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ON EXISTENCE AND STABILITY OF SOLUTIONS TO
ELLIPTIC SYSTEMS WITH GENERALISED GROWTH

MAREK GALEWSKI AND MAREK PLOCIENNICZAK

We are concerned with existence and stability of solutions for system of equations with
generalised p(x) and m(x)—Laplace operators and where the nonlinearity satisfies
some local growth conditions. We provide a variational approach that is based on
investigation of the primal and the dual action functionals. As a consequence we
consider the dependence of the the system on functional parameters.

1. INTRODUCTION

In this paper we consider existence and stability of solutions to the following family
of systems of Dirichlet problems with generalised p(x),m(x)—Laplacian operators for
* = 0 , l , 2 , . . .

-d iv (a (x ) |V U (x) | p ( l ) - 2 Vu( i ) ) = F*(x,u(x),t,(x)),

(1.1) -div(b(x)\Vv(x)\mlx)-2Vv(x)) = /?(x, «(*),«(*)),

u(x) |an = 0, u € W ^ n ) , v(x) I*, = 0, v G W^x)(Q)

where fi C RN is a bounded region with Lipschitz boundary, p,q,m,n € C(fi), l/p(x)
+ l/q(x) = 1, l/m(x) + l/n(x) = 1 for i G fi; Wo

llJ>(l)(ft), W0
1>m(l)(fi) denote

the generalised Orlicz-Sobolev spaces, see [3, 5]; a, 6 € C(Q) with a(x) ^ ao > 0,
b(x) ^ bQ > 0 on Q for k = 0 ,1 ,2 , . . . . Let p~ = inf p(x) > N,Tn~ = inf m{x) > N.

We shall show - upon some conditions - that for all k = 1,2,... there exists a solution
{uk,Vk) to (1.2) and later that from the sequence (Uk,Vk) one can choose a subsequence
(u^, Vkt) such that u^ —»• u weakly in W1J>^(0.), v^ —»• v weakly in W1>m^(il) and

= 0, v(x) | a n = 0.
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454 M. Galewski and M. Plocienniczak [2]

Such a property we shall call the stability of the system. Some general framework for
studying stability of solutions to variational problems in sublinear case can be found in
[10, 12] and [13] but our method provides suitable results for the family of systems of
Dirichlet problems with generalised p(i),m(i)-Laplacian operators.

In order to obtain the solution to (1.2) we minimise Jk on a set Xk c
x W1>m(x'(fi) which has the following property: for all (u, v) € Xk, the relation

= Fk(x,u(x),v(x)),

(1.2) - div(b(x)\Vv(x)\mix)-2Vv(x)) = F*(z)U(x), */(*))

u{x) |«, = 0, u e Wo
lj)(l)(fi), v(x) | M = 0, v € wZ'm{x)(Q)

implies (u,v) € Xk-
First we show, with the aid growth conditions Fl, F2, F3 (see Section 2), that the

action functional

Mu,v)=

is bounded from below and achieves its minimum (u*, Vk) on Xk- Since Xk is not dense in
W'1'p(x>(fi) x Wl<m^ (Q) we may not apply the Euler-Lagrange equation. Our assumptions
also do not allow us to use either the mountain pass geometry or the topological approach.
In order to show that (uk,Vk) is indeed a solution we construct a dual functional Jk :
W1 xW2^ R

Jk
D(w, z)= I (Fk)' (x, - div w(x), - div z{x))dx

Jn
1 l _ i , \ | « ( X ) J _

Jn(a(x))«')/«*)q{xyWW*
where

W1 = {w € L«M(0) | divu; 6

W2 = {z e Ln<*>(ft) | divz G L

and investigate relations between J and Jk. We relate critical values on Xk and Xk (on
which J^ is considered) and later we relate the relevant critical points. These relations
provide the existence of solutions. Construction of Xk and some convergence of Fk will
further allow us to obtain stability. Here (Fk)* denotes the Fenchel-Young conjugate of
Fk, see [2], that is,

(1.3) (Fk)'(x, wu w,) = sup «u>, z) - Fk(x,zu ^ ) ) ,

where z = (21,22) and w = (wi,w2)- The only work - known to the authors - that
concerns elliptic system with generalised growth is [9]. Following [4] the authors of [9]
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[3] Existence and stability of solutions 455

apply first a direct method of the calculus of variations and later a mountain pass geom-
etry. Since problems with generalised growth conditions are applied in elastic mechanics
and electrorheological fluid dynamics (see [11, 14] and references therein), we believe
that our results may contribute to that research. Concerning some ideas on stability in
variational problems we may mention [6].

