Bull. Austral. Math. Soc. Vol. 59 (1999) [181–186]

CHAIN RECURRENT POINTS OF A TREE MAP

TAO LI AND XIANGDONG YE

We generalise a result of Hosaka and Kato by proving that if the set of periodic points of a continuous map of a tree is closed then each chain recurrent point is a periodic one. We also show that the topological entropy of a tree map is zero if and only if the ω -limit set of each chain recurrent point (which is not periodic) contains no periodic points.

1. INTRODUCTION

By a tree we mean a connected compact one-dimensional branched manifold containing no circle. The dynamics of a tree map, that is, a continuous map from a tree into itself, have been studied intensively in the recent years (see the references). In this paper we shall study the set of chain recurrent points of a tree map. It is known that if f is an interval map and the set of periodic points of f is closed, then each chain recurrent point is a periodic one [6, 13]. Recently, Hosako and Kato [5] showed that if the set of non-wandering points of a continuous map of a tree is finite, then each non-wandering point is a periodic point. We shall generalise the result of [5] and prove some other results. To be more precise, we need some notation.

A subtree of T is a subset of T, which is itself a tree. For $x \in T$ the number of connected components of $T \setminus \{x\}$ is called the *valence* of x in T. A point of T of valence 1 is called an *end* of T, and a point of valence different from 2 is called a *vertex* of T. Let V(T) be the set of vertices of T. The closure of each connected component of $T \setminus V(T)$ is called an *edge* of T. The set of ends of T and the number of ends of T will be denoted by E(T) and End (T) respectively. Let $n \ge 2$. A tree is said to be an *n*-star if T has a point b of valence n and the closure of each connected component of $T \setminus b$ is an interval. Let $A \subset T$. We shall use [A] to denote the smallest closed connected subset containing A. If $A = \{a, b\}$ then we use [a, b] to denote [A]. We define $(a, b) = [a, b] \setminus \{a, b\}$ and we similarly define (a, b] and [a, b). For a subset A of T, we use int(A), \overline{A} and b(A) to denote the interior, the closure and the boundary of A respectively.

Let f be a tree map. The set of periodic points of f, the set of almost periodic points of f, the set of recurrent points of f, the ω -limit set of x, the set of

Project supported by NSFC 19625103.

Received 27th May, 1998

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

non-wandering points of f and the set of chain recurrent points of f will be denoted by P(f), AP(f), R(f), $\omega(x, f)$, $\Omega(f)$ and CR(f) respectively (see [3] for the definitions). It is known that $P(f) \subset AP(f) \subset R(f) \subset \bigcup_{x \in T} \omega(x, f) \subset \Omega(f) \subset CR(f)$. For the notion of no division for a periodic orbit of a tree map, the notion of topological entropy of f (denoted by h(f)) and the notion of minimal set see [1, 11, 9, 12]. It is known that if A is a minimal set of f, then $A \subset AP(f)$. For $x \in T$, let $\alpha(x, f) = \{y \in T : \text{ there are } n_i \longrightarrow \infty, y_i \in f^{-n_i}(x), \text{ with } y_i \longrightarrow y\}.$

Now we are in the position to state the main results of the paper.

THEOREM A. Let T be a tree and $f: T \longrightarrow T$ be continuous. Then CR(f) = P(f) if and only if $\overline{P(f)} = P(f)$.

THEOREM B. Let $f: T \longrightarrow T$ be a continuous map from a tree T into itself. Then f has zero topological entropy if and only if for each $x \in CR(f) \setminus P(f)$, $\omega(x, f) \cap P(f) = \emptyset$. REMARK. As there is a continuous map f from a graph G into itself such that $\Omega(f) = \{e, t\}$ with f(e) = e and $t \notin P(f)$ [2], the conclusions of Theorem A,B do not hold for graph maps.

2. PROOFS OF THE MAIN RESULTS

In this section we shall give the proofs of Theorem A and B. To do this we need the following known results.

LEMMA 2.1. [10, 11, 1] Let T be a tree and $f: T \longrightarrow T$ continuous. Then 1. $\overline{P(f)} = \overline{R(f)}$.

