ii) of
Theorem 6.1 gives a detailed description of Cartesian decompositions § of Si with
index at least 3 that are invariant under the action of an innately transitive group
with a non-abelian, simple plinth. In Table 4, we list the possibilities for the plinth,
|£2|, the full stabiliser of £ in Sym £2, and the isomorphism types of the elements in
the corresponding Cartesian system. In the case where G is primitive, Theorem 6.1
reduces to [13, Proposition 6.1 (ii)]. Problems similar to ours were also addressed
in [5].

Our notation concerning actions and permutation groups is standard. If G is a
group acting on Q and A is a subset of £2, then GA and G(A) denote the setwise and
the pointwise stabilisers of A, respectively. If GA = G then GA denotes the subgroup
of Sym A induced by G. If a> e £2, then coG denotes the G-orbit {a>* ] g e G}.

2. Cartesian decompositions

Let F be a finite set with at least two elements, L ^ Sym F, / ^ 2 an integer, and
H ^ S/. The wreath product L wrf/ is the semidirect product Ll x H, where, for

https://doi.org/10.1017/S1446788700010156 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010156


[5] Transitive simple subgroups of wreath products 59

(*!,. . . , xt) e V and a e S;, (x\,... , x t y = (x\°,... , *;»)• The product action
of Lv/tH is the action of L wr H on F ' defined by

(y.. . • • , y<)(" "> = (y,", • • • , W) and (y, Yl)
a" = (y,. )*)

for all ( y i , . . . , yi) € P', andjci , . . . , x, e L and a e / / . The important properties of
wreath products can be found in most textbooks on permutation group theory, see for
instance Dixon and Mortimer [7].

The full stabiliser W in Sym ft of a homogeneous Cartesian decomposition £ of
ft is isomorphic to Sym F wr S, acting in product action on F ' for F e S. Moreover,
if | r | ^ 3 then W is primitive on ft, and if |F | ^ 5 then W is a maximal subgroup
of Sym ft or Alt ft. As mentioned in Section 1, such maximal subgroups are usually
referred to as maximal subgroups of product action type. They form one of several
classes of primitive maximal subgroups of Sym Q and Alt ft, identified by the O'Nan-
Scott Theorem; see [12]. Thus an important part of classifying the primitive maximal
subgroups of Sym Q or Alt ft containing a given (innately transitive) subgroup G is
finding all homogeneous Cartesian decompositions of ft that are stabilised by G. Our
first result is that the plinth must leave invariant each partition in such a Cartesian
decomposition.

PROPOSITION 2.1. IfG is an innately transitive group on a set ft with plinth M and
S e CD(G), then M(S) = M.

PROOF. We let F e § and show that each element of the G-orbit F G is stabilised
by M. Suppose that {F i , . . . , Fm} is the G-orbit in & containing F e <a. Set

E = {y, n • • • n ym | y, e F,, . . . , ym € Fm}

and

f, = {{CT e E |CT C y} | y 6 F,} for i = l , . . . , m .

Then it is a routine calculation to check that E is a G-invariant partition of ft, and that
{f i , . . . , fm) is a G-invariant Cartesian decomposition of E. Moreover, |F, | = |F, |
for all i, and since F t , . . . , Fm form a G-orbit, | f, | = | f; | for all i and j . It is also easy
to see that if g 6 G(f,) then g e G(r/). Since G(f fm) is a normal subgroup of G and
M is a minimal normal subgroup of G, either M ^ G(f, fm) or M D G(r-1 fm) = 1.
Suppose that M n G(f, f») = 1, so M acts on the set { f i , . . . , fOT} faithfully.
Therefore M is isomorphic to a subgroup of Sra. Note that |E | = \V\ \m, and let p be
a prime dividing |f i|. Then pm divides |E | . Since M is transitive on E, pm \ \M\.
However, M is isomorphic to a subgroup of Sm, and so pm divides m\, which is a
contradiction to [13, Lemma 4.2]. Hence M ^ G(rj fm), that is, each f, is stabilised
by M, and so is each F,. Thus M stabilises F, and, since F was chosen arbitrarily,
this shows that every element of & is stabilised by M. •
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LEMMA 2.2. Let M be a transitive subgroup o/Sym£2 and let S e CD(M) such
that A/((f) = M. Suppose that S = {F|, . . . , F/}, let co 6 £2 be a fixed element, and
for i = 1 , . . . , I let y, e F, be such that co e y,. Sef J^,(<^) = {/f j , . . . , A!";} where
Kj = MYi for i = 1, . . . , /. Then jfcw(£) is a Cartesian system of subgroups of M
with respect to co. Moreover, if com = co' for some m € M, then J(Q(£) = J

PROOF. Let us prove that P)'_, K( — Mw. Since the F, are M-invariant partitions
of £2, the stabiliser of a point stabilises the block in F, that contains this point. Hence
Mw ^ Kt for all i, and so Mw ^ f), Kt. Now suppose that x e P|(. Kt. Then x
stabilises yi,... ,Yi- Since £ is a Cartesian decomposition, y, n • • • n y, = {a>}, and
so * stabilises co. Thus x e Mw, and so p), AT, = Mw.