2. ASSUMPTIONS AND AUXILIARY RESULTS

In what follows by C\, C | we denote the best Sobolev constants

IMIrf.) < C\ HVu||p(l) for all u € W^x)(il),

IML(x) ^ Cj | |Vu| |m ( l ) for all u e W0
1'm(l)(fi).

Since WQAX)(fl) is continuously embedded into Wo
llP~(f2), as well as WQMX)(Q) into

Wo'm'(n), [3], we denote by C?,C[ the following constants

(2.1) ||VU||P- < CrilVulU,,,
||VW||m- ^ C?\\Vv\\m{x).

Since p~ > N and m~ > N by Sobolev Imbedding Theorem [1] we get

(2.2) max|u(x)| < C% ||Vu||p_ for all u € Wo
ljp"(n),

max|v(x)| ^ CJ1 ||Vu||m. for all v e W^m'(il).

Therefore by (2.2) and (2.3) for all u € W^*\il), v 6 Wo
llIB(l)(n) we get

(2.3) max|«(x)| ^ C\ ||VU||p- < C'Cl \\Vu\\p(x),

max\v(x)\ < C? ||V«||m. ^ C?C? ||Vt,||m(l).

Let us consider two nondecreasing sequences of positive numbers, bounded away
from 0, {dk}f=l, {ck)f-i- We assume that

Fl: | | 1 | | , ( I ) < (1/p- + l/<T)-\ ||l| |n(s, ^ (1/m- + 1/n-)"1 and for

(2.4) CsC?C?esssup m a x m a x

ClC?C? ess sup max max IF* (x, u, v) I ̂  60c*.
en u6[-dtdt]«6[-<:»<:tr

F2: Fk, F*, F* : n x [-do, cfo] x [-Co, Co] -»• ft are Caratheodory functions for all
k = 0,1,2,..., F* is convex in the last two variables on [-dk, dk] x [-ck, ck]
for all fe = 0,1,2,... and almost all x 6 Q.
We may define F* on ilx(R\[-do, do])x(R\[-co, Co]) by putting F* = +00.
Now F* is convex and lower semicontinuous.
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F3 F*(x,0,0) ^ 0, F*(x,0,0) # 0 for almost all x € ft, functions x •->
F*(x, 0,0) and x •-»• (F*)*(i, 0,0) are integrable on ft where (F*)* is defined
by (1.3).

We put

(2.5) xk = {(u,v) € |VU||m(x)

I / \ | > J I /

Reasoning exactly as in [8] we show that Xk has indeed property (1.3). The dual func-
tional J^ will be considered on a set X* which is a set of these (w, z) 6 W1 x W2 for
which there exists a (u, v) € Xk such that

(2.6)

and

(2.7) c

(2.8) - div z(x) = F* (x, u(x), v(x))

and

(2.9) 6(x)|W(x)|m(l)-2ViJ(x) = z{x),

where (u,v) corresponds to (u,v) in (1.3).
Jk and J^ are well defined on Xk and X* due to the following.

LEMMA 2 . 1 . For any k = 0,1,2,..., there exist constants j k , 77* > 0 such that

(2.10)

for all (u, v) 6 .X* and

(2.11) {Fk)*(x,-div w{x),-div z(x))dx

for all (w, z) £ Xi.

PROOF: Relation (2.10) follows by convexity of Fk, Fl, F3 and the estimates

!**(*,u(x),i;(a:))| < |F*(x,0,0)| +sup{|F*(x,0,0)||U(x)|}.

By (2.6), (2.8), (2.10) and the definition of Xjj? we get that

/(F*)*(x,-divu;(x))-divz(x))dx
Jn

= - I Fk(x,u(x),v(x))dx+ I (u(x),v(x))(-divw(x),-divz(x))dx
Jn Jn

is finite. Thus relation (2.11) follows. D
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3. E X I S T E N C E OF SOLUTIONS

THEOREM 3 . 1 . Assume F l , F2, F3. For all k = 0 , 1 , 2 , . . . there exists

{uk,Vk,Wk,Zk) € Xk x X* such that

(3.1) -divwk{x) = F^(x,uk(x),vk(x)), - div zk(x) = F^(x,uk(x),vk{x)),

(3.2) a(x)\Vuk(x)\p{x)-2Vuk(x) = wk(x), b(x)\Vvk(x)\m{x)-\vk(x) = zk(x).