- 2. f has a non-divisible periodic orbit if and only if there are some $x \in T$ and some $n \in \mathbb{N}$ with (n,m) = 1 for each $2 \leq m \leq \text{End}(T)$ such that $x \in (f^n(x), f(x))$.
- 3. h(f) > 0 if and only there is $n \in \mathbb{N}$ such that f^n has a non-divisible periodic orbit.

LEMMA 2.2. [8] Let $f: T \longrightarrow T$ be a continuous map of a tree T. Then h(f) > 0 if and only if there are some $n \in \mathbb{N}$ and two disjoint closed intervals J_1, J_2 contained in some edge of T such that $f^n(J_i) \supset J_1 \cup J_2$ for i = 1, 2.

The following two lemmas will be used in the proof of Lemma 2.5.

LEMMA 2.3. Let T be a compact metric space with metric d and $f: T \longrightarrow T$ be continuous. If A is an open subset of T such that $f(\overline{A}) \subset A$, then for each $x \in CR(f) \setminus A$ and each $n \in \mathbb{N}$ we have $f^n(x) \notin A$.

PROOF: As $CR(f^n) = CR(f)$ for each $n \in \mathbb{N}$ we only need to show that $f(x) \notin A$ for each $x \in CR(f) \setminus A$. Assume the contrary. That is, there is $x \in CR(f) \setminus A$ such that $f(x) \in A$. Let

$$arepsilon = \inf ig \{ d(y,z) : y \in T \setminus A, \,\, z \in fig(\overline{A}ig) ig \}.$$

By our assumption, $\varepsilon > 0$. As $x \in CR(f)$ there are x_0, x_1, \ldots, x_n such that $x_0 = x_n = x$ and $d(f(x_i), x_{i+1}) < \varepsilon$ for each $i = 0, \ldots, n-1$. As $f(x_0) = f(x) \in A$ we have $x_1 \in A$ and inductively we have $x_i \in A$ for $1 \leq i \leq n$. That is, $x \in A$, a contradiction.

LEMMA 2.4. Let $n \in \mathbb{N}$ and $n \ge 2$. Then there is $l(n) \in \mathbb{N}$ such that for every $m \in \mathbb{N}$ there is $m' \in \{m+1, \ldots, m+l(n)\}$ such that (m', i) = 1 for each $2 \le i \le n$.

PROOF: The lemma can be checked by taking l(n) = n!.

The key lemma for the proofs of the main theorems will be the following. Note that we use F(f) to denote the set of fixed points of f.

LEMMA 2.5. Let T be a tree and $f: T \longrightarrow T$ be continuous. If there is an $x \in CR(f) \setminus P(f)$ such that $\omega(x, f) \cap F(f) \neq \emptyset$, then h(f) > 0.

PROOF: Let
$$x \in CR(f) \setminus P(f)$$
 and $e \in \omega(x, f) \cap F(f)$.

(A) if there are $x_1 \in (x, e)$ and some $n \in \mathbb{N}$ such that $f^n(x_1) = x$ then h(f) > 0.

As $f^n[x_1, e] \supset [x, e]$, there is $x_2 \in (x_1, e)$ with $f^n(x_2) = x_1$. Inductively, for each $i \ge 3$ there is $x_i \in (x_{i-1}, e)$ with $f^n(x_i) = x_{i-1}$. Since $e \in \omega(x, f)$ we have that $e \in \omega(x, f^n)$. Let S be the component of $T \setminus \{x_{l(n)}\}$ which contains x. Then there is $m \in \mathbb{N}$ such that $f^{mn}(x) \notin S$. We have:

$$x_i \in (f^n(x_i), f^{(m+i)n}(x_i)), \quad i = 1, 2, \dots, l(n).$$

By Lemma 2.4 we know that there is $1 \leq i_0 \leq l(n)$ such that $(m + i_0, j) = 1$ for each $j = 2, \ldots$, End (T). By Lemma 2.1, $h(f^n) > 0$, and hence h(f) > 0.