Now we prove that (2) also holds. We may suppose without loss of generality
that i = l. Let x e M, 5, = y,\ . . . , S, = y ; \ and {̂ } = 5, n • • • n 5,. If
{£} = <$i D y2 n • • • n y, then the transitivity of M on fi implies that there exists z € M
with £* = ^ and so ^j = Si, &\ = y 2 , . . . , <5;

z = y/, whence yy
xz = y, for^ = 2 , . . . , /

and yj*"'1 = yi, that is xz € P|j=2 ^ J andxzjc"1 6 Kx. It follows that

x =

and we deduce that the first factorisation of (2) holds. The other factorisations can be
proved identically. Thus J^(<^) is a Cartesian system of M with respect to co.

If m e M and co' = com then [co'} = y,m n • • • D y;
m and My™ = M™, which proves

If M ^ Symft and S e CD(M) such that M w = M, then, for a fixed o> 6 fi,
we define the Cartesian system JX^iS) with respect to a; as in Lemma 2.2. The last
result of this section establishes one direction of the one-to-one correspondence in
Theorem 1.4.

LEMMA 2.3. Let G be an innately transitive group with plinth M acting on Q, and
let co e Q. If'S e CD(G), then M{£) = M. Assume that Xm{S) is the Cartesian
system of M with respect to co. Then tfm(£} is invariant under conjugation by Gm,
and the G^-actions on Jt^iS1) and on & are equivalent.

PROOF. It follows from Proposition 2.1 that A/(<?) = M, and so we can use
Lemma 2.2 to construct Jif^g) for co. Suppose that S = {F,, . . . , F,}, and let
Jffw(£) = [K\,... , Ki) such that Kt = MYi where y, is the unique element of F,
containing co. If F,, F7 e S and g e Gw such that Ff = F; then co* = co, and so
y* = yj. Hence

K? = (Myi)* = My. = Myi =Kj,
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and so JC(<?) is invariant under conjugation by GM. This argument also shows that
the Gw-actions on § and on J C ( ^ ) are equivalent. •

3. Cartesian systems

In this section we summarise the most important properties of Cartesian systems
of abstract groups. The following lemma is useful when working with Cartesian
systems. If {^i,... , K{\ is a Cartesian system for a group M and / c { 1 , . . . , /}
then let Kt denote the subgroup Ki = p | ( € / Kt. We use the convention that if / = 0
then Pli€ / Kt = M for any collection {/T,}, of subgroups in M.

LEMMA 3.1. Let {K\,..., K{\ be a (possibly trivial) Cartesian system for an ab-
stract group M, and let I, J be subsets of {I,... ,1).

(a) Ifx\,..., xt 6 M, then P) i e / KtXi is a coset modulo Kj.
(b) \M:Kl\ = \\i€l\M:Ki\.

(c) K,Kj

PROOF. If an intersection of (right) cosets is nonempty then it is a (right) coset
modulo the intersection of the relevant subgroups. The statement of (a) above and
the simple proof below make use of this fact. We prove the lemma by induction on
/. Notice that there is nothing to prove if / = 1. Our inductive hypothesis is that
/ > 1 and the lemma holds for all Cartesian systems for M which consist of fewer
than I subgroups. Thus (a) and (b) only have to be proved for the case / = { 1 , . . . , / } .
Put L = p)f>1 Ki, and note that [Kx, L] is also a Cartesian system for M (that is,
K{L = M).

We also know from the inductive hypothesis that (~]t>i KiXt is a coset modulo L,
so for (a) it is sufficient to show that KiX\ D Ly is never empty. In order to show this
we choose z e L such that K\Z = ^ix1y~1; this is possible, as K\L = M. Then
Kizy = K]XU and so zy € JM*I, and also zy 6 Ly. Hence zy e K{xi D Ly, and
consequently K]Xi n Ly is non-empty.

For (b), it is enough to show that \M : K,\ = \M : KX\\M : L\, but this follows
from

\M\ = \KXL\ = \K,\\L\l\Ky n L\ =

For an easy proof of (c) we first observe that

= \K,\\KJ\/\KlnKj\.

It is obvious that KIKJ c Kmj and, as K/ D Kj = K^j, one can calculate from (b)
and the last display that | Kt Kj | = \K/nJ\. This completes the proof of the lemma. D
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Note that, in Lemma 3.1 (a), if we choose x to be any element of p | 1 € / AT,-*,-, then
KjXj = Kix holds, for all i e I.

4. Cartesian systems and Cartesian decompositions

In a transitive group M ^ Sym Q, a subgroup K satisfying Mw ^ K ^ M for
some co e Q determines an M-invariant partition of £2 comprising the M-translates of
the K-orbit coK.

LEMMA 4.1. Let G be an innately transitive group on Q. with plinth M, and let co be
a fixed element ofQ. Suppose that Jf = {^i, . . . , Ki) is a G'^-invariant Cartesian
system of subgroups of M with respect to co, and letVx,... , F; be the M-invariant
partitions ofQ. determined by Ki,... , Kt, respectively. Then § = { F ^ . . . , F/} is
a G'-invariant Cartesian decomposition ofQ, such that J^(<?) = <Xf. Moreover,
if M is non-abelian and the Cartesian system {Ku ... , Ki} is homogeneous, then
the stabiliser W in Sym Q of' S is a maximal subgroup of Sym £2 or Alt Q such that

PROOF. AS Ma ^ K, ^ M, each F, is an M-invariant partition of Q. For
i = 1 , . . . , / let Yt be the unique element of F, containing co. In order to prove
that £ is a Cartesian decomposition, we only have to show that

= 1 whenever h\ e F i , . . . , Si e F(

To see this, choose 8t e F | , . . . , <5; e F ( . Now <5, = y*' for some JC, e M , and by

Lemma 3.1 (a), there exists some x e M such that A'.JC, = K(X for i = 1, . . . , I. Then

8, = Y<- ={cok\ke Ki]x' = [cok> | k' e K,x,)

= {cok' \k'eKix) = {cok\keKiy = y?.

Thus

1 = 1

and therefore we only have to prove that | p)'_, y,| = 1. Note that co e y, for
i = l , . . . , / . Suppose that co' € y\ n . . . n yt for some oi' e fi. Then there is some
x e M such that of = co'. Then x must stabilise y i , . . . , yi, and hence ;c e Kt for all
/ = 1 , . . . , / . Since f]'i=l Ki = Mw, it follows that x e MB, and so of = co. Thus
P)J=1 y, = (a)}, and <f is a Cartesian decomposition.
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Since each F, is an M-invariant partition of fi, £ is invariant under M. Since
[K\,... , K[\ is Gw-invariant, £ is also Gw-invariant, and so £ is MGw-invariant.
Since M is transitive, MGW = G. Therefore £ is G-invariant. Note that

X = {My,,... , MY,} and Ka{£) = {MY[,... , Myi}.

Thus X = JfuiS), as required.
Since M is non-abelian, M is a direct product of isomorphic non-abelian, simple

groups. Hence for i = 1, . . . , / , the group MF| is also isomorphic to a direct product
of non-abelian simple groups. Moreover, Mr> is transitive and faithful on F,, and so
|F,| ^ 5 for all i. As {A^i,... , Kt) is homogeneous, £ is also homogeneous and W
is permutationally isomorphic to Sym F wr S( in product action for some set F and
I ^ 2. Hence the results of [12] show that W is a maximal subgroup of Sym £2 if
W £ Alt Q, and W is a maximal subgroup of Alt Q otherwise. Since £ is G-invariant,
clearly G ^ W. •

THEOREM 4.2. Let G be an innately transitive group on Q with plinth M. For a
fixed a> e £2 the map £ H-> J^W(£) is a bijection between the set CD(G) and the set
of Gm-invariant Cartesian systems of subgroups of M with respect to a>.

PROOF. Let *€ denote the set of Gw-invariant Cartesian systems of subgroups of M
with respect to co. In Lemma 2.2, we explicitly constructed a map * : CD(G) -> ^
for which V{£) = X,(£)- We claim that * is a bijection. Let X 6 ^ , let
F ] , . . . , F/ be the M-invariant partitions determined by the elements K\, ... , Kt of
J(f, and let £ — [Tu ... , F(}. We proved in Lemma 4.1 that £ is a G-invariant
Cartesian decomposition of Q such that $fm(£) = J^ . Hence * is surjective.

Suppose now that £u £2 e CD(G) is such that W(£i) = *(<?2) and let X denote
this common Cartesian system. Let £ be the set of M-invariant partitions determined
by the elements of Jf ' . Then, by the definition of *((£)) in Lemma 2.2, £\ = £ and
£2 •=. £. Thus ty is injective, and so 4* is a bijection. •

Theorem 1.4 is an immediate consequence of the previous result.

5. Some factorisations of finite simple groups

To prove Theorem 1.1 we need first to prove some results about factorisations of
certain finite simple groups. If G is a group and A, B ^ G such that G = A B, then
we say that the expression G = A B or the set {A, B} is ^.factorisation of G. In [ 1 ] full
factorisations of almost simple groups were classified up to the following equivalence
relation. The factorisations G = A\BX and G = A2B2 of a group G are said to be
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equivalent if there are a 6 Aut(G), and x, y e G such that [Au B,} = [A?, B2
y).

The following lemma shows that this equivalence relation can be expressed in a simpler
way.

LEMMA 5.1. Let G be a group.

(i) IfG = AB for some A, B ^ G, then the conjugation action of A is transitive
on the conjugacy class BG, and B is transitive on AG.

(ii) The factorisations G = A\BX and G = A2B2 of G are equivalent if and only
if there is B e Aut(G) such that {Au B\) = {A%, B{}.

PROOF, (i) As AB = G, we also have ANC (B) — G. Since NG (B) is a point
stabiliser for the conjugation action of G on the conjugacy class Bc, we obtain that A
is a transitive subgroup of G with respect to this action. Similar argument shows that
B is transitive by conjugation on AG.

(ii) It is clear that if there is /3 6 Aut(G) such that {Au B\) = [A2, B2) then the two
factorisations in the lemma are equivalent. Suppose that G = A\B\ and G = A2B2

are equivalent factorisations. By assumption, there is a € Aut(G) and x, y e G
such that [Au B,} = [A?, B2

y}. Then we have AG = {Aa
2)

G and B° = (B%)G, or
AG = (B%)G and Bc = {Aa

2)
G. Suppose without loss of generality that AG = (Aa

2)
G

and B° = (B")G. Since Ax and A" are conjugate, there is some g e G such that
A* = Aa

2, and Bf is conjugate to fi£. As G = (AiBi)* = Afflf, we have that A\
is transitive by conjugation on (Bf)G = BG. Hence there is some a e A\ such that
A f = A? = A%, and Sf" = B\. Hence A, = A"0"'*"' and £, = B2"~'r>. Thus we
may take ft as a followed by the inner automorphism corresponding to a~lg~x. •

If G is a group and A and B are subgroups then let

In the proof of the following result we use the following simple fact, called Dedekind's
modular law. If K, L, H are subgroups of a group G such that K ^ L, then

(3) (HK)nL = (H HL)K.

LEMMA 5.2. Let T be a finite simple group and A, B proper subgroups of T such
that \A | = \B\ and T = AB. Then the following hold.

(i) The isomorphism types ofT,A, and B are as in Table 2, and A, B are maximal
subgroups of T.

(ii) There is an automorphism i? € Aut(7") such that ft interchanges A and B.
(iii) The group A n B is self-normalising in T.
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TABLE 2. Factorisations of finite simple groups in Lemma 5.2

65

1

2
3
4

T

A6

MI2
PSl+iq)

Sp4(<?), a ^ 4 even

A, B

A5

M,,

Sp2(<?2).2

(iv) If T is as in row 1, 2, or 4 of Table 2, then

NAut(r) (A n B) = N A u t ( r ) ({A, B}) = N,

say, and moreover TN = Aut(7).

PROOF, (i) Note that, since \A\ = \B\, the factorisation T = AB is a full factori-
sation of T, that is, the sets of primes dividing \T\, \A\, and |B| are the same. It was
proved in [1], that T, A, and B are as in [1, Table I]. It is easy to see that the only
possibilities where \A\ = \B\ are those in Table 2, and it follows that in these cases A
and B are maximal subgroups of T.

(ii) In each line of Table 2, the groups A and B are not conjugate, but there is
an outer automorphism a e Aut(T) which swaps the conjugacy classes AT and BT

(see the Atlas [6] for T = A6, M12, [9] for T - P ^ O ? ) , and [1, page 155] for
T = Sp4(<7)). By Lemma 5.1 (i), the group A is transitive in its conjugation action
on the conjugacy class BT and B is transitive on AT. Thus there is an element a e A
such that Aaa = B and Baa is conjugate in T to A. Since B is transitive on AT, there
is an element b e B such that Aaab = B and Baab = A. Therefore we can take # as
a followed by the inner automorphism induced by the element ab.

(iii) Set C = A n 8 . First we prove that C is self-normalising in T. If T is
isomorphic to A6 or Mi2 then the information given in the Atlas [6] shows that if N
is a proper subgroup of T properly containing C, then N is isomorphic to A or B. In
all cases A and B are simple, and so NT (C) = C. If T = PQ% (q) then we obtain
from [9, 3.1.1 (vi)] that C = G2(q) and [9, 3.1.1 (iii)] yields that N r (C) = C.

Now let T = Sp4(q) for q ^ 4, q even. In this case A = B = Sp2(q
2) • 2. Consider

the fields F, and F92 as subfields of the field F,4 and consider the field F,4 as a 4-
dimensional vector space V over F,. Let - • ,i and
denote the norm and the trace map, respectively. For the basic properties of these
maps see [11, 2.3]. Using the fact that NF t/f 2(x) = xq'+x for all JC € F,4, we obtain
thatx H* NF 4/F 2(x) is an F,2-quadratic form on V, such that

(x, y) y)
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is a non-degenerate, symmetric, ¥q2 -bilinear form with Witt defect 1 (we recall that
q is a 2-power). Hence Q = TrF 2/F, oMf i/f 2 is an F?-quadratic form V —> F,, and
/ (x, y) = Q(x +y)+ Q(x) + Q(y), is a non-degenerate, symmetric F9-bilinear form
on V with Witt defect 1. Then without loss of generality we may assume that T is the
stabiliser of / in GL4(<y), A consists of elements of T that are F^-semilinear, and B
is the stabiliser of Q.

For a e V \ {0} = F*4, define the map sa : x i->- xa. Then it is well-known that
5 = [sa | a e F*4} is a cyclic subgroup of GL4(<?). A generator of 5 is called a Singer
cycle; see Satz II.7.3 in Huppert [8]. Let Z denote the subgroup {sa | NF i/f, (a) = 1}
of 5. Since the restriction of NF t/f 2 to F*4 is an epimorphism NF4/F 2 : F*4 -> F*2,
and Z is the kernel of this epimorphism, we have that \Z\ = q1 + 1. If cr is the
Frobenius automorphism JC i-> A;9 of F,4 then (sa)° = ifl<. for all sa e S. Therefore a
normalises 5, and, since 5 is cyclic, a also normalises Z. We claim that C = Z(cr).
Since T = AB, \C\ = 4(c/2 + 1), and hence it suffices to prove that Z(a) ^ C. It is
clear that a is F^-semilinear, and so a e A. Also

Q(cr(x)) = Q(x") = TrFf2/F

= TrFfl/F

Therefore a e B, and so CT € C. Let a e F,4 such that MF 4/F 2(a) = 1. Then

= TrFfj/F,

Thus sn e B. Since 5n is also F^-linear, we obtain sa e C. Hence C = Z (cr).
We will now prove that C is self-normalising in T. First notice that q2+1 is divisible

by an odd prime r such that r f O72 — 1). Hence there is a unique subgroup R in Z
with order r. Since Z is the commutator subgroup of C, it is a characteristic subgroup
of C. Also /? is the unique subgroup of Z with order r, and so R is characteristic in
Z. Thus R is characteristic in C and N 7 (C) must normalise R. By [8, Satz II.7.3 ],

Let us now determine how much of S(a) is contained in 7. Since Tr^2/F? is
additive,

(x) + NF<4/F<i ( y ) ) ) = / (x, y),

and hence the cyclic subgroup (a) is in T. Using (3), we have (S(cr))n 7 = (SC\T)(a).
Thus we need to compute 5 fl T. If JC € F*4 such t h a t / (xa, ;c&) = / (a, b) for all
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a, b e V then

(4) TrFv2/F, (NF?4/F?2(a + b) + N ^ 2 ( a ) + NF#4/F<1 (

, ( ^ ( , / , ( ( a + 6) +

As observed above,

( I I , u) H> NF?4/F?2(M + u) + N F ? 4 / F ? 2 (M

is a non-degenerate, symmetric, F9i-bilinear form, and so it maps V x V onto ¥qi.
Hence (4) shows that y = NF 4/F , (x) has the property that TrFr2/r (yu) = TrF 2/F,,(M)

for all M 6 F,2,thatis, yu-\-yquq = u +w9, forall w e F,2. ThusCyw + M)17 = yu + w.
Hence «(y + 1) e F, for all u e F92, and consequently y = 1. Thus if the map
jj preserves / then NF 4/F 2(JC) = 1. On the other hand from (4) it is clear that if
NF /f 2(x) = 1 then multiplication by x preserves / . Since the norm is a group
epimorphism NF 4/F?2 : F*4 -> F*2 it follows that the elements of norm 1 form a cyclic
group of order q2 + 1. Hence S n 7 = Z and NGL4((?) (C) n 7 = C, that is, C is
self-normalising in T.

(iv) Finally we assume that T is as in row 1, 2, or 4 of Table 2, and we prove the
assertion that Nt = N2, where N\ = NAut(7-) (C) and N2 = NAut(7) ({A, B}). It is clear
that N2 ^ A î, and so we only have to prove \N\\ ^ \N2\- Since A and B are not
conjugate in T, we have that N2n T = NT (A) nNT(B) = A n B = C, and, since
C is self-normalising in 7, we also have N{ P\ T = C. Thus it suffices to prove that
TNi ^ TN2, which follows immediately once we show that TN2 = Aut(7). Since
/V2 interchanges A and B, we have that N2 = (NAut(7-) (A) n NAut(D (#)) (i?) where
i? e Aut(T) is as in (ii). If T = A6 then |NAut(r) (A) : N r (A) | = |NAut(r) (B) :
N r (5) | = 2, and so TN2 = Aut(D (see [6]). If 7 = M12 then NAut(T) (A) = N r (A)
and NAut(r) (B) = N r (B), and so 7JV2 = Aut(7) (see [6]). If 7 = Sp4(q) then the
field automorphism group <t> normalises A and B. If i? e Aut(7) is as in (ii), then
Aut(7) = 74> (J?), and so we obtain that TN2 = Aut(7). Hence if 7 is as in row 1, 2,
or 4 of Table 2, then 7N2 = Aut(7), and 7JV, ^ TN2 clearly holds. Thus yV, = N2

follows. D

We recall a couple of facts about automorphisms of P£2jJ~(g). Let 7 = PQ%(q).
Then, as shown in [9, pp. 181-182], Aut(7) = 0 x <J>, where cj> is the group
of field automorphisms of 7, and 0 is a certain subgroup of Aut(7) containing the
commutator subgroup Aut(7)'. We also have Out(7) = Aut(7)/ 7 = 0 / 7 x 0 7 / 7 ,
and 0 / 7 = Sm where m = 3 for even q, and m = 4 for odd g. Let 7r : 0 —> Sm

denote the natural epimorphism. The following lemma derives the information about
P^(q) similar to that in Lemma 5.2 (iv).
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LEMMA 5.3. LetT = PQ^(q), let A, B be subgroups ofT such that A, B = ft7(g)
andAB = T, and set C = A n B. Then the following hold.

(i) We have <$> < N A u t ( r ) (A) n N A u t ( r ) (B).

(ii) The groups (NA u t m (A) n 0 ) 7 / T and (NAut(r) (B) fl 0 ) T/ T are conjugate to
the subgroup in column X of [9, Results Matrix], so that

T(NAut(r, (A) n 0 ) S 7T(NAut(r) (B) n 0 ) = 12 x 12.

(iii) We have O ^ NAul(r ) (C) O/K* (NAlll(r) (C) n 0 ) 7 / 7 w conjugate to the
subgroup in column VII o/ [9, Results Matrix], so that 7r(NAut(r) (C) n 0 ) = S3 and

(5) |NA u t ( 7 ) (C):NA u t ( r ) ({A,fl}) | = 3.