Moreover

(3.3) inf JkD(w,z) = Jk
D{wk,zk) = Jk{uk,Vk)= inf Jk{u,v).

{w,z)eXf (u,«)€Xfc

P R O O F : We fix k = 0 , 1 , 2 . . . . We observe that by Lemma 2.1

- [ Fk(x,u{x),v(x))dx>-ik.

Therefore inf Jk(u,v) is finite. By the properties of Xk there exists a minimising
(u,v)exk

sequence {(u£, w*)}^ 1 for functional Jk on X\ and this sequence may be assumed to be

weakly convergent in Wo
lj l^(fl) x Wo ^(fi) and therefore, up to a subsequence, strongly

in 1/^(0) x Lm(x'(fi). Thus it contains a subsequence convergent almost everywhere,

still denoted by {(" t .^ I? )}^! and its limit is denoted by (uk,vk). We see that

l l^uI l l <

for all n and

Therefore llVujtH^.)^) ^ (4)/(CTC?). By definition of sequence {u^}^=1 we also get
|uj!(z)| ^ dk- Since {ujj}^.! is convergent almost everywhere, we get |u/t(a;)| ^ d*. The
same holds for {vk}%Lv So {uk,vk) e Xk and we get liminf Jk(u^,v^) ^ Jk(uk,vk) since

n—+oo

lim / Ft(x,un
k(x),vk

l(x))dx= [ Ft(x,uk(x),vk(x))dx.

Thus Jk is weakly lower semicontinuous on Xk and since Xk is weakly compact we see

that Jk(uk,vk) = mf Jk(u,v).
(u,v)exk

We show that

(3.4) inf Jk°(w,z)= inf Jk{u,v).
v ; ( ) 6 A - - * v ' Mtxk
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We consider a functional jf : Xk x X* -> R given by the formula

J*(u,v,w,z) =

r r ijlx\ , . r
- I Vu(x)w(x)dx + / —~r Vu(x) dx - I Vv(x)z{x)dx.

Jn Jn^K^j Jn

We observe that for any (u, v) 6 Xk

(3.5) inf jf(u,v,w,z) = Jk(u,v)

and for any (w, z) € X*

(3.6) inf Jf{u,v,w,z) = jk°{w,z).

To show (3.5) we fix (u, v) € X* and obtain by Fenchel-Young inequality

(3.7) sup / [(u(x),u(x))(-divu;(x), -divz(x))

- (Fky(x,-divw(x),-di\z{x))]dx ^ f Fk(x,u(x),v(x))dx.
•" Jn

By definition of X% there exists (£D, ^ e JVĵ  satisfying

-divu;(x) = Fk(x,u(x),v(x)),
-divz(x) = Fk(x,u(x),v(x)),

which provides

(3.8) / (u(x), v(x)) ( - div w;(x), - div z(x))dx
Jn

- f (Fky(x,-divw{x),-divz(x))dx= f Fk(x,u(x),v{x))dx.
Jn Jn

Therefore equality holds in (3.7). This and integration by parts provides

inf J*(u,v,w,z)
(w,z)ex£

= - sup - / (Fky(x,-div w(x),-divz{x))dx
(t»,«)«j| L Jn

+ f Vu(x)w(x)dx + f '

https://doi.org/10.1017/S0004972700039800 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039800


[7] Existence and stability of solutions 459

[ r
- (Fh)'(x,-divw{x),-divz(x))dx

Jn

+ / (u(x),v(x))(— divw(x), — divz(z))
Jn 1

f ^ | v U ( x ) r w d x + f
= - f F*(xM')Mx))dx+ I ^\\Vu(x)\pix)dx+ f M-\Vv{x)\^dx = Jk(u,v)

Jn Jn P(x) Jn "i\X)

so (3.5) follows.