Let T_1 be the component of $T \setminus \{x\}$ containing e and assume that for each $n \in \mathbb{N}$ there is no $y \in (x, e)$ with $f^n(y) = x$.

(B) There is $y \in T_1$ such that f(y) = x.

Assume the contrary. That is, there is no $y \in T_1$ such that f(y) = x. Then $f(\overline{T_1}) \subset T_1$, contradicting Lemma 2.3 as $e \in T_1$ and $e \in \omega(x, f)$.

Let $n \in \mathbb{N}$ and $W_n = T_1 \cap \left(\bigcup_{j=1}^n f^{-j}(x)\right)$. Let V_n be the component of $T_1 \setminus W_n$ containing e. As for each $n \in \mathbb{N}$ there is no $y \in (x, e)$ with $f^n(y) = x$, we have that $x \in \overline{V_n}$. Moreover, $E(\overline{V_n}) \subset E(T_1) \cup \bigcup_{j=1}^n f^{-j}(x)$.

(C) For each $n \in \mathbb{N}$ there is $y_n \in V_n$ such that $y_n \in f^{-(n+1)}(x)$.

Note that V_n is an open subset of T as $\bigcup_{j=1}^n f^{-j}(x)$ is closed. If there is no $y \in V_n$ such that $y \in f^{-(n+1)}(x)$ then we have $f(\overline{V_n}) \subset V_n$, as $e \in V_n$ and T is uniquely arc-wise connected. This contradicts Lemma 2.3 since $e \in \omega(x, f)$ and $e \in V_n$.

Let $W = T_1 \cap \left(\bigcup_{j=1}^{\infty} f^{-j}(x) \right)$ and V be the component of $T_1 \setminus W$ containing e. It is easy to see that V contains a degenerate interval. Let $P = \overline{V} \cap \alpha(x, f)$. Then $P \subset E(\overline{V}) \cup V(T_1)$ is finite. We claim:

0

[4]

(D) P is not empty and $f(P) \subset P$.

If $P = \emptyset$, then $V = V_n$ for some $n \in \mathbb{N}$. By (C), there is $y_n \in V$ such that $y_n \in f^{-n+1}(x)$, a contradiction.

Let $y \in P$. Then $f(y) \in \alpha(x, f)$ and there are $y_{n_i} \in f^{-n_i}(x)$ such that $y_{n_i} \longrightarrow y$ and $y_{n_i} \notin V$. Assume that $f(y) \notin \overline{V}$. Then there is $p \in P$ such that $p \in (e, f(y))$. If $p \in \bigcup_{j=1}^{\infty} f^{-j}(x)$, then there is $z \in (y, e)$ such that f(z) = p. This implies that $z \in \bigcup_{j=1}^{\infty} f^{-j}(x)$, and hence $y \notin \overline{V}$, a contradiction. Thus we have $p \notin \bigcup_{j=1}^{\infty} f^{-j}(x)$. If $(p, f(y)) \cap (\bigcup_{j=1}^{\infty} f^{-j}(x)) \neq \emptyset$, then there is $z \in (y, e)$ such that f(z) = p. This implies that $y \notin \overline{V}$, a contradiction. We must have $(p, f(y)) \cap (\bigcup_{j=1}^{\infty} f^{-j}(x)) = \emptyset$. Thus $f(y) \in \overline{V}$, a contradiction. Hence $f(y) \in \overline{V} \cap \alpha(x, f)$. That is, P is invariant under f.

As P is a finite invariant subset, there is n such that $f^n(y) = y$ for each $y \in P$. Let $g = f^n$ and $y_1 \in P$. Then there are $y_{n_i} \in f^{-n_i}(x)$ with $y_{n_i} \longrightarrow y_1$. It is easy to see that there is $1 \leq i_0 \leq n$ such that $f^i(y_1) \in f^{-n_i+i_0}(x)$ and $-n_i + i_0 | n$. Let $y = f^i(y_1)$. Then $y \in \alpha(x, g)$ and g(y) = y. We have:

(E) There are $z \in T$, $m \ge 2$ with (m, i) = 1 for each $2 \le i \le \text{End}(T)$, $1 \le t \le \text{Val}(y)$ such that $z \in (g^t(z), g^{tm}(z))$.