(iv) We /iave 7NAUK7-, ({^4, B}) = 7<J>(#), vv/iere i> w as in Lemma 5.2 (ii), so that

PROOF. Claims (i)-(ii) can easily be verified by inspection of [9, Results Matrix].
In (iii) we only need to prove (5). Let Nt = NAut(r) (C) and N2 = NAut(r) ({A, B}).
Clearly N2 ^ Nx. By [9, Proposition 3.1.1 (vi)], C = G2(q), and [9, Proposi-
tion 3.1.1 (iii)] shows that n(N\ D 0 ) = S3. From [9, Results Matrix] we obtain
n(N2 n 0 ) = Z2. As in the proof of Lemma 5.2, we have N^DT = N2t~\T = C. As
7 = ker7r this implies/V, nker7r = N2 nker n, and so \Nt D 0 | = 3- \N2H®\. Since
<t> ^ Ni D N2we have Nt& — N2@ = Aut(7), and so |Ni| = 3 • \N2\, as required.
In (iv) we notice that 7<t>(#) ^ 7NAut(r) ({A, B}). On the other hand, (iii) implies
that 17<D(z?) | = 17NAut(T) ({A, B}) |, hence equality follows. D

6. Innately transitive groups with a non-abelian, simple plinth

In this section we prove our second main theorem, namely Theorem 1.1, which is
a consequence of the following result.

THEOREM 6.1. Let G be an innately transitive permutation group on Q with a non-
abelian, simple plinth 7, let a> e Q, £ e CD(G), and let W be the stabiliser of £ in
Symft. Then \£\ ^ 3 and the following hold.

(i) Suppose that £ is homogeneous. Then \£\ = 2, W is a maximal subgroup of
Sym ft or Alt ft, and G, T, W, the subgroups K e Xo(S), and |ft| are as in Table 3.
In particular, the set J(fw(£) contains two isomorphic subgroups. Moreover, the group
G is quasiprimitive and T is the unique minimal normal subgroup of G. Moreover
exactly one of the following holds:

(a) |CD(C)| = 1;

https://doi.org/10.1017/S1446788700010156 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010156


[15] Transitive simple subgroups of wreath products 69

TABLE 3. Homogeneous Cartesian decompositions preserved by almost simple groups

1
2

3

4

G

A6 5? G ^ PrL2(9)

M12 ^ G ^ Aut(M12)

PSlt(q) ^ G ^ PnJ(9)<D (#)
<t>: field automorphisms
# is as in Lemma 5.2 (ii)

Sp4(<7) ^ G $ Aut(Sp4(q))

T

A6

M12

P"8
+(<7)

Sp4(<7)
q ^ 4 even

W

S 6 wrS 2

S 1 2 wrS 2

Sw/2),3(^-i)wrS2

rf = (4, g
4 - 1)

S,2(?2_1) wrS2

«:

A5

M,,

«7(9)

Sp2(q2).2

|fi|

36
144

</4(<72 - I)2

TABLE 4. Cartesian decompositions with index 3 preserved by almost simple groups

1

2

3

T

Sp4fl(2)
a ^ 2

Mtf(3)

Sp6(2)

m = |SP4a(2) : Sp2a(4) • 2|
n2 = |Sp4a(2):O4-u(2)|
n3 = |Sp4a(2):O:a(2)|

Sl080 X SU20 X S2g431

Sl20 X S2g X S3 6

S240 X S28 X S36

S120 x S 5 6 x S3 6

S120 x S2s x S7 2

Sp2o(4)-2, Oi(2), O4
+
u(2)

«7(3), Z* x. PSL4(3), Pfi^(2)
G2(2), OJ(2), 0^(2)
G2(2)', Og(2), O+(2)
G2(2), 0^(2)', O+(2)
G2(2), Oj(2), O+(2)'

mi

«1 • /!2 ' «3

34,390, 137,600
120, 960
241, 920
241, 920
241, 920

(b) |CD(G)| = 3, T is as in row 3 of Table 3, G ^ TO where <D is the group of
field automorphisms of T.

(ii) Suppose that |<?| = 3. / / W is f/ze stabiliser in Symfi o/<#, ?ften T, W, the
elements ofj(fa(^), and \Q.\are as in Table 4.

PROOF. Suppose that S e CD(G). Then Proposition 2.1 implies that T(S) =
T. Let / be the index of S\ and let JC(<^) = {^1, • • • , Ki) be the corresponding
Cartesian system for T. Then the definition of JC(<?) implies that if I ^ 3 then
{ATi,... , £(} is a strong multiple factorisation of the finite simple group T. Strong
multiple factorisations of finite simple groups are defined and classified in [1]; in
particular it is proved that / -̂  3.

(a) If / = 3 then [1, Table V] shows that Ku K2, K?, have different sizes. Thus if
g is homogeneous then 1 — 2 and the factorisation T = K\K2 is as in Lemma 5.2.
Hence T, K\, K2, and \Q\ are as in Table 3. The maximality of W follows from
Lemma 4.1.

Let us now prove that G is quasiprimitive. As T is transitive on £2, we have
Csymn(r) = N r (TJ I Ta; see [7, Theorem 4.2A]. On the other hand, Tw = AT, Pi K2,
and Lemma 5.2 shows that NT (tf, n K2) = K, n K2 = Tw. Hence CS y mn(r) = 1,
and so T is the unique minimal normal subgroup of G. Hence G is an almost simple
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quasiprimitive group acting on Q.
Now we prove that the information given in the G-column of Table 3 is correct.

Since T is the unique minimal normal subgroup of G, we have that G is an almost
simple group and T < G ^ Aut(7). Let N = NAut(r, ({Ku K2}). Note that
G = TGW and Gw ^ N. On the other hand, N has the property that, since A and B
are not conjugate in T,

THN =NT (AT,) n Nr (K2) = KlDK2= Ta,

and so the 7-action on Q can be extended to TN with point stabiliser N. Thus
G < TN. By Lemmas 5.2 (iv) and 5.3 (iv), for T = A6, Mi2, P£2|f (g), and Sp4(<?),
we have TN = PrL2(9), Aut(Mi2), PQ%(q)<P(d) (where <t> is the group of field
automorphisms and $ is as in Lemma 5.2 (ii)), and Aut(Sp4(<y)), respectively. Hence
the assertion follows.

Finally we prove the claim concerning |CD(G)|. Suppose that L\, L2 ^ T is
such that |L, | = \L2\, L\L2 — T and Lx D L2 = Tw. By [1], the full factorisation
T = K\K2 is unique up to equivalence, Lemma 5.1 (ii) shows that there is an
element a € Aut(7) such that {A"i, K2)

a = {Lx, L2], and so a € NAut(r) {Ta) =
NAUKD ( ^ I

 n ^2)- Lemma 5.2 (iii) implies that if T is as in row 1, 2, or 4 of Table 3
thenNAut(r) ({* , , K2)) = NAM(T) ( r j a n d s o { L , , L2) = {Ku K2}

a = [Ku K2). Thus
|CD(G)| = 1 in these cases, as asserted.

Suppose now that T = PQ^(q) for some q. Then we obtain from Lemma 5.3 (iii)
that |NAut(7-) (Tw) : NAul(r) ({A:,, K2}) \ = 3, and so the NAut(7-) {TJ-oxbxt containing
{Kx, K2) has 3 elements, which gives rise to 3 different choices of Cartesian systems
with respect to co. Let S\, &, and ^ denote the corresponding Cartesian decompo-
sitions of £2, such that S — Sx. We computed above that Csymn(7') = 1, and this
implies that NS y m n (T) = Aut(T) n Sym£2. In other words, N = NSymn (T) is the
largest subgroup of Aut(7) that extends the 7-action on £1. Since T is a transitive
subgroup of /V, we have N — TN^. As 7^ is a normal subgroup of Nw, it follows that
N ^ rNAut(D (To)- On the other hand,

!^NAul(r ) (7-J : N A u t m (Tw) I = \T : T n NAut(r) (TJ\ = \T: NT (TJ \ = \T : TJ,

by Lemma 5.2 (iii). This shows that the 7-action on Q can be extended to TNAut(r) {Tw)
with point stabiliser NAuUr) (7^). In other words, rNAut(r) (7^) is the largest subgroup
of Aut(7") that extends the 7-action on Q.. The stabiliser of Sx in rNA u t ( r ) (TJ is
7"NAut(r, ([Ku K2}). Hence if G < Aut(7) is such that T ^ G and G leaves the
Cartesian decomposition S\ invariant, then G ^ TNAUKT) ([K\, K2}) = T<t>{$), by
Lemma 5.3 (iii). If CD(G) ^ [<?) then, G leaves <?,, <̂ 2, and <% invariant. Therefore
G lies in the kernel of the action of rNAu,(7, (Tw) on [S\, S2, £$}. Hence G ^ 7 0 , as
required.
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(b) Suppose that |<?| = 3. Then [Ki, K2, K^} is a strong multiple factorisation

of T. Therefore using [1, Table V] we obtain that T, Ku K2, K3, and the degree

\Q\ = \T : Kx n K2 n Ki\ of G are as in Table 4. •

The proof of Theorem 1.1 is now easy, as Theorem 6.1 implies that CSym n (T) = 1,

andsoNsymn (T) is an almost simple group with socle T. For the proof of Theorem 1.2,

notice that W is the full stabiliser of a Cartesian decomposition £ of Q. As G ^ W,

the Cartesian decomposition & is also G-invariant. Hence Theorem 6.1 implies the

required result.
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