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Abstract

Li introduced the normalized volume of a valuation due to its relation to K-semistability.
He conjectured that over a Kawamata log terminal (klt) singularity there exists a
valuation with smallest normalized volume. We prove this conjecture and give an explicit
example to show that such a valuation need not be divisorial.

1. Introduction

Fix a variety X of dimension n and x ∈ X a closed point. Let ValX,x denote the set of real
valuations on X with center equal to x. An element of ValX,x is an R-valued valuation of
the function field K(X) that takes nonnegative values on OX,x ⊆ K(X) and strictly positive
values on the maximal ideal of OX,x. For examples, divisorial valuations centered at x form an
important class inside ValX,x. These valuations are determined by the order of vanishing along
a prime divisor E ⊂ Y where Y is normal and there is a proper birational morphism f : Y → X
contracting E to x. We denote such a valuation by ordE ∈ ValX,x.

Li introduced the normalized volume function

v̂olX,x : ValX,x −→ R>0 ∪ {+∞}

that sends a valuation v to its normalized volume, denoted v̂ol(v) [Li15]. To define the normalized
volume, we recall the following. Given a valuation v ∈ ValX,x, we have valuation ideals

am(v)x := {f ∈ OX,x | v(f) > m} ⊆ OX,x

for all positive integers m. The volume of v is given by

vol(v) := lim sup
m→∞

length(OX,x/am(v)x)

mn/n!
.

The normalized volume of v is
v̂ol(v) := AX(v)n vol(v),

where AX(v) is the log discrepancy of v (see § 2.5). When X has Kawamata log terminal (klt)

singularities, AX(v) > 0, and, thus, v̂ol(v) > 0 for all v ∈ ValX,x. Li conjectured the following.

Conjecture 1.1 [Li15]. If X has klt singularities at x, there exists a valuation v∗ ∈ ValX,x that

minimizes v̂olX,x. Furthermore, such a minimizer v∗ is unique (up to scaling) and quasimonomial.
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Existence of valuations with smallest normalized volume

The above conjecture holds when x ∈ X is a smooth point. As observed in [Li15], if x is a

smooth point, then v̂olX,x is minimized at ordx, the valuation that measures order of vanishing
at x. Thus,

nn = v̂ol(ordx) 6 v̂ol(v)

for all v ∈ ValX,x. The above observation follows from the work of de Fernex et al.

Theorem 1.2 [FEM04]. Let X be a variety of dimension n and x ∈ X a smooth point. If
a ⊆ OX,x is an ideal that vanishes precisely at x, then

nn = lct(mx)n e(m) 6 lct(a)n e(a)

where mx is the maximal ideal of OX,x.

The authors of the previous theorem were motivated by their interest in singularity theory,
as well as applications to birational rigidity [FEM03, FEM04, Fer13]. Li’s interest in volume
minimization stems from questions concerning K-semistability of Fano varieties. Let V be a
smooth Fano variety and C(V,−KV ) := Spec(

⊕
m>0H

0(V,−mKV )) the affine cone over V with
cone point 0 ∈ C(V,−KV ). The blowup of C(V,−KV ) at 0 has a unique exceptional divisor,
which we denote by Ṽ .

Theorem 1.3 [Li17, LL16, LX16]. Let V be a smooth Fano variety. The following are
equivalent.

(a) The Fano variety V is K-semistable.

(b) The function v̂olC,0 is minimized at ordṼ .

Thus, if V is K-semistable, there exists a valuation centered at 0 ∈ C(V,−KV ) with smallest
normalized volume. If V is not K-semistable, Conjecture 1.1 implies the existence of such a
valuation. We prove the following.

Main Theorem. If x ∈ X is a closed point on a klt variety, then there exists a valuation
v∗ ∈ ValX,x that is a minimizer of v̂olX,x.

In practice, it is rather difficult to pinpoint such a valuation v∗ satisfying the conclusion of
this theorem. For a good source of computable examples, we consider the toric setting.

Theorem 1.4. If X is a klt toric variety and x ∈ X a torus invariant point, then

inf
v∈ValtoricX,x

v̂ol(v) = inf
v∈ValX,x

v̂ol(v),

where Valtoric
X,x denotes the set of toric valuations of X with center equal to x.

In § 8.3, we look at a concrete example, the cone over P2 blown up at a point. In this example,
we find a quasimonomial valuation that minimizes the normalized volume function. Additionally,
we show that there does not exist a divisorial volume minimizer. While this example is not new,
our computation is unique in that it relies on purely algebraic methods. As explained in [LX16,
Example 6.2], examples from Sasakian geometry with irregular Sasaki–Einstein metrics will
provide similar examples. This example was looked at in [MS06, § 7].

821

https://doi.org/10.1112/S0010437X17008016 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17008016


H. Blum

Sketch of the proof of the main theorem

In order to prove the Main Theorem we first take a sequence of valuations (vi)i∈N such that

lim
i→∞

v̂ol(vi) = inf
v∈ValX,x

v̂ol(v).

Ideally, we would like to find a valuation v∗ that is a limit point of the sequence (vi)i∈N and

then argue that v∗ is a minimizer of v̂olX,x. To proceed with such an argument, one would likely

need to show that v̂olX,x is a lower semicontinuous function on ValX,x. It is unclear how to prove

such a statement.1

We proceed by shifting our focus. Instead of studying valuations v ∈ ValX,x, we may consider

ideals a ⊆ OX that are mx-primary. For an mx-primary ideal, the normalized multiplicity of a is

given by lct(a)n e(a), where

lct(a) := min
v∈ValX,x

AX(v)

v(a)
and e(a) := lim

m→∞

length(OX/am)

mn/n!
,

and the above invariants are the log canonical threshold and Hilbert–Samuel multiplicity.

We can also define similar invariants for graded sequences of mx-primary ideals. Note that a

graded sequence of ideals on X is a sequence of ideals a• = {am}m∈N such that am · an ⊆ am+n

for all m,n ∈ N. The following proposition relates minimizing the normalized volume function

to minimizing the normalized multiplicity.

Proposition 4.3 [Liu16]. If x ∈ X is a closed point on a klt variety, then

inf
v∈ValX,x

v̂ol(v) = inf
a• mx-primary

lct(a•)
n e(a•) = inf

amx-primary
lct(a)n e(a). (1.1)

While our goal is to find v∗ ∈ ValX,x that achieves the first infimum of (1.1), we will

instead find a graded sequence of mx-primary ideals ã• that achieves the second infimum of

the equation. After having constructed such a graded sequence ã•, a valuation v∗ that computes

lct(ã•) (see § 2.9) will be a minimizer of v̂olX,x.

To construct such a graded sequence, we will take our previously mentioned sequence of

valuations (vi)i∈N. This gives us a collection of graded sequences of ideals (a•(vi))i∈N. Our goal

will be to find a graded sequence ã• that is a ‘limit point’ of the previous collection.

We recall the work of de Fernex and Mustaţă [FM09], Kollár [Kol08], and de Fernex et al.

[FEM10, FEM11] on generic limits. Given a collection of ideals {ai}i∈N where ai ⊂ k[x1, . . . , xr],

there exists a field extension k ⊆ K and an ideal ã ⊂ K[[x1, . . . , xr]] that encodes information on

infinitely many members of {ai}i∈N. We extend previous work on generic limits to find a ‘limit

point’ of a collection of graded sequences of ideals.

Along the way, we will need a technical result on the rate of convergence of (e(am(v))/mn)m∈N
for a valuation v ∈ValX,x. To perform this task, we extend the work of Ein et al. on approximation

of valuation ideals [ELS03] and prove a technical, but also surprising, uniform convergence type

result for the volume function.

1 Li showed that if v̂olX,x is lower semicontinuous on ValX,x, then there is a minimizer of v̂olX,x [Li15, Corollary

3.5]. Note that v̂olX,x(v) := AX(v)n vol(v) is a product of two functions. While AX is lower semicontinuous on
ValX,x, vol fails to be lower semicontinuous in general [FJ04, Proposition 3.31].
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Proposition 3.7. Let X be a klt variety of dimension n and x ∈ X a closed point. For ε > 0
and constants B,E, r ∈ Z>0, there exists N = N(ε, B,E, r) ∈ Z>0 such that for every valuation
v ∈ ValX,x with vol(v) 6 B, AX(v) 6 E, and v(mx) > 1/r, we have

vol(v) 6
e(am(v))

mn
< vol(v) + ε for all m > N.

Structure of the paper
In § 2 we provide preliminary information on valuations, graded sequences of ideals, and log
canonical thresholds. Section 3 extends [ELS03] to klt varieties and gives a proof of the previous
proposition on the volume of a valuation. Section 4 provides information on Li’s normalized
volume function. Section 5 extends the theory of generic limits from ideals to graded sequences
of ideals. Section 6 provides a proof of the Main Theorem. In § 7, we explain that the arguments
in this paper extend to the setting of log pairs. Lastly, § 8 provides a proof of Theorem 1.4 and
a computation of an example of a nondivisorial volume minimizer.

The paper also has two appendices that collect known statements that do not explicitly
appear in the literature. Appendix A provides information on the behavior of the Hilbert–Samuel
multiplicity and log canonical threshold in families. Appendix B provides a proof of the existence
of valuations computing log canonical thresholds on klt varieties.

2. Preliminaries

Conventions
For the purpose of this paper, a variety is an irreducible, reduced, separated scheme of finite type
over a field k. Furthermore, we will always assume that k is of characteristic zero, algebraically
closed, and uncountable. We use the convention that N = {1, 2, 3, . . .}.

2.1 Real valuations
Let X be a variety and K(X) denote its function field. A real valuation of K(X) is a group
homomorphism

v : K(X)×→ R

such that v is trivial on k (the base field) and v(f +g) > min{v(f), v(g)}. We use the convention
that v(0) = +∞.

A valuation v gives rise to a valuation ring Ov ⊂K(X), where Ov := {f ∈K(X) | v(f) > 0}.
Note that if v is a valuation of K(X) and λ ∈ R>0, scaling the outputs of v by λ gives a new
valuation λv.

We say that v has a center on X if there exists a map π : Spec(Ov)→ X as below.

Spec(K(X)) //

��

X

��
Spec(Ov) //

π

77

Spec(k)

By [Har77, Theorem II.4.3], if such a map π exists, it is necessarily unique. Let ζ denote the
unique closed point of Spec(Ov). If such a π exists, we define the center of v on X, denoted
cX(v), to be π(ζ). We let ValX (respectively, ValX,x) denote the set of nontrivial real valuations
of K(X) with center on X (respectively, center equal to x).
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Given a valuation v ∈ ValX and a nonzero ideal a ⊆ OX , we may evaluate a along v by

setting

v(a) := min{v(f) | f ∈ a · OX,cX(v)}.

When X is affine,

v(a) = min{v(f) | f ∈ a(X)}.

It follows from the above definition that if a ⊆ b ⊂ OX are nonzero ideals, then v(a) > v(b). In

addition, v(a) > 0 if and only if cx(v) ∈ Cosupp(a).2

We endow ValX with the weakest topology such that, for every ideal a on X, the map

ValX →R∪{+∞} defined by v 7→ v(a) is continuous. For information on the space of valuations,

see [JM12] and [BFFU15].

2.2 Divisorial valuations

Let f : Y → X be a proper birational morphism with Y normal and E ⊂ Y a prime divisor. The

discrete valuation ring OY,E gives rise to a valuation ordE ∈ ValX that sends a ∈ K(X)× to the

order of vanishing of a along E. Note that cX(ordE) is the generic point of f(E).

We say v ∈ ValX is a divisorial valuation if there exists E as above and λ ∈ R>0 such that

v = λ ordE . We write DValX ⊂ ValX for the set of divisorial valuations on X.

2.3 Quasimonomial valuations

A quasimonomial valuation is a valuation that becomes monomial on some birational model

over X. Specifically, let f : Y → X be a proper birational morphism and p ∈ Y a closed point

such that Y is regular at p. Given a regular system of parameters y1, . . . , yn ∈ OY,p at p and

α = (α1, . . . , αn) ∈ Rn
>0\{0}, we define a valuation vα as follows. For r ∈ OY,p we can write r in

ÔY,p as r =
∑

β∈Zn>0
cβy

β, with cβ ∈ ÔY,p either zero or unit. We set

vα(r) = min{〈α, β〉 | cβ 6= 0}.

A quasimonomial valuation is a valuation that can be written in the above form. Note that

in the above notation, if there exists λ ∈ R>0 such that λ · α ∈ Zr>0, then vα is a divisorial

valuation. Indeed, take a weighted blowup of Y at p to find the correct exceptional divisor.

2.4 The relative canonical divisor

Let f : Y → X be a proper birational morphism of normal varieties. If X is Q-Gorenstein, that

is KX is Q-Cartier, we define the relative canonical divisor of f to be

KY/X := KY − f∗(KX),

where KY and KX are chosen so that f∗KY = KX . While KY and KX are only defined up to

linear equivalence, KY/X is a well-defined divisor.

We say that a variety X is klt if X is normal, Q-Gorenstein, and for any proper birational

morphism of normal varieties Y → X the coefficients of KY/X are >− 1. For further details on

klt varieties and the relative canonical divisor, see [KM98, § 2.3].

2 The cosupport of an ideal a ⊆ OX is defined as Cosupp(a) := Supp(OX/a).
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2.5 The log discrepancy of a valuation
Let X be a normal Q-Gorenstein variety. If Y → X is a proper birational morphism with Y
normal, and E ⊂ Y a prime divisor, then the log discrepancy of ordE is defined by

AX(ordE) := 1 + (coefficient of E in KY/X).

As explained in [BFFU15] (building upon [BFJ08, JM12]), the log discrepancy can be extended
to a lower semicontinuous function AX : ValX →R∪{+∞} that is homogeneous of order 1, (i.e.
AX(λv) = λAX(v) for v ∈ ValX and λ ∈ R>0). Additionally, X is klt if and only if AX(v) > 0
for all v ∈ ValX .

Note that [BFFU15] defines the log discrepancy function AX : ValX → R ∪ {+∞} when X
is normal and KX is not necessarily assumed to be Q-Cartier. We will not work in this level of
generality.

2.6 Graded sequences of ideals
A graded sequence of ideals on a variety X is a sequence of ideals a• = {am}m∈N such that
am · an ⊆ am+n for all m,n ∈ N. By convention, we put a0 = OX . To simplify exposition, we
always assume that am is not equal to the zero ideal for all m ∈ N.

We provide two examples of graded sequences of ideals.

(a) Let b be a nonzero ideal on X. We may define a graded sequence a• by setting am := bm

for all m ∈ N. This example is trivial.

(b) We fix v ∈ ValX and define a•(v) = {am(v)}m∈N as follows. If U ⊆ X is an open affine
set such that cX(v) ∈ U , then

am(v)(U) := {f ∈ OX(U) | v(f) > m}.

If cx(v) /∈ U , then am(v)(U) := OX(U). If cX(v) is a closed point x, we have that each ideal
am(v) is mx-primary,3 where mx ⊆ OX denotes the ideal of functions vanishing at x.

Given v ∈ ValX and a graded sequence a•, we may evaluate a• along v by setting

v(a•) := inf
m∈N

v(am)

m
= lim

m→∞

v(am)

m
.

See [JM12, Lemma 2.3] for a proof of the previous equality.

2.7 Multiplicities
Let X be a variety of dimension n and x ∈ X a closed point. Let mx ⊆ OX denote the ideal of
functions vanishing at x. We recall that for an mx-primary ideal a, the Hilbert–Samuel multiplicity
of a is

e(a) := lim
m→∞

length(OX,x/am)

mn/n!
.

If a ⊆ b ⊆ OX are mx-primary ideals on X, then e(a) > e(b). In addition, e(a) = e(a) where a
denotes the integral closure of a.

We recall the valuative definition of the integral closure of an ideal a on a normal variety X
[Laz04, Example 9.6.8]. Let U ⊂ X affine open subset. We have

a(U) := {f ∈ OX(U) | w(f) > w(a) for all w ∈ ValU divisorial}.

3 This is equivalent to saying that each ideal am(v) vanishes only at x.
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2.8 Volumes
Let a• be a graded sequence of ideals with the property that each am is mx-primary. The volume
of a• is defined as

vol(a•) := lim sup
m→∞

length(OX,x/am)

mn/n!
.

A similar invariant is the multiplicity of a•, which is defined as

e(a•) = lim
m→∞

e(am)

mn
.

In various degrees of generality, it has been proven that

e(a•) = vol(a•)

[ELS03, Corollary C], [Mus02, Theorem 1.7], [LM09, Theorem 3.8], [Cut13, Theorem 6.5]. In our
setting, the above equality will always hold. In addition, by [Cut13, Theorem 1.1], we also have
that

vol(a•) := lim
m→∞

length(OX,x/am)

mn/n!
.

For a valuation v ∈ ValX,x, the volume of v is given by

vol(v) := e(a•(v)).

Note that if λ ∈ R>0, then vol(λv) = vol(v)/λn.

2.9 Log canonical thresholds
The log canonical threshold is an invariant of singularities that has received considerable interest
in the field of birational geometry [Kol97, § 8]. For a nonzero ideal a on a klt variety X, the log
canonical threshold of a is given by

lct(a) := inf
v∈DValX

AX(v)

v(a)
. (2.1)

By [JM12, Lemma 6.7] in the case when X is smooth and a similar argument in the klt case,

lct(a) = inf
v∈ValX

AX(v)

v(a)
.

In the previous expression, we are using the convention that if v(a) = 0 or A(v) < +∞, then
A(v)/v(a) = +∞. Thus, lct(OX) = +∞. We say that a valuation v∗ computes lct(a) if AX(v) <
+∞ and lct(a) = A(v∗)/v∗(a).

Note the following elementary properties of this invariant. If m ∈ Z>0, then

lct(am) = lct(a)/m.

If a ⊆ b, then

lct(a) 6 lct(b).

The log canonical threshold may be understood in terms of a log resolution of a. Recall that
µ : Y → X is a log resolution of a if the following hold:
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(a) µ is a projective birational morphism;

(b) Y is smooth and Exc(µ) is pure codimension 1;

(c) a · OY = OY (−D) for an effective divisor D on Y ; and

(d) Dred + Exc(µ) has simple normal crossing.

In this case, we have

lct(a) = min
i=1,...,r

AX(ordEi)

ordEi(a)
,

where D =
∑r

i=1 aiEi. (Note that ordEi(a) = ai.) Thus, there always exists a divisorial valuation
that computes lct(a).

For a graded sequence of ideals a• on X, the log canonical threshold of a• is given by

lct(a•) := lim
m→∞

m · lct(am) = sup
m
m · lct(am).

By [JM12, Corollary 6.9] when X is smooth or as a consequence of [BFFU15, Theorem 1.2] when
X is klt, we have

lct(a•) = inf
v∈ValX

AX(v)

v(a•)
.

As before, we are using the convention that if either v(a•) = 0 or AX(v) = +∞, then A(v)/v(a•) =
+∞. We say v∗ ∈ ValX computes lct(a•) if A(v) < +∞ and lct(a•) = AX(v∗)/v∗(a•). Such
valuations v∗ always exist (see Appendix B). When X is smooth, this is precisely [JM12,
Theorem A].

3. Approximation of valuation ideals

In this section we extend the arguments of [ELS03] to approximate valuation ideals on
singular varieties. We will use this approximation to determine the speed of convergence of
(e(am(v))/mn)m∈N for a fixed valuation v. The main technical tool is the asymptotic multiplier
ideal of a graded family of ideals. For an excellent reference on multiplier ideals, see [Laz04,
ch. 9].

3.1 Multiplier ideals
Let X be a normal Q-Gorenstein variety. Fix a nonzero ideal a ⊆ OX and f : Y → X a log
resolution of a such that a · OY = OY (−D). For a rational number c > 0, the multiplier ideal
J (X, c · a) is defined by

J (X, c · a) := f∗OY (dKY/X − cDe) ⊆ OX .

Note that if c is an integer, then J (X, c · a) = J (X, ac). It is a basic fact that J (X, c · a) is
independent of the choice of f .

Alternatively, the multiplier ideal can be understood valuatively. If X is an affine variety,
then [BFFU15, Theorem 1.2] implies

J (X, c · a)(X) = {f ∈ OX(X) | v(f) > cv(a)−AX(v) for all v ∈ ValX}.

When X is not necessarily affine, the above criterion allows us to understand the multiplier ideal
locally.
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It is important to note the relationship between the log canonical threshold and the multiplier
ideal. If X is klt, then

lct(a) = sup{c | J (X, c · a) = OX}.

The following lemma provides basic properties of multiplier ideals. The proof is left to the
reader. See [Laz04, Proposition 9.2.32] for the case when X is smooth.

Lemma 3.1. Let a, b be nonzero ideals on X.

(a) If X is klt, then
a ⊆ J (X, a).

(b) If a ⊆ b and c > 0 is a rational number, then

J (X, c · a) ⊆ J (X, c · b).

(c) For rational numbers c > d > 0, we have

J (X, c · a) ⊆ J (X, d · a).

Multiplier ideals satisfy the following ‘subadditivity property’. The property was first
observed and proved by Demailly et al. in the smooth case [DEL00]. The statement was extended
to the singular case in [Tak06, Theorem 2.3] and [Eis11, Theorem 7.3.4].

Theorem 3.2 (Subadditivity). If a, b are nonzero ideals on X and c > 0 a rational number, then

JacX · J (X, c · (a · b)) ⊆ J (X, c · a) · J (X, c · b),

where JacX denotes the Jacobian ideal of X.

We recall that the Jacobian ideal of a variety X is JacX := Fittn(X), where n is the dimension
of X and Fittn denotes the nth fitting ideal as in [Eis95, 20.2]. The singular locus of X is equal
to Cosupp(JacX).

3.2 Asymptotic multiplier ideals
Let a• be a graded sequence of ideals on a normal Q-Gorenstein variety X and c > 0 a rational
number. We recall the definition of the asymptotic multiplier ideal J (c · a•). By Lemma 3.1, we
have that

J
(
X,

1

p
· amp

)
⊆ J

(
X,

1

pq
· apqm

)
for all positive integers p, q. From the above inclusion and Noetherianity, we conclude{

J
(
X,

1

p
· apm

)}
p∈N

has a unique maximal element. The mth asymptotic multiplier ideal J (X,m · a•) is defined to
be this element. Like the standard multiplier ideal, the asymptotic multiplier ideal can also be
understood valuatively.

Proposition 3.3 [BFFU15, Theorem 1.2]. If X is affine, a• is a graded sequence of ideals on
X, and c > 0 a rational number, then

J (X, c · a•) = {f ∈ OX(X) | v(f) > cv(a•)−AX(v) for all v ∈ ValX}.
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The asymptotic multiplier ideals satisfy the following property. This property will allow us

to approximate valuation ideals.

Proposition 3.4. If a• is a graded sequence of ideals on a klt variety X and m, ` ∈ N, then

(JacX)`−1a`m ⊆ (JacX)`−1am` ⊆ J (m · a•)`.

Proof. The proof is the same as the proof of [ELS03, Theorem 1.7] and is a consequence of

Lemma 3.1(a) and Theorem 3.2. 2

3.3 The case of valuation ideals

For a valuation v ∈ ValX , we examine the asymptotic multiplier ideals of a•(v). We first prove

the following elementary lemma.

Lemma 3.5. If v is a valuation on a variety X, then v(a•(v)) = 1.

Proof. Note that v(am(v)) >m, since am(v) is the ideal of functions vanishing to at least order m

along v. Next, set α := v(a1(v)). We have a1(v)dm/αe ⊆ am(v), since v(a1(v)dm/αe) = αdm/αe >
m. Thus,

v(am(v)) 6 v(a1(v)dm/αe) = αdm/αe.

The previous two bounds combine to show

1 6
v(am(v))

m
6
α · dm/αe

m
,

and the result follows. 2

The following results allows us to approximate valuation ideals. In the case when X is

smooth and v is an Abhyankhar valuation, the theorem below is a slight strengthening of [ELS03,

Theorem A].

Theorem 3.6. If X is a klt variety and v ∈ ValX satisfies AX(v) < +∞, then

(JacX)`−1 · a`m ⊆ (JacX)`−1 · am` ⊆ a`m−e

for every m > e and ` ∈ Z>0, where a• := a•(v) and e := dAX(v)e.

Proof. By Proposition 3.4, we have that

(JacX)`−1 · a`m ⊆ (JacX)`−1 · am` ⊆ J (X,m · a•)`.

Applying Proposition 3.3 and Lemma 3.5 to a• gives that

J (X,m · a•) ⊆ am−e,

and the result follows. 2
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3.4 Uniform approximation of volumes
Given a valuation v ∈ ValX centered at a closed point on a n-dimensional variety X, we recall

vol(v) = lim
m→∞

e(am(v))

mn
,

where n is the dimension of X. The following proposition provides a uniform rate of convergence
for the terms in the above limit.

Proposition 3.7. Let X be a klt n-dimensional variety and x ∈ X a closed point. For ε > 0 and
constants B,E, r ∈ Z>0, there exists N = N(ε, B,E, r) such that for every valuation v ∈ ValX,x
with vol(v) 6 B, AX(v) 6 E, and v(mx) > 1/r, we have

vol(v) 6
e(am(v))

mn
< vol(v) + ε for all m > N.

Remark 3.8. In an earlier version of this paper, we proved the following statement with the
additional assumption that x ∈X is an isolated singularity. We are grateful to Mircea Mustaţă for
noticing that a modification of the original proof allows us to prove the more general statement.

Proof of Proposition 3.7. For any valuation v ∈ ValX,x, the first inequality is well known. Indeed,
the inclusion am(v)p ⊆ amp(v) for m, p ∈ N implies that

e(amp(v))

(mp)n
6

e(am(v))

(m)n
.

Fixing m and sending p→∞ gives

vol(v) 6
e(am(v))

(m)n
.

Next, fix v ∈ ValX,x satisfying the hypotheses in the statement of Proposition 3.7. We have

(JacX)`−1am`(v) ⊆ (am−e(v))` ⊆ (am−E(v))`,

where e = dAX(v)e. The first inclusion is the statement in Theorem 3.6, and the second follows
from the assumption that e 6 E. After replacing m by m+ E, we obtain

(JacX)` · a(m+E)`(v) ⊆ (JacX)`−1 · a(m+E)`(v) ⊆ am(v)`. (3.1)

On the other hand, the assumption that v(mx) > 1/r implies that

mmr
x ⊆ am(v). (3.2)

It follows from (3.1) and (3.2) and the valuative criterion for integral closure (§ 2.7) that

(JacX +mmr
x )`a(m+E)`(v) ⊆ am(v)`. (3.3)

Indeed, let w ∈ ValX be a divisorial valuation and f and g local sections of JaciX and mmrj
x ,

respectively, with i + j = `. We have ` · w(f) + i · w(a(m+E)`(v)) > i · w(am(v)`) and w(g) >
j · w(am(v)) by the two inclusions. Thus,

w(fg) = w(f) + w(g) >
i

`
(w(am(v)`)− w(a(m+E)`(v))) +

j

`
w(am(v)`)

= w(am(v)`)− w(a(m+E)`(v)).
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From Inclusion (3.3) and Teissier’s Minkowski inequality [Tei77], we see

e(am(v)`)1/n 6 e((JacX +mmr
x )`)1/n + e(a(m+E)`(v))1/n.

Next, note that if a is an mx-primary ideal, then e(am) = mn e(a). Applying this property and
dividing by m · `, gives that

e(am(v))1/n

m
6

e(JacX +mmr
x )1/n

m
+
m+ E

m
·

e(a(m+E)`(v))1/n

(m+ E)`
.

After letting `→∞, we obtain

e(am(v))1/n

m
6

e(JacX +mmr
x )1/n

m
+
m+ E

m
vol(v)1/n.

Since vol(v)1/n 6 B1/n, the assertion will follow if we show that

lim
m→∞

e(JacX +mmr
x )1/n

m
= 0.

Choose h ∈ JacX ·OX,x that is nonzero and set R := OX,x/(h) and m̃x := mx ·R. We have

lim
m→∞

e(JacX +mmr
x )1/n

m
= lim

m→∞

length(OX,x/(JacX +mmr
x ))1/n

m
6 lim

m→∞

length(R/m̃mr
x )1/n

m
.

The last limit is 0, since

lim
m→∞

length(R/m̃mr
x )

mn−1/(n− 1)!
= e(m̃r

x) <∞. 2

4. Normalized volumes

For this section, we fix X an n-dimensional klt variety and x ∈ X a closed point. As introduced
in [Li15], the normalized volume of a valuation v ∈ ValX,x is defined as

v̂ol(v) := AX(v)n vol(v).

In the case when AX(v) = +∞ and vol(v) = 0, we set v̂ol(v) := +∞. The word ‘normalized’

refers to the property that v̂ol(λv) = v̂ol(v) for λ ∈ R>0.
Given a graded sequence a• of mx-primary ideals on X, we define a similar invariant. We

refer to
lct(a•)

n e(a•)

as the normalized multiplicity of a•. Similar to the normalized volume, when lct(a•) = +∞
and e(a•) = 0, we set lct(a•)

n e(a•) := +∞. The above invariant was looked at in [FEM04]
and [Mus02].

The following lemma provides elementary information on the normalized multiplicity. The
proof is left to the reader.

Lemma 4.1. Let a be an mx-primary ideal and a• a graded sequence of mx-primary ideals on X.

(a) If lct(a•)
n e(a•) < +∞, then

lct(a•)
n e(a•) = lim

m→∞
lct(am)n e(am).
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(b) If b• is a graded sequence given by bm := am, then

lct(a)n e(a) = lct(b•)
n e(b•).

(c) If aN• is the graded sequence whose mth term is aN ·m, then

lct(a•)
n e(a•) = lct(aN•)

n e(aN•).

Remark 4.2. Fix δ > 0. If a• a graded sequence of mx-primary ideals such that am ⊆ m
bδmc
x for

all m, then

lct(a•)
n e(a•) < +∞.

It is always the case that e(a•) < +∞, since e(a•) 6 e(a1). The assumption that am ⊆ m
bδmc
x

gives that lct(a•) 6 lct(mx)/δ, the latter of which is <+∞.

The following proposition relates the normalized volume, an invariant of valuations, to the
normalized multiplicity, an invariant of graded sequences of ideals.

Proposition 4.3 [Liu16, Theorem 27]. The following equality holds:

inf
v∈ValX,x

v̂ol(v) = inf
a• mx-primary

lct(a•)
n e(a•) = inf

amx-primary
lct(a)n e(a).

The previous statement first appeared in [Liu16]. In the case when x ∈ X is a smooth point,
it was explained in [Li15, Example 3.7]. We provide Liu’s proof, since the argument will be useful
to us. The proposition is a consequence of the following lemma.

Lemma 4.4 [Liu16]. The following statements hold.

(a) If a• is a graded sequence of mx-primary ideals and v ∈ ValX,x computes lct(a•) (i.e.
A(v)/v(a•) = lct(a•)), then

v̂ol(v) 6 lct(a•)
n e(a•).

(b) If v ∈ ValX,x, then

lct(a•(v))n e(a•(v)) 6 v̂ol(v).

Proof. To prove statement (a), we first rescale v so that v(a•) = 1. Thus, AX(v) = AX(v)/v(a•) =
lct(a•). Since

1 = v(a•) := inf
m>0

v(am)

m
,

we see v(am) >m and, thus, am ⊆ am(v) for all m. This implies e(a•(v)) 6 e(a•), and the desired
inequality follows.

In order to show statement (b), we note

lct(a•(v)) := min
w

AX(w)

w(a•(v))
6

AX(v)

v(a•(v))
= AX(v),

where the last equality follows from Lemma 3.5. Thus,

lct(a•(v))n e(a•(v)) 6 AX(v)n e(a•(v)) = v̂ol(v). 2
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Proof of Proposition 4.3. The first equality follows immediately from the previous proposition
and the fact that given a graded sequence a• there exists a valuation v∗ ∈ ValX that computes
lct(a•) (see Theorem B.1). The last equality follows from Lemma 4.1. 2

Remark 4.5. Above, we provided a dictionary between the normalized volume of a valuation
and the normalized multiplicity of a graded sequence of ideals. The normalized multiplicity also
extends to a functional on the set of (formal) plurisubharmonic functions in the sense of [BFJ08].
In a slightly different setting, similar functionals, arising from non-Archimedean analogues of
functionals in Kähler geometry, were explored in [BHJ16].

4.1 Normalized volume minimizers
Proposition 4.6. If there exists a graded sequence of mx-primary ideals ã• such that

lct(ã•)
n e(ã•) = inf

a• mx-primary
lct(a•)

n e(a•),

then there exists v∗ ∈ ValX,x that is a minimizer of v̂olX,x. Furthermore, if there exists an
mx-primary ideal ã such that

lct(ã)n e(ã) = inf
amx-primary

lct(a)n e(a),

then we may choose v∗ to be divisorial.

Proof. Assume there exists such a graded sequence ã•. By Theorem B.1, we may choose a
valuation v∗ that computes lct(ã•). By Lemma 4.4,

v̂ol(v∗) 6 lct(ã•)
n e(ã•).

By Proposition 4.3, the result follows.
When there exits such an ideal ã, the same argument shows that if v∗ computes lct(ã), then

v∗ is our desired valuation. Furthermore, we may choose v∗ divisorial. 2

Lemma 4.7. If v∗ is a minimizer of v̂olX,x, then

AX(v∗) 6
AX(w)

w(a•(v∗))

for all w ∈ ValX,x. Furthermore, equality holds if and only if w = λv∗ for some λ ∈ R>0.

Remark 4.8. The above technical statement can be restated as follows. If v∗ is a normalized
volume minimizer, then v∗ computes lct(a•(v

∗)) and v∗ is the only valuation (up to scaling) that
computes lct(a•(v

∗)).
A conjecture of Jonsson and Mustaţă states that valuations computing log canonical

thresholds of graded sequences on smooth varieties are always quasimonomial [JM12,
Conjecture B]. Their conjecture in the klt case implies [Li15, Conjecture 6.1.3], which says
that normalized volume minimizers are quasimonomial.

Proof. We fix w ∈ ValX,x and rescale w so that w(a•(v
∗)) = 1. Thus, we are reduced to showing

that AX(v∗) 6 AX(w) and equality holds if and only if w = v∗.
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By definition, we have

1 = w(a•(v
∗)) := inf

m>0

w(am(v∗))

m
,

and, thus, w(am(v∗)) > m. The latter implies that am(v∗) ⊆ am(w), so

vol(w) 6 vol(v∗).

If AX(w) < AX(v∗), then

AX(w)n vol(w) < AX(v∗)n vol(v∗)

and this would contradict our assumption on v∗. Furthermore, if A(v∗) = A(w), then we must
have that vol(v∗) = vol(w). Since v∗ 6 w and vol(v∗) = vol(w), then v∗ = w by [LX16,
Proposition 2.12]. 2

Proposition 4.9. Let v∗ ∈ ValX,x be a minimizer of v̂olX,x. If v∗ = ordE , where E is a prime
divisor on a normal variety which is proper and birational over X, then we have the following.

(a) The graded OX -algebra OX ⊕ a1(v∗)⊕ a2(v∗)⊕ · · · is finitely generated.

(b) The valuation v∗ corresponds to a Kollar component (see [LX16]).

(c) The number v̂ol(v∗) is rational.

The previous proposition was independently observed in [LX16, Theorem 1.5]. In fact, prior
to our contribution, the original draft of [LX16] proved that if (a) holds then (b) holds. Our
argument is different from that of [LX16].

Proof. By Lemma 4.7, it follows that lct(a•(v
∗)) = A(v∗). The finite generation of the desired

OX -algebra is a consequence of [Blu16, Theorem 1.4.1]. Additionally, the second sentence of
Lemma 4.7 allows us to apply [Blu16, Proposition 4.4]. Thus, v∗ corresponds to a Kollar
component.

To show that v̂ol(v∗) is rational, we note that the finite generation statement of (a) implies
there exists N > 0 so that amN (v∗) = (aN (v∗))m for all m ∈ N [Gro61, Lemma II.2.1.6.v]. By
Lemma 4.4,

lct(a•(v
∗))n e(a•(v

∗)) 6 v̂ol(v∗).

Lemma 4.1 implies
lct(a•(v

∗))n e(a•(v
∗)) = lct(aN )n e(aN ),

and the latter is a rational number. 2

5. Limit points of collections of graded sequences of ideals

In this section we construct a space that parameterizes graded sequences of ideals on a fixed
variety X. We use this parameter space to find ‘limit points’ of a collection of graded sequences
of ideals on X. The ideas behind this construction arise from the work of de Fernex and Mustaţă
[FM09], Kollár [Kol08], and de Fernex et al. [FEM10, FEM11].

Before explaining our construction, we set our notation. We fix an affine variety X = SpecA,
where A = k[x1, . . . , xr]/p. Let ϕ denote the map

R = k[x1, . . . , xr]
ϕ−→ A = k[x1, . . . , xr]/p.

We set mR := (x1, . . . , xr) and assume that p ⊂ mR. Thus, mA = ϕ(mR) is a maximal ideal of A.
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5.1 Parameterizing ideals
We fix an integer d > 0 and seek to parameterize ideals a ⊂ A containing md

A and contained in
mA. Since md

R ⊆ ϕ−1(md
A), such an ideal a ⊆ A can be generated by md

A and images of polynomials

from R of deg < d. Since there are nd =
(
r+d−1
r

)
−1 monomials of positive degree less than d in R,

any such ideal md
A ⊆ a ⊆ mA can be generated by md

A and the image of nd linear combinations
of monomials. After setting Nd = n2

d, we get a map

{k-valued points of ANd} −→ {ideals a ⊆ A s.t. md
A ⊆ a ⊆ mA},

where ANd parameterizes coefficients and generators of such ideals. The above map is surjective,
but not injective (generators of an ideal are not unique). Additionally, we have a universal ideal
A ⊂ OX×ANd such that A restricted to the fibers of p : X×ANd → ANd give us our mA-primary
ideals.

The construction in the previous paragraph follows the exposition of [FM09, § 3].

5.2 Parameterizing graded sequences of ideals
We proceed to parameterize graded sequences of ideals a• of A satisfying

mm
A ⊆ am ⊆ mA for all m ∈ N. (†)

We set
Hd := AN1 × · · · × ANd ,

where Ni is chosen as in the previous section. For d > c, let πd,c : Hd → Hc denote the natural
projection maps. Our desired object is the following projective limit

H = lim
←−Hd.

For d > 0, let πd : H → Hd denote the natural map.
Note that the above projective limit exists in the category of schemes, since the maps in

our directed system are all affine morphisms. Indeed, H is isomorphic to an infinite-dimensional
affine space.

Since a k-valued point of H is simply a sequence of k-valued points of ANd for all d ∈ N, we
have a surjection

{k-valued points of H} −→ {sequences of ideals b• of A satisfying (†)}.

Note that the sequences of ideals on the right-hand side are not necessarily graded.
Given a sequence of ideals b•, we can construct a graded sequence a• inductively by setting

a1 := b1 and
aq := bq +

∑
m+n=q

am · an.

If b• was graded to begin with, then a• = b•. By the construction, it is clear that am ·an ⊆ am+n.
Thus, we have our desired map

{k-valued points of H} −→ {graded sequences of ideals a• of A satisfying (†)}.

Additionally, we have a universal graded sequence of ideals A• = {Am}m∈N on X ×H. We will
often abuse notation and refer to similarly defined ideals A1, . . . ,Ad on X ×Hd.

The following technical lemma will be useful in the next proposition. The proof of the lemma
relies on the fact that every descending sequence of nonempty constructible subsets of a variety
over an uncountable field has nonempty intersection.
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Lemma 5.1. If {Wd}d∈N is a collection of nonempty subsets of Hd such that

(a) Wd ⊂ Hd is a constructible, and

(b) Wd+1 ⊆ π−1
d+1,d(Wd)

for each d ∈ Z>0,

then there exists a k-valued point in ⋂
d∈N

π−1
d (Wd).

Proof. Note that a k-valued point in the above intersection is equivalent to a sequence of closed
points {xd ∈Wd}d∈N such that πd+1,d(xd+1) = xd. We proceed to construct such a sequence.

We first look to find a candidate for x1. Assumption (b) implies

W1 ⊇ π2,1(W2) ⊇ π3,1(W3) ⊇ · · ·

is a descending sequence of nonempty sets. Note that W1 is constructible by assumption and so
are πd,1(Wd) for all d by Chevalley’s theorem [Har77, Exercise II.3.9]. Thus,

W1 ∩ π2,1(W2) ∩ π3,1(W3) ∩ · · ·

is nonempty and we may choose a point x1 lying in the set.
Next, we look at

W2 ∩ π−1
2,1(x1) ⊇ π3,2(W3) ∩ π−1

2,1(x1) ⊇ π4,2(W4) ∩ π−1
2,1(x1),

and note that for d > 2 each πd,2(Wd) ∩ π−1
2,1(x1) is nonempty by our choice of x1. By the same

argument as before, we see

π−1
2,1(x1) ∩W2 ∩ π3,2(W3) ∩ π4,2(W4) ∩ · · ·

is nonempty and contains a closed point x2. Continuing in this manner, we construct the desired
sequence. 2

5.3 Finding limit points
The proof of the following proposition relies on the previous construction of a space that
parameterizes graded sequences of ideals. The proof is inspired by arguments in [Kol08, FEM10,
FEM11].

Proposition 5.2. Let X be a klt variety and x ∈ X a closed point. Assume there exists a

collection of graded sequences of mx-primary ideals {a(i)
• }i∈N and λ ∈ R such that the following

hold.

(a) (Convergence from above) For every ε > 0, there exists positive constants M,N so that

lct(a(i)
m )n e(a(i)

m ) 6 λ+ ε

for all m >M and i > N .

(b) (Boundedness from below) For each m, i ∈ N, we have

mm
x ⊆ a(i)

m .
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(c) (Boundedness from above) There exists δ > 0 such that

a(i)
m ⊆ mbmδc

for all m, i ∈ N.

Then, there exists a graded sequence of mx-primary ideals ã• on X such that

lct(ã•)
n e(ã•) 6 λ.

Proof. It is sufficient to consider the case when X is affine. Thus, we may assume that X = SpecA
and A= k[x1, . . . , xr]/p as in the beginning of this section. In addition, we may assume that x ∈X
corresponds to the maximal ideal mA. We recall that § 5.2 constructs a variety H parameterizing
graded sequences of ideals on X satisfying (†). In addition, we have finite-dimensional truncations
Hd that parameterize the first d elements of such a sequence.

Each graded sequence a
(i)
• satisfies (†) by assumptions (b) and (c). Thus, we may choose a

point pi ∈ H corresponding to a
(i)
• . Note that πd(pi) ∈ Hd corresponds to the first d-terms of a

(i)
• .

Claim 1. We may choose infinite subsets N ⊃ I1 ⊃ I2 ⊃ · · · and set

Zd := {πd(pi) | i ∈ Id}

such that (∗∗) holds:

If Y ( Zd is a closed set, there are only finitely many i ∈ Id such that πd(pi) ∈ Y. (∗∗)

To prove Claim 1, we construct such a sequence inductively. First, we set I1 = N. Since
H1 ' A0 is a point, (∗∗) is trivially satisfied for d = 1. After having chosen Id, choose Id+1 ⊂ Id
so that (∗∗) is satisfied for Zd+1. By the Noetherianity of Hd, such a choice is possible.

Claim 2. We have the inclusion Zd+1 ⊆ π−1
d+1,d(Zd) for all d > 1.

The proof of Claim 2 follows from the definition of Zd. Since πd(pi) ∈ Zd for all i ∈ Id and
Id ⊇ Id+1, it follows that π−1

d+1,d(Zd) is a closed set containing πd+1(pi) for i ∈ Id+1. The closure
of the latter set of points is precisely Zd+1.

Claim 3. If p ∈ Zd is a closed point, we have Ad|p ⊆ mbdδc.

We now prove Claim 3. The set {p ∈ Hd | Ad|p ⊆ mbdδc} is a closed in Hd. By assumption (c),
πd(pi) lies in the above closed set for all i ∈ Id. Thus, Zd ⊆ {p ∈ Hd | Ad|p ⊆ mbdδc}.

We now return to the proof of the proposition. We look at the normalized multiplicity of the
ideals parameterized by Zd. By Propositions A.1 and A.2, for each d, we may choose a nonempty
open set Ud ⊆ Zd such that

lct(Ad|p)n e(Ad|p) = λd

is constant for p ∈ Ud. Set
I◦d = {i ∈ Id | πd(pi) ∈ Ud} ⊆ Id,

and note that Id\I◦d is finite. If this was not the case, then (∗∗) would not hold.
The finiteness of Id\I◦d has two consequences. First,

lim
d→∞

supλd 6 λ,

since πd(pi) ∈ Ud for all i ∈ I◦d and assumption (a) of this proposition. Second, since Id+1 ⊂ Id
for d ∈ N, we have

I◦d ∩ I◦d−1 · · · ∩ I◦1 6= ∅.
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Claim 4. There exists a k-valued point p̃ ∈ H such that πd(p̃) ∈ Ud for all d ∈ Z>0.

Proving this claim will complete the proof. Indeed, a point p̃ ∈ H corresponds to a graded
sequence of mx-primary ideals ã•. Since πd(p̃) ∈ Ud, we will have lct(ãd)

n e(ãd) = λd. In addition,

Claim 2 implies and ãd ⊂ m
bdδc
x for all d ∈ Z>0. Thus,

lct(ã•)
n e(ã•) = lim

d→∞
lct(ãd) e(ãd) 6 lim

d→∞
supλd 6 λ,

and the proof will be complete.
We are left to prove Claim 4. In order to do so, we will apply Lemma 5.1 to find such a

point p̃ ∈ H. First, we define constructible sets Wd ⊆ Hd inductively. Set W1 = U1. After having
chosen Wd, set Wd+1 = π−1

d+1,d(Wd) ∩ Ud. For each d ∈ N we have the following:
• Wd is open in Zd and, thus, constructible in Hd;
• Wd is nonempty, since Wd contains πd(pi) for all i ∈ I◦d ∩ I◦d−1∩ · · · ∩ I◦1 , which is nonempty.

By Lemma 5.1, there exists a k-valued point p̃ ∈ H such that πd(p̃) ∈ Wd ⊂ Ud for all d ∈ Z>0.
This completes the proof. 2

Remark 5.3. In the previous proof, we construct a graded sequence of ideal ã• based on a

collection of graded sequences {a(i)
• }i∈N. While the construction of ã• is inspired by past

constructions of generic limits, ã• is not a generic limit in the sense of [Kol08, 28].
We construct the precise analog as follows. We set

Z :=
⋂
d

π−1
d (Zd) ⊆ H,

with Zd defined in the previous proof. The generic point of Z gives a map Spec(K(Z)) → H,
where K(Z) is the function field of Z. Thus, we get a graded sequence of ideals â• on XK(Z),
the base change of X by K(Z).

In the previous proof, we wanted to construct a graded sequence on X, not a base change
of X. Thus, ã• was chosen to be a graded sequence corresponding to a very general point in Z.

6. Proof of the Main Theorem

In this section we prove the Main Theorem. To prove the theorem, we apply the construction
from § 5.

Proof of the Main Theorem. We fix a klt variety X and a closed point x ∈ X. Next, we choose
a sequence of valuations (vi)i∈N in ValX,x such that

lim
i

v̂ol(vi) = inf
v∈ValX,x

v̂ol(v).

Additionally, after scaling our valuations, we may assume that vi(mx) = 1 for all i ∈ N. Note
that this implies that mm

x ⊂ am(vi) for all m.

We claim that {a•(vi)}i∈N satisfy the hypotheses of Proposition 5.2 with λ= infv∈ValX,x v̂ol(v).
After showing that this is the case, we will have that there exists a graded sequence of mx-primary
ideals ã• such that

lct(ã•)
n e(ã•) 6 inf

v∈ValX,x
v̂ol(v).
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By Theorem B.1, there exists a valuation v∗ ∈ ValX,x that computes lct(ã•). Thus,

v̂ol(v∗) 6 lct(ã•)
n e(ã•) = inf

v∈ValX,x
v̂ol(v),

where the first inequality follows from Lemma 4.4. Thus, v∗ will be our normalized volume
minimizer.

It is left to show that {a•(vi)}i∈N satisfies the hypotheses of Proposition 5.2. Hypothesis (a)
follows from Proposition 6.4, (b) from the assumption that vi(m) = 1 for all i ∈N, and (c) from
Proposition 6.2. 2

We proceed to prove the two propositions mentioned in the previous paragraph. We
emphasize that estimates from [Li15] are essential in the proof of the following lemma and
propositions.

Lemma 6.1. With the notation above, there exist positive constants E,B such that: (a) AX(vi) 6
E; and (b) vol(vi) 6 B for all i ∈ N.

Proof. By [Li15, Theorem 3.3], there exists a constant C such that

AX(v) 6 C · v(m)v̂ol(v)

for all v ∈ ValX,x. Thus, we may set E := C · supi v̂ol(vi) < +∞.
The bound on the volume follows from the inclusion mm

x ⊂ am(vi) for all m ∈N. The inclusion
gives that

vol(vi) = lim
m→∞

e(am(vi))

mn
6 lim

m→∞

e(mn
x)

mn
= e(mx). 2

Proposition 6.2. With the notation above, there exists δ > 0 such that

am(vi) ⊆ mbδmcx

for all m, i ∈ N.

Remark 6.3. Note that for an ideal a, the order of vanishing of a along x is defined to be

ordx(a) := max{n | a ⊆ mn
x}.

To prove the above proposition, it is sufficient to find δ′ > 0 such that

δ′m 6 ordx(am(vi))

for all m, i ∈ N.

Proof. By [Li15, Proposition 2.3], there exists a constant C such that for all v ∈ ValX,x and
f ∈ OX,x,

v(f) 6 C ·AX(v) ordx(f).

Thus,
m 6 vi(am(vi)) 6 C ·AX(vi) ordx(am(vi)),

and
m

CAX(vi)
6 ordx(am(vi)).

By Lemma 6.1, there exists a positive constant E such that AX(vi) 6 E for all i. We conclude

m

C · E
6 ordx(am(vi)). 2
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Proposition 6.4. With the notation above, for ε > 0, there exist positive constants M,N such
that

lct(am(vi))
n e(am(vi)) 6 inf

v∈ValX,x
v̂ol(v) + ε.

for all m >M and i > N .

Proof. Since v̂ol(vi) converges to infv∈ValX,x v̂ol(v) as i→∞, we may choose N so that

v̂ol(vi) 6 inf
v∈ValX,x

v̂ol(v) + ε/2

for all i > N . By Lemma 6.1, we have E := supAX(vi) <∞. Additionally, Lemma 6.1 allows us
to apply Proposition 3.7 to find a constant M so that

e(am(vi)) 6 vol(vi) + ε/(2En)

for all integers m >M . Thus,

lct(am(vi))
n e(am(vi)) 6 AX(vi)

n(vol(vi) + ε/(2En)) 6 v̂ol(vi) + ε/2.

for all m >M and i ∈ N. We conclude that

lct(am(vi))
n e(am(vi)) 6 v̂ol(vi) + ε/2 6 inf

v∈ValX,x
v̂ol(v) + ε

for all m >M and i > N . 2

7. The normalized volume over a log pair

The normalized volume function has been studied in the setting of log pairs [LX16, LL16]. We
explain that the arguments in this paper extend to the setting where (X,∆) is a klt pair.

Recall that (X,∆) is a log pair if X is a normal variety and ∆ is an effective Q-divisor on
X such that KX + ∆ is Q-Cartier.

7.1 Log discrepancies
If (X,∆) is a log pair, the log discrepancy function A(X,∆) : ValX → R ∪ {+∞} is defined as
follows. If Y → X is a proper birational morphism with Y normal, and E ⊂ Y a prime divisor,
then the log discrepancy of ordE over (X,∆) is

A(X,∆)(ordE) := 1 + (coefficient of E in KY − f∗(KX + ∆)).

As in [BFFU15], A(X,∆) can then be extended to ValX . If (X,∆) is a log pair, we say (X,∆) is
klt if AX(v) > 0 for all divisorial valuations v ∈ ValX .

7.2 Normalized volume minimizers
If (X,∆) is a klt log pair and x ∈ X is a closed point, the normalized volume of a valuation
v ∈ ValX,x over the pair (X,∆) is defined to be

v̂ol(X,∆),x(v) := A(X,∆)(v)n vol(v).

We claim that if (X,∆) is a klt pair and x ∈ X is a closed point, then there exists a minimizer

of v̂ol(X,∆),x.
The main subtlety in extending our arguments to the log setting is in extending Theorem 3.6,

which is a consequence of the subadditivity theorem. Takagi proved the following subadditivity
theorem for log pairs.
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Theorem 7.1 (Takagi [Tak13]). Let (X,∆) be a log pair, a, b ideals on X, and s, t ∈ Q>0. For
r ∈ Z>0 so that r(KX + ∆), we have

JacX · J ((X,∆), asbsOX(−r∆)1/r) ⊆ J ((X,∆), as)J ((X,∆), bt).

Takagi’s result implies the following generalization of Theorem 3.6 for log pairs. The
remaining arguments in the paper extend to this setting.

Theorem 7.2. Let (X,∆) be a log pair and r ∈ Z>0 such that r(KX +∆) is Carter. If v ∈ ValX
satisfies AX(v) < +∞, then

(JacX · OX(−r∆))`−1 · a`m ⊆ (JacX OX(−r∆))`−1 · am` ⊆ a`m−e

for every m > e and ` ∈ Z>0, where a• := a•(v) and e := dA(X,∆)(v)e.

8. The toric setting

We use the notation of [Ful93] for toric varieties. Let N be a free abelian group of rank n > 1
and M = N∗ its dual. We write NR := N ⊗R and MR := M ⊗R. There is a canonical pairing

〈 , 〉 : NR ×MR→ R.

We say that an element u ∈ N is primitive if u cannot be written as u = au′ for a ∈ Z>1 and
u ∈ N .

Fix a maximal dimension, strongly convex, rational, polyhedral cone σ ⊂ NR. From the cone
σ, we get a toric variety Xσ = SpecRσ, where Rσ = k[σ∨ ∩M ]. Let x ∈ Xσ denote the unique
torus invariant point of Xσ. We write u1, . . . , ur ∈ N for the primitive lattice points of N that
generate the one-dimensional faces of σ. Each ui corresponds to a toric invariant divisor Di on
Xσ. Since the canonical divisor is given by KXσ = −

∑
Di, the divisor KX is Q-Cartier if and

only if there exists w ∈M ⊗Q ⊂MR such that 〈ui, w〉 = 1 for i = 1, . . . , r.
Given u ∈ σ, we obtain a toric valuation vu ∈ ValX defined by

vu

( ∑
m∈M∩σ∨

αvχ
v

)
= min{〈u, v〉 | αv 6= 0}.

If u ∈ σ∨ ∩N is primitive, the valuation vu corresponds to vanishing along a prime divisor
on a toric variety proper and birational over Xσ. For u ∈ σ, vu has center equal to x if and only
if u ∈ Int(σ).

Let Valtoric
Xσ ,x ⊂ ValXσ ,x denote the valuations on Xσ of the form vu for u ∈ Int(σ). We refer

to these valuations as the toric valuations at x. It is straightforward to compute the normalized
volume of such a valuation. Assume KX is Q-Cartier and w is the unique vector such that
〈ui, w〉 = 1 for i = 1, . . . , s. For u ∈ σ, we have

AXσ(vu) = 〈u,w〉.

For u ∈ σ and m ∈ N, we set Hu(m) = {v ∈MR | 〈u, v〉 > m}. Note that

am(vu) = (χv | v ∈ Hu(m) ∩ σ∨ ∩M).

In the case when u ∈ Int(σ),

vol(vu) = n! ·Vol(σ∨\Hu(1)),

where Vol denotes the Euclidean volume.
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8.1 Deformation to the initial ideal
As explained in [Eis95], when Xσ ' An and I ⊂ Rσ, there exists a deformation of I to a monomial
ideal. A similar argument works in our setting.

Following the approach of [KK14, § 6], we put a Zn>0 order on the monomials of Rσ. Fix y1,
. . . , yn ∈ N ∩ σ that are linearly independent in MR. Thus, we get an injective map ρ : M → Zn

by sending
v 7−→ (〈y1, v〉, . . . , 〈yn, v〉).

Since each yi ∈ σ, we have ρ(M ∩σ∨) ⊆ Zn>0. After putting the lexigraphic order on Zn>0, we get
an order > on the monomials of Rσ.

An element f ∈ Rσ may be written as a sum of scalar multiples of distinct monomials. The
initial term of f , denoted in> f , is the greatest term of f with respect to the order >. For an
ideal I ⊂ Rσ, the initial ideal of I is

in> I = (in> f | f ∈ I).

Note that if I is mx-primary, then so is in> I. Also, if {Im}m∈N is a graded sequence of ideals
of Rσ, then so is {in> Im}m∈N. This follows from the fact that in> f · in> g = in> fg.

Lemma 8.1. If I ⊂ Rσ is an mx-primary ideal, then

length(Rσ/I) = length(Rσ/in>I).

Proof. The proof is similar to the proof of [Eis95, Theorem 15.3]. 2

Similar to the argument in [Eis95], we construct a deformation of I to in> I. Since Rσ is
Noetherian, we may choose elements g1, . . . , gs ∈ I such that

I = (g1, . . . , gs) and in> I = (in> g1, . . . , in> gs).

Fix an integral weight λ : M ∩ σ∨→ Z>0 such that

in>λ(gi) = in>(gi)

for all i. Note that >λ denotes the order on the monomials induced by the weight function λ.
Let Rσ[t] denote the polynomial ring in one variable over Rσ. For g =

∑
αmχ

m, we write
b := max{λ(m) | αm 6= 0} and set

g̃ := tb
∑

αmt
−λ(m)χm.

Next, let
Ĩ = (g̃1 . . . g̃s) ⊂ Rσ[t].

For c ∈ k, we write Ic for the image of Ĩ under the map Rσ[t]→ Rσ defined by t 7→ c. It is
clear that I1 = I and I0 = in> I.

Proposition 8.2. If I ⊂ Rσ is an mx primary ideal, then lct(in<(I)) 6 lct(I).

Proof. We consider the automorphism of ϕ : Rσ[t, t−1]→ Rσ[t, t−1] that sends χm to tλ(m)χm.
Note that ϕ sends ĨRσ[t, t−1] to IRσ[t, t−1]. Therefore, for each c ∈ k∗, we get an automorphism
ϕc : Rσ → Rσ such that ϕc(Ic) = I. Thus, lct(Ic) = lct(I) for all c ∈ k∗. Since Ic is mx-primary
for all c ∈ k, we may apply Proposition A.3 to see lct(I0) 6 lct(I). Since in>(I) = I0, we are
done. 2

842

https://doi.org/10.1112/S0010437X17008016 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17008016


Existence of valuations with smallest normalized volume

8.2 Proof of Theorem 1.4
Theorem 1.4 is a direct consequence of Proposition 8.3. Our proof of Proposition 8.3 is inspired
by the main argument in [Mus02].

Proposition 8.3. Let a• be a graded sequence of mx-primary ideals on Xσ. We have that

lct(in>(a•))
n e(in(a•)) 6 lct(a•)

n e(a•).

Proof. We first note that

e(in>(a•)) := lim sup
m→∞

length(OXσ ,x/in>(am))

mn/n!
= lim sup

m→∞

length(OXσ ,x/am)

mn/n!
=: e(a•),

where the second equality follows from Proposition 8.1. By Proposition 8.2,

lct(in>(a•)) 6 lct(a•).

The result follows. 2

Proof of Theorem 1.4. Since Valtoric
X,x ⊂ ValX,x, we have

inf
v∈ValX,x

v̂ol(v) 6 inf
v∈Valtoricx,x

v̂ol(v).

We proceed to show the reveres inequality. Note that

inf
v∈ValX,x

v̂ol(v) = inf
a• mx-primary

lct(a•)
n e(a•) = inf

a• mx-primary
monomial

lct(a•)
n e(a•), (8.1)

where the first equality follows from Proposition 4.3 and the second from Proposition 8.3. The
last infimum in (8.1) is equal to

inf
amx-primary

monomial

lct(a)n e(a)

by Lemma 4.1. Thus, it is sufficient to show that

inf
v∈ValtoricX,x

v̂ol(v) 6 inf
amx-primary

monomial

lct(a)n e(a).

Let a be an mx-primary monomial ideal. Since a is a monomial ideal, there exists a toric
valuation v∗ ∈ Valtoric

X,x such that v∗ computes lct(a). (This follows from the fact that there exists
a toric log resolution of a.) By Proposition 4.4,

v̂ol(v∗) 6 lct(a)n e(a),

and the proof is complete. 2

8.3 An example of nondivisorial volume minimizer
Let V denote P2 blown up at a point. Note that V is a Fano variety. The affine cone C(V,
−KV ) = Spec(

⊕
m>0H

0(V,−KV )) is isomorphic to the toric variety Xσ, where σ ⊆ R3 is the
cone in Figure 1. Let x denote the torus invariant point of Xσ.
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Figure 1. The cone σ is drawn. The toric variety Xσ is isomorphic to the cone over P2 blown
up at a point.

We seek to find a minimizer of the function Valtoric
Xσ ,x → R>0 defined by vu 7→ v̂ol(vu). Since

the normalized volume is invariant under scaling, it is sufficient to consider elements u ∈ Int(σ)
of the form u = (a, b, 1) ∈ Int(σ). We have

AXσ(v(a,b,1)) = 〈(a, b, 1), (0, 0, 1)〉 = 1.

The normalized volume of v(a,b,c) is

v̂ol(v(a,b,1)) := AX(v(a,b,1))
3 vol(v(a,b,1)) = 3! Vol(σ∨\H(a,b,1)(1)).

After computing the previous volume, we see that the function is minimized at

(a∗, b∗, 1) = (4/3−
√

13/3, 4/3−
√

13/3, 1),

with v̂ol(v(a∗,b∗,1)) = 1
12(46 + 13

√
13). By Theorem 1.4, the toric volume minimizer v∗ = v(a∗,b∗,1)

is also a minimizer of v̂olXσ ,x. Since v̂ol(v(a∗,b∗,1)) is irrational, Proposition 4.9 implies there

cannot be a divisorial minimizer of v̂olXσ ,x.
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Appendix A. Multiplicities and log canonical thresholds in families

In this section we provide information on the behavior of the Hilbert–Samuel multiplicity and
log canonical threshold in a family. The content of this section is well known to experts, but
does not necessarily appear in the literature in the desired form. The following statements will
be useful in the proof of Proposition 5.2.
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A.1 Multiplicities
We recall an interpretation of the Hilbert–Samuel multiplicity described in [Ram73]. Let X be
a proper variety of dimension n and x ∈ X a closed point. If a ⊆ OX is an mx-primary ideal
and Y → X a proper birational morphism such that Y is nonsingular and a · OY is an invertible
sheaf, then e(a) = (−1)n−1Dn, where D is the effective divisor on Y defined by a · OY .

The following proposition is well known. Related statements appear in [Ben70] and [Lip82].

Proposition A.1. Let X and T be varieties and x ∈ X a closed point. If a ⊆ OX×T is an ideal
such that at := a ·OX×{t} is mx-primary for all closed points t ∈ T , then there exists a nonempty
open set U ⊆ T such that the function U 3 t 7→ e(at) is constant.

Proof. It is sufficient to consider the case when X is proper. Indeed, let V ⊆ X be an open affine
subset of X containing x. Replace X with a projective closure of V .

Now, let f : Y → X ×T be a log resolution of a. Set L = a · OY and write g : Y → T for the
map f composed with the projection X × T → T .

Choose a nonempty open set U ⊆ T such that g−1(U) is flat over U and Yt → X × {t} is
birational for all t ∈ U . By [Kol96, Proposition 2.9], U 3 t 7→ (Lt)n is constant. Thus, we are
done. 2

A.2 Log canonical thresholds
We prove two statements on the behavior of the log canonical threshold along a family of ideals.
For similar statements, see [Laz04, Example 9.3.17] and [Kol97, Lemma 8.6].

Proposition A.2. Let X and T be varieties and assume that X is klt. Fix an ideal a ⊆ OX×T ,
and set at := a · OX×{t} for t ∈ T . Then, there exists a nonempty open set U ⊆ T such that the
function U 3 t 7→ lct(at) is constant.

Proof. Let µ : Y → X × T be a log resolution of a, and set p′ = p ◦ µ.

Y
µ //

p′

��

X × T

p
{{

T

Let D be the divisor on Y such that a ·OX′ = OX′(−D) and E1, . . . , Er be the prime components
of Exc(µ)+Dred. After shrinking T , we may assume that each Ei surjects onto T and T is smooth.

We claim that on a nonempty open set U ⊂ T , µt : Yt → Xt is a log resolution of at
for all t ∈ U , where Yt := Yp−1(t) and Xt := X × {t}. Indeed, by generic smoothness [Har77,
Corollary III.10.7] applied to X ′, each Ei, and all the intersections of the Ei, we may find such
a locus U ⊂ T .

Now, we have (KY/X×T )|Xt = KYt/Xt and at · OYt = OYt(−D|Yt) for t ∈ U . Therefore,
lct(at) = mini=1,...,r ordEi(KY/X×T )/ordEi(D) for all t ∈ U , and we are done. 2

Proposition A.3. Let X be a klt variety, T a smooth curve, and t0 ∈ T a closed point. Fix an
ideal a ⊆ OX×T , and set at := a · OX×{t}. If V (a) ⊂ X is proper over T , then there exists an
open neighborhood t0 ∈ U ⊆ T such that

lct(at0) 6 lct(at)

for all closed points t ∈ U .
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Remark A.4. The condition that V (a) is proper over T holds if there exists x ∈ X such that
each ideal at is mx-primary for all closed points t ∈ T . Indeed, in this case V (a)red = {x} × T .

Proof. By Proposition A.2, we may choose a nonempty open set W ⊆ T such that lct(at) takes
the constant value λ for all t ∈ W . We will show lct(at0) 6 λ. Then, U := W ∪ {t0} will satisfy
the conclusion of our proposition.

We first show that p(V (J (X,×T, λ ·a))) = T . By [Laz04, Example 9.5.34], we may shrink W
so that J (X×{t}, λ·at) = J (X,λ·a)·OX×{t} for all t ∈W . Since J (X×{t}, aλt ) 6=OX×{t} for all
t ∈W , we see W ⊆ (p(V (J (X,×T, λ ·a)))). Note that p(V (J (X×T, λ ·a))) is closed in T , since
J (X×T, λ ·a) is closed in V (a) and V (a) is proper over T . Therefore, p(V (J (X×T, λ ·a))) = T .

Since p(J (X × T, λ · a) · OX×{t0}) = T and J (X × {t0}, λ · at0) ⊆ J (X × T, λ · a) · OX×{t0}
by [Laz04, Theorem 9.5.16], J (X × {t0}, λ · at0) is nontrivial. Thus, lct(at0) 6 λ, and the proof
is complete. 2

Appendix B. Valuations computing log canonical thresholds of graded sequences

In [JM12], the authors prove the existence of valuations computing log canonical thresholds of
graded sequences of ideals on smooth varieties. We extend the result to klt varieties. While the
statement is likely known to experts, it does not appear in the literature.

Theorem B.1. If X is a klt variety and a• a graded sequence of ideals on X, then there exists
v∗ ∈ ValX computing lct(a•).

The proof we give is similar in spirit to the proof of [JM12, Theorem 7.3], but also relies on
results in [BFFU15].

Proposition B.2. If X is a normal Q-Gorenstein variety and a• a graded sequence of ideals on
X, then v 7→ v(a•) is a continuous function on ValX ∩{AX(v) < +∞}.

Proof. We reduce the result to the smooth case. Take a resolution of singularities Y → X and
write aY• for the graded sequence of ideals on Y defined by aYm = am · OY . Thanks to [JM12,
Corollary 6.4], the function v 7→ v(aY• ) is continuous on ValY ∩{AY (v) < +∞}.

Now, note that the natural map ValY → ValX is a homeomorphism of topological spaces
and v(a•) = v(aY• ). Since AX(v) = AY (v) + v(KY/X), AX(v) < +∞ if and only if AY (v) < +∞.
Thus, the proof is complete. 2

Now, we recall some formalism from [BFFU15]. A normalizing subscheme on X is a
(nontrivial) closed subscheme of X containing Sing(X). If N is a normalizing subscheme of
X, we set

ValNX := {v ∈ ValX | v(IN ) = 1}.

Proposition B.3. Let X be a normal Q-Gorenstein variety, a• a graded sequence of ideals on
X, and N a normalizing subscheme of X such that N contains the zero locus of a1.

(a) The function v 7→ v(a•) is bounded on ValNX .

(b) For each M ∈ R, the set {AX(v) 6M} ∩ValNX is compact.

Proof. Statements (a) and (b) appear in [BFFU15, Proposition 2.5] and [BFFU15, Theorem 3.1],
respectively. 2
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Proposition B.4. If X is a klt variety and N a normalized subscheme of X, then there exists
ε > 0 such that AX(v) > ε for all v ∈ ValNX .

Proof. Let π : Y → X be a good resolution of N , and consider the continuous retraction map

rNπ : ValNX → ∆N
π

described in [BFFU15, § 2.2]. Since X is assumed to be klt, there exists ε > 0 such that AX(v) > ε
for all v ∈ ∆N

π . Since AX(v) > AX(rNπ (v)) for all v ∈ ValNX by [BFFU15, Theorem 3.1], the proof
is complete. 2

Proof of Theorem B.1. If lct(a•) = +∞, then any v ∈ ValX with AX(v) < +∞ must compute
lct(a•). We now move on to the case when lct(a•) < +∞.

Let N be the subscheme of X defined by the ideal ISing(X) · a1. Since N is a normalizing
subscheme of X that contains the zero locus of a1, we may apply the previous two propositions
to choose B ∈ R and ε > 0 so that v(a•) < B and AX(v) > ε for all v ∈ ValNX .

Note that

lct(a•) = inf
v∈ValNX

AX(v)

v(a•)
.

Indeed, consider v ∈ ValX such that AX(v)/v(a•) < +∞. Since v(a•) > 0, then v(a1) > 0 and,
thus, v(IN ) > 0. We see w = (1/v(IN ))v ∈ ValNX and AX(w)/w(a•) = AX(v)/v(a•).

Now, fix L > lct(a•). If v ∈ ValNX and AX(v)/v(a•) 6 L, then

ε < AX(v) 6 Lv(a•) 6 L ·B.

Therefore,

lct(a•) = inf
v∈W

AX(v)

v(a•)
,

where
W = ValNX ∩{AX(v) 6 L ·B} ∩ {Lv(a•) > ε}.

We claim that W is compact. Indeed, ValNX ∩{AX(v) 6 L · B} is compact by the previous
proposition. Since v 7→ v(a•) is continuous on ValNX ∩{AX(v) 6 L · B}, W is closed in
ValNX ∩{AX(v) 6 L · B}, and, thus, compact as well. Since v 7→ AX(v)/v(a•) is lower
semicontinuous on the compact set W , there exists v∗ ∈ W such that AX(v∗)/v∗(a•) =
lct(a•). 2
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