Let U be a small connected neighbourhood of y such that \overline{U} is homeomorphic to some n-star with n = Val(y) and $x \notin U$. Let b_1, \ldots, b_n be the connected components of $U \setminus \{y\}$. As y is a fixed point of g, there is a small connected neighbourhood V of y such that $g^i(V) \subset U$ for $i = 0, 1, \ldots, n + 1$. Since $y \in \alpha(x, g)$ there is n_i such that $y_{n_i} \in g^{-n_i}(x) \cap V$. Then there is $q \in V$ such that $q, g(q), \ldots, g^t(q) \in U$ with $q \in (y, g^t(q)) \subset b_{n_0}$ and $g^t(q) \in Orb(y_{n_i}, g)$ for some $1 \leq t \leq n, 1 \leq n_0 \leq n$. Then we have $q_{i+1} \in b_{n_0}$ such that $q_{i+1} \in (y, q_i)$ and $g^t(q_{i+1}) = q_i$ for each $i \in \mathbb{N}$. (Set $q = q_1$.) By using the same idea as in the proof of (A) and the fact that $e \in \omega(x, g)$ we get the conclusion of (E).

By Lemma 2.2 we have $h(g) = (h(g^t))/t > 0$, and a consequently h(f) > 0.

COROLLARY 2.6. Let $f: T \longrightarrow T$ be a continuous map from a tree T into itself. If $CR(f) \neq P(f)$, then $AP(f) \neq P(f)$ and consequently, P(f) is not closed.

PROOF: If h(f) > 0, then by Lemma 2.2 there are two disjoint closed intervals J_1, J_2 contained in some edge E of T and $n \in \mathbb{N}$ such that $f^n(J_1) \cap f^n(J_2) \supset J_1 \cup J_2$. Hence there are a closed invariant (under f^n) subset X of E and a continuous surjective map $\phi :$ $X \longrightarrow \Sigma_2$ such that $\phi \circ f^n = f^n \circ \sigma$, where (Σ_2, σ) is the one-sided shift with two symbols. Moreover, ϕ is one-to-one except on a countable subset of X (see [3]). Then using [12] we get a non-trivial minimal set of f^n . That is, $AP(f^n) \neq P(f^n)$ and hence $AP(f) \neq P(f)$. Now we assume that h(f) = 0 and $x \in CR(f) \setminus P(f)$. If $\omega(x, f) \cap P(f) \neq \emptyset$, then there is $y \in \omega(x, f) \cap P(f)$ with period n for some $n \in \mathbb{N}$. Thus there is $i \in \mathbb{N}$ such that Chain recurrent points

 $f^{i}(y) \in \omega(x, f^{n})$ as $\omega(x, f) = \bigcup_{i=1}^{n} \omega(f^{i}(x), f^{n})$ and $f(\omega(f^{j}(x), f^{n})) = \omega(f^{j+1}(x), f^{n})$ for each $j \in \mathbb{N}$. Note that $f^{i}(y)$ is a fixed point of f^{n} . By Lemma 2.5, we have $h(f^{n}) > 0$, a contradiction. Hence we have $\omega(x, f) \cap P(f) = \emptyset$. Let A be a minimal set contained in $\omega(x, f)$. Then A is not trivial. That is, $AP(f) \neq P(f)$.

As $P(f) \subset AP(f) \subset \overline{R(f)} = \overline{P(f)}$, we have that P(f) is not closed.

PROOF OF THEOREM A: It is clear CR(f) = P(f) implies P(f) is closed. Now assume that P(f) is closed. By Corollary 2.6, we have CR(f) = P(f). This ends the proof.

To prove Theorem B we need the following lemma.