To show (3.6) we fix (w, z) € X*. We obtain by the Fenchel-Young inequalities

sup / / w{x)Vu{x)dx -sup / / w{x)Vu{x)dx [ ^l\Vu{x)\dx
(«i,v)€Xk iJn JaPw'

(3.9) + f Vv(x)z(x)dx - f ^l\W(x)\m{x)dx\
Jn Jn™{x) )

* L («(*))*>/*•> d b 1 ^ 1 * ^ + L {b[x)Y^^)ix)\v^\n

For a given (w, z) £ X* there exists (u,v) £ Xk such that

a(x)\Vu(x)\p{x)~2Vu(x) = w(x), b(x)\Vv{x)\m{x)~2Vv{x) = z(x).

Thus we get

[ w(x)Vu(x)dx - /'44|VS(x)|p(l)dx+ f z(x)Vv(x)dx - [ ^ l
Jn JnP[x) Jn Jn m{x)

Thus equality holds in (3.10) and relation (3.6) follows.

By (3.5) and (3.6) we obtain

inf Jk(u,v) = inf inf jf(u,v,w,z)= inf inf jf{u,v,w,z)= inf jP(w,z)

and (3.4) follows.

Since (uk, vk) G Xk we may take (wk, zk) € Xk such that (3.1) hold. By the Fenchel-
Young inequalities

(3.10)

and
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/„/„
and by a direct calculation we get Jt(u*,u*) ^ Jjf(u>fc,zjt)- By (3.4), it follows that
Jk(uk,vk) ^ inf Jf(ty,z) ^ JjP(t«fc,**)• Hence ./*(«*, wt) = 7f(tyfc,zfc) and by a

direct calculation we have actually equalities in (3.10). Therefore by the properties of
the Fenchel-Young transformation (3.2) holds. Assertion (3.3) follows by (3.4) and since

D

4. STABILITY OF SOLUTIONS

Now we take up the stability problem. We assume Fl - F3 and

F4: F* is differentiable in u on [—do,do] and in v on [—CQ,CQ] for almost all
i £ fi, F ' is differentiable in u on [—do, do] and in v on [—Co, Co] for almost
all x 6 n. There exist constants Pi, /92, #}• A > 0 (independent of A;) such
that

(4.1) max max \F^(x,u,v)\
u€[-do*>] u€[-co,co]

max max IF* (x,u,v)| < /?4.

THEOREM 4 . 1 . Assume Fl, F2, F3, F4 and that for all (u, v) G Xo tiere exists

a subsequence {fct}~i such that

lim f* (x, «(*), w(x)) = /!j (x, u(x), v(x))
I—•OO

and

.lim **(x,u(a:),ti(x)) = Ji*(x,«(x),t;(x))

almost everywhere in fi. For each k = 0,1,2,... tiere exists a solution (uk, Vk) to the

problem (1.2). There exists a subsequence {(«*„, * O } ^ i of tie sequence {(u*,^*)}^.i
and (u, v) G Xo such that

(vkn,vkn) - (u, v) G Xo, weakly in W^x)(il)

and

-div(a(s)|V«(i)|p(x)-2Vw(z)) = F*(xM*)M*)),

(4.2) -div(&(x)|Vt;(x)|m(l)-2Vi7(x)) =fJ(x,C(x),!;(x))l

"(a:) len = 0, v(x) |an = 0.
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P R O O F : By Theorem 3.1 it follows that for each k = 0 , 1 , 2 , 3 , . . . there exists
(u*,wit) £ Xk satisfying (1.2). Since Xk C Xo it follows that we may choose a weakly
convergent subsequence in WQX'(Q) X W0'

m^x'(Q) which up to a subsequence may be as-
sumed to be strongly convergent in L?W{£l) x L m ^ ( Q ) and convergent almost everywhere
to {u,v). Due to F l

esssup F*(x,u(x),u(x)) - F°(x,u(x),u(x))|

(A Q^ PQQQIin / r * | T ?TYT*^ i7 f i "M •

By (4.3) and definition of Xk we obtain that {-divfa(-)|Vufc(-)|P(x)~2Vufc(-))}°° and

< — div(6(-)|Vi;fc(-)| Vtifc(-)j > are weakly convergent in L '^ ( f i ) and Ln^

respectively to functions dx € L9 ( l ) (n) , d2 6 Ln(l )(fi). We obtain that

0 < /^-div(a(x)|Vu*|p(l)-2Vufc) - (-div(o(x)|Vu|p(l)-2Vu)),ufc -u)dx

-¥ ( (d^x)

Thus by the monotonicity of thep(x)—Laplacian we see that di(x) = — div(a(x) |Vu|p^x'~2 Vu)

and similarly d2(x) = -div(6(x)|Vt7|m(l)~2Vi7).

We now prove that

limF^(x,uki(x),vki(x)) =Fu°(x,iZ(x),i7(x)) and
t — • O O

(4.4) lim F^i(x,Uki(x),Vki(x)) = i^(x,u(x),i7(x)) almost everywhere.
l-»0O

We show the first relation. We have

(4.5) F*(x, uki(x),vki(x)) -

M*)M*)) ~ F2(xrfx),v(x)).

By the mean value theorem we observe that

sup y|Fu*j(x,uki,vki)\2 + |Fu
fci(x,uki,^)

)ex v

• y/\uki ~ u\2 + \vki - v\2

Since {ukn }^=l and {vkn }^=1 are convergent almost everywhere, by F4 it follows that

lim ^'(x.ut^xJ.Ufc^x)) - F^(x,u(x),v{x))^ = 0 almost everywhere.
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Thus from (4.6) using the above and by the assumption lim Fki{x,u(x),v(x))
= F£(X,U(X),V(X)) we obtain (4.4). Since the weak limit is equal to an almost ev-
erywhere limit we get (4.3). D

By Theorem 3.1 there exists (uo.Uo) € Xo such that inf Jo(u,v) = JQ{UQ,VQ).
(u,v)ex0

The following corollary shows that under some additional assumptions (u, v) minimises
Jo on XQ.

COROLLARY 4 . 2 . Under the assumptions of Theorem 4.1 if

(4.6) limsupf / Fk(x,uo,vo)dx- [ F°{x,uo,vo)dx ) < 0

and lim Fk(x,u,v) = F°(x,u,v) for almost everywhere x G fi, then (u,v) minimises Jo
k—too

on XQ.

PROOF: Let us suppose that (u, v) does not minimise Jo on Xo, that is,

Jo(u,t;)-Jo(uo,vo) > 0 ,

where (u0, v0) is a point minimising Jo on Xo, provided by Theorem 3.1. Due to the weak
lower semicontinuity of Jo we have

(4.7) liminf(Jo(ujt,vk) - J0(%v)) ^ 0.

Hence, by

0 < J0(u,I') - Jo(uo,uo) = {Jk(uk,vk) - Jo(uo,vo))

- (J*(u*,Uit) - Jo(uk,vk)) - (Jo(uk,vk) - Jo(u,F))

and by (4.7) the proof will be finished by showing that

(4.8) lim (Jk{uk, vk) - J0(uk, vk)) = 0

and

(4.9) lim inf (Jk(uk, vk) - Jo(«o, «b)) < 0.

We get

lim (Jk(uk,vk) - Muk,vk)) = lim ( / F°(x,uk,vk)dx - / Fk(x,uk,vk)dx).

Since

\F°{x,uk,vk) - Fk(x,uk,vk)\ ^ \F°(x,uk,vk)-F°(x,u,v)\

+ \Fk(x,u,v) - F°(x,%v)\ + \Fk(x,uk,vk) - Fk(x,u,v)\
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we have by the mean value theorem and by Fl

\F°(x,uk,vk) - F°{x,u,v)\

sup J\F°(x,u,v)\2 + \F°{x,u,v)\2J\uk - tl|2 + \vk-v\'
u«)ex

y - uf + \vk - vf -* 0,
\Fk(x,uk,vk) - Fk(x,u,v)\ -* 0.

Since Fk(x,u,v) -¥ F°(x,u,v) we obtain

lim f f F°(x,ufcl vk)dx - f Fk(x,uk,vk)dx) = 0,

so (4.8) is shown.

Now since (uk, vk) minimises Jk and by (4.6) we have

(it(uit,Ufc) - Jo(uo,^o)) < liminf(JJk(u0,u0) -
fc—foo k—•oo

= liminf( / F°{x,uo,vo)dx - j Fk{x,u0,v0)dx) < 0,
*-K» \jn Jn )

so (4.9) is proved. D

Investigation of the proof of Theorem 4.1 shows that we may weaken a bit its as-
sumptions. Precisely, instead of F4 we assume Fk and Fk have property as in (4.4). Thus
we have the following corollary.

COROLLARY 4 . 3 . Assume Fl , F2, F3 and that for all (u, v) € Xo there ex-

ists a subsequence {fc<}~i such that lim Fki(x, u(x),v(x)) = F°(x,u(x),v(x)) and

lim Fki(x,u(x),v(x)) = F°(x,u(x),v(x)) almost everywhere in Q. For each
i—•oo

k = 0 ,1 ,2 , . . . there exists a solution (uk,vk) to the problem (1.2), subsequence
{(ufcn.v/tnJj^Lj of the sequence {(ujcWjt)}^ and (u,v) € Xo satisfying (4.3). We assume
that

lim Fk'(r Hi. (T\ lit. (T\\ — F°(T U(T\ V(TY\
t—fOO

(4.10) lim Fki(x,uki(x),vki(x)) = F%(x,u(x),v{x)) almost everywhere

Then (ukn,vkn) -* (u,v) € Xo weakly in Wo
llP(l)(n) x W0

1>m(l)(II). If additionally
lim Fk(x, u, v) = F°(x, u, v) for almost all x e Cl and (4.6) holds, then inf J0(u, v) =

Jfc—foo (u,»)eXo
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5. CONTINUOUS DEPENDENCE ON PARAMETERS

Now we prove that system (5.1) depends continuously on a functional parameter gt-

We are interested in giving conditions asserting that if only 5* -> g in Lq^(Q), then
solutions (ut, Vic) to

-div(o(i)|VU(x)|p( l )-2Vix(i)) = Fu(x,u(x)Mx),9k(x)),

(5.1) -div(6(x)|VV(x)r( x )-2Vt;(i)) = FV(X,U(X)XX),9H(X)),

u(x) | e n = 0, u € Wo
lj>(l)(fi), v(x) \m = 0, v € Wo

lim(l)(n)

converge (up to a subsequence) to the solution (it, v) to

-div(a(x)|VU(x)|p( l )-2Vu(x)) = Fu(x,u(x),v(x),g(x)),

( im(x)-2 \

6(x)|Vi,(x)| Vv(x)) = Fv(x,u(x),v(x),g(x))

Let gk and g~ be functional parameters taken from the set

{g : n —• i l m : g is measurable, <?(x) e Af ahnost everywhere},

where M is a bounded and compact subset of FT1. Existence of solutions to (5.1) for

each k = 0 , 1 , . . . is guaranteed by Theorem 3.1.

We assume that for some d > 0, c > 0 we have
F5: ||1||?(I) ^ (l/p~) + 1/g")-1, ||l||n(l) ^ (1/m- + In")"1 and for all g € M

ClC? Cf ess sup max max |.Fu(x,u, v, g)\ ^ aod,
i€fl ue[-d,d] v6[-c,c]'

CcCT'CT'esssup max max |Fo(x,u,u,fl)| < boc.
en ti6[-d,(ilf6[-c,c]1

F6: Fu(x, 0,0,0) ^ 0, Fv(x, 0,0,0) ± 0 for almost all x € Q,

x i-> F(x, 0,0,0) and x •->• (F)*(x, 0,0,0) are integrable on Q for all g € M.

F7: F : ft x [—d, d] x [-c, c] x M ^ R is a Caratheodory function, that is,
measurable in x and continuous in (u, v, g). F is convex in («, u) on [—d, d]
x [—c, c] for almost all x 6 fl and all g 6 M.

Since the notation changes, we now rewrite the definitions of Xk and action func-
tionals. We have for each A; = 0,1,2, . . . that Xk = X, where

X = {(«,») € W^x)(Cl) x WZM'\O), ||Vu||p(l)
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and

Jk(u,v)= / -7—r|Vu(z)| dx + / —T—r|Vu(x)| dx — / F(x,U(X),V(X),gk(x))dx,

m(x) f

Jnn P\

THEOREM 5 . 1 . Assume F5-F7, gk -> g in L«(l)(ft) and

limsupf / F(x,u,v,gk)dx- / F(x,u,v,g)dxJ ^ 0.
*-»oo \Jn Jn J

Then for each k = 0,1,2,... there exists solutions (uk, vk) to (5.1) minimising Jk given by

(5.2) on X. Moreover, up to a subsequence, {(uk,vk)} converges in 1/^(0.) x Lm(x)(ft)

to (u, v) being solution to

-div(a(x)|VU(x)|p(x)-2VU(x)) = Fu(x,u(x)Mx),9(x)),

-div(b(x)\Vv(x)\m{x)-2Vv(x)) = Fv(x,u(x),v(x),g(x))

where J0(u,v) = inf J0(u,v).
(u,v)€X

P R O O F : We show that conditions of Corollary 4.3 are satisfied with Fk(x, u,v)

:= F(x,u,v,gk) and F°(x,u,v) := F(x,u,v,Tj). Let us fix (u,v) € X. Clearly F5-

F7 imply F1-F3. By F5 it follows that \Fu(x,u,v,gk)\ and |F,,(x,u,tt, jjb)| are bounded

on n x [—d, d] x [—c, c] x M. By the generalised Krasnosielski Theorem [7] the Nemytskij

operators

are well defined and continuous, that is,

Fu(x,u{x),v(x),gk{x)) -> Fu(x,u(x),v(x),g(x)),

Fv(x,u{x),v{x),gk{x)) -»• Fv(x,u{x),v(x),g(x)).

Clearly (4.10) holds. Moreover, by F7 it follows that F(x,u, v,gk) -> F(x,u,v,g) almost

everywhere in fi. Thus assertion follows by Corollary 4.3. D

Now we present a special form of system (5.1); that is, a special form of nonlinearities

in which parameters are given linearly but the sequence of parameters is only weakly

convergent. We provide also Theorem similar to Theorem 5.1.

5.1. LINEAR CASE. We assume that right hand side is in the form

F{x, u, v, gk) = F\x, u, v)gk + F2(x, u, v).
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THEOREM 5 . 2 . Assume F5-F7, gk -»• g weakly in L ^ f t ) and

x .-• F j (-, «(•), «(•)), * -> ̂ J (•- «(•), «(•))

are in L ^ ^ f t ) . Then for each k = 0 ,1 ,2 , . . . there exists solution (uk,vk) to (5.1)
minimi/ting Jk on X. Moreover, up to a subsequence, {(«*,«*)} converges in 1/^(0.)

x Lm(x)(f2) to {u,v) being the solution to

-div(a(x)|VU(x)|p( l )-2VU(x)) = Fu{xM*)M*),9{*)),

~div(b(x)\Vv(x)\m{x)-2Vv(x)) = Fv(x,u(x),v(x),9(x))

and JQ(U,V) = inf JQ{U, V).
(u,v)ex

P R O O F : We have since {gk} is weakly convergent and F j (•, u(-), v(-)), F j (•, u(-), «(•))
are in D>M(n) that

Fl(x,u(x),v(x))gk(x)dx

/ Fj(x,u(x),t;(x))^
Jn

so

/ Fu(x,u(x),v(x))gk(x)dx^ / Fv(x,u(x),v{x))g{x)dx,

r r
I 7*1 IT II(T\ n(T\\Ht.(T\ AT S I J^ IT II(T\ u(fr\ i"n(T\ ATI rv\J/tu'\J'/y'J\.J'jjyk\J')u'J' * I rv\j,, u(A), uyAjjyyxj UJC.

Jn Jn

The assertion follows by By Corollary 4.3. D

6. EXAMPLES

We give now two examples of nonlinearities satisfying our growth assumptions.

E X A M P L E 1. Let US first take

F*{x,«, v) = (CffiCS)-1 (eu + fk(x)u + l-u2) + (CiCTC?)-1 (ic» + i t ; 4 - fk(x)v)

We assume that Q is a bounded subset of RN and

Zl a(x) ^ ao ̂  2Ve + 3, b(x) ^b0^ V3 + 25/12 for all x G ft.

Z2 /fc € L 1 ^ ) . esssup|/*(x)| = 1 and meas {x G ft | /fc(x) = - 1 V /*(x)
x€fl

= -1/2} = 0.
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Clearly assumptions F2 and F3 are satisfied. Fk, Fk are integrable respectively in
u, v, on every compact subset of R. To conclude that F4 holds we only need to show
(4.2). By Z2 and since 0 < dk ^ d0, 0 < ck ^ CQ we get

max max \Fk
u(x,u,v)\ < (C£CpC£)~1(edo + 1),

max max \Fk
v(x,u,v)I < (ClCfC?)-1 (-e00 + c$)

ue[-dk,dk] v€[-ck,ck]' \2 /

We demonstrate that relations (2.4) hold. We obtain

C5C1C2 esssup max max \Fk(x,u, v)\ < edk + dk + 1,

max max |F*(x,«,«)| ^ -ec* + - c | + 1.
xen «e[-d*,d*]»e[-cn,et]

1 2 3

By Zl the functions a; M- ex + (1 - ao)x + 1 and x •-> (l/2)eI + (l/3)x3 - box +1 are both
nonpositive on the intervals [1/2,5/2] and [1/2,2], respectively. Thus

+ dk

for 4 e [1/2,5/2] and ck e [(1/2), 2] and we conclude that (2.4) holds. Therefore we
may take any nondecreasing sequences {dk}, {ck} from [1/2,5/2] and [1/2,2], respectively
and put Xk as in (2.5).

As for stability we consider for k = 1,2,... Fk as in the above but with fk which
now reads

since fk(x) -*• fo(x) := e~x uniformly on Q. By Corollary 4.3 it follows that from the
Now Fl, F2, F3, F4 and Z2 are obviously satisfied. Clearly (4.6) is also satisfied

e fk(x) -*• fo(x) := e~x unifor
sequence {(uk,vk)} of solutions to

-div(a(x)|Vu(x)|p(l)"2Vu(x)) = (Cl
sC*C%)-1 (eu

u(x) |an = 0, u e Wl'p{x)(n), v(x) Un = 0, v e W^'\Q)

we may take subsequence converging to a certain (UQ, VO) being a solution to

- div(a(x)

u(x) |an = 0, u 6 W^{x)(Q), v(x) \m = 0, v e
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Now we check that Fk with gk(x) := fk(x) = e~(fcx2/*+1) satisfies assumptions of
Theorem 5.2. We may rewrite it as follows

F*(x, u, v) = F(x, u, v, gk) = ((Cl
sC{C%rlu + {C2

sC?C?)-lv)gk

so it is in the form required in Theorem 5.2. It is clear that gk —*• g~ in Lq^(Q) and
that F5-F7 hold. Obviously the functions x ^ F*(-,u(-),v(-)), * *-*• Fj(-,u(-), «(•)) G

). Thus assertion of Theorem 5.2 holds.

EXAMPLE 2. We consider

- div(a(z)|Vu(z)|p( l )~2Vu(z)) = |x|2 • | u ( z ) | Q ' ( l M • u(x) • v2{x)

(6.i) + ^ z y n ' N ' N * ) ^ 1 • tt

- div(b{x)\Vv{x)\m{x)-\v{x)) = - ^ - ^ • |z|2 • |U(z)|° ' ( l ) + 1 • v(x)

u(x) Ian = 0, u E

Here fi = B(0,<5) is a ball in R3 and for all fc = 0 ,1 , . . . ajj",a^ > p+ > 3;
flf,/^ > m+ > 3, where a j = supafc(z), ak = infafc(x), ^ = sup/?fc(z),

ien *e« i e n
j9^ = inf /?fc(z). We also assume

W l a(x) ^ OQ > C$C?(%, b(x) 2b0Z C%C?C? for all x E Q.

W2 â " = ^ for all A; = 1,2,... and {a£} is bounded by a+.
W3 (5 satisfies the following inequalities

W4 ck = dk = 2 - (I/A) for all it = 1,2,...

Here

F k { ) | | 2 | | O i ( I ) + 1 * +
"u2 + w ( N + | u |

Obviously assumptions F2 and F3 are satisfied. We show now that (4.2) holds. Clearly
F* is differentiate in u on [—dk,dk] and F* is differentiable in v on [—cjt,cjt] for almost
all x G Cl. Moreover, for all k by W2 and W4 we have

max max
[ ] [

pk + 1
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and similarly

max max | F ^ ( i , u , u ) U 25+<52 +
]

Now we show that (2.4) is also satisfied. By Wl and W2 it is equivalent to showing
that for all k = 1,2,...

t+2 1

or

which is true by W2 and W3. Thus we may put Xk as in (2.5) with ck, dk as in W4.
Again we may conclude that from the sequence {(uk,Vk)} of solutions to (6.1) we may
choose a subsequence converging to the solution (uo, v0) 6 Xo to

= | i | 2 • \u(x)\ao{x)~l • u(x) • v2(x)

+ S^+T-N- |«W|^ 1 •«(.) +M.

-dw(b(x)\Vv(x)\m{x)-2Vv(x)) = ^ - ^ • |x|2 • |U(x)|ao(l )+1 • v(x)
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