LEMMA 2.7. Let $f: T \longrightarrow T$ be a continuous map from a tree T into itself. If h(f) > 0, then there is $x \in CR(f) \setminus P(f)$ such that $f''(x) \in P(f)$ for some $n \in \mathbb{N}$.

PROOF: By Lemma 2.2 there are two disjoint closed intervals J_1, J_2 contained in some edge E of T and $n \in \mathbb{N}$ such that $f^n(J_1) \cap f^n(J_2) \supset J_1 \cup J_2$. Let $g = f^n$, $J_i = [a_i, b_i]$ and give an orientation of E such that for each $x_i \in J_i, x_1 < x_2$. Then there are a fixed point $e \in J_1$ of g and $z \in J_1$ such that $g(z) = b_2$. Without loss of generality we assume that e < z and $(e, z) \cap F(g) = \emptyset$. Take a point $z < w \in E$ such that g(w) = e. Then $w \notin P(f)$ and $w \in \Omega(g) \subset CR(f)$. Hence $w \in CR(f) \setminus P(f)$ and $f^n(w) \in P(f)$.

PROOF OF THEOREM B: Assume that h(f) = 0 and there is $x \in CR(f) \setminus P(f)$ with $\omega(x, f) \cap P(f) \neq \emptyset$. Let $y \in \omega(x, f) \cap P(f)$ and let the period of y be n. As $\omega(x, f) = \bigcup_{i=0}^{n-1} \omega(f^i(x), f^n)$, there is i such that $y \in \omega(f^i(x), f^n)$. Hence $f^{n-i}(y) \in \omega(x, f^n)$. Note that $f^{n-i}(y)$ is a fixed point of f^n and $x \in CR(f) \setminus P(f) = CR(f^n) \setminus P(f^n)$, a contradiction.

The sufficiency of the theorem follows from Lemma 2.7.

References

- L. Alseda and X. Ye, 'No-division and the set of periods for tree maps', Ergodic Theory Dynamical Systems 15 (1995), 221-237.
- L. Block, 'Continuous maps of the interval with finite nonwandering set', Trans. Amer. Math. Soc. 240 (1978), 221-230.
- [3] L. Block and W.A. Coppel, Dynamics in one dimension, Lect. Notes in Math. 1513 (Springer-Verlag, Berlin, Heidelberg, New York, 1992).
- [4] J. Franks and M. Misiurewicz, 'Cycles for disk homeomorphisms and thick trees', Contemp. Math. 152 (1993), 69-139.
- [5] H. Hosaka and H. Kato, 'Continuous maps of trees and non-wandering sets', Topology Appl. 81 (1997), 35-46.
- [6] Z. Nitecki, 'Maps of the interval with closed periodic set', Proc. Amer. Math. Soc. 85 (1982), 451-456.
- [7] T. Li, M. Misiurewicz, G. Pianigian and J. Yorke, 'Odd chaos', Physics Lett. A 87 (1981), 271-273.

	Τ.	Li	and	Х.	Ye
--	----	----	-----	----	----

[6]

- [8] J. Llibre and M. Misiurewicz, 'Horseshoe, entropy and periods for graph maps', *Topology* 32 (1993), 649-664.
- [9] P. Walters, An introduction to ergodic theory (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
- [10] X. Ye, 'The center and the depth of the center of a tree map', Bull. Austral. Math. Soc. 48 (1993), 347-350.
- [11] X. Ye, 'Tree maps with non divisible periodic orbits', Bull. Austral. Math. Soc. 56 (1997), 467-471.
- [12] X. Ye, 'D-function of a minimal set and an extension of Sharkovskii' theorem', Ergod. Theory Dynamical Systems 12 (1992), 365-376.
- [13] Z. Zhou, 'Self-mappings of the interval without homoclinic points', (in Chinese), Acta. Math. Sinica 25 (1982), 633-640.
- [14] J. Zhang and J. Xiong, Iterations of functions and one-dimensional dynamics, (in Chinese) (Sichuan Education Press, 1992).

Department of Mathematics University of Science and Technology of China Hefei, Anhui 230026 Peoples Republic of China e-mail: yexd@ustc.edu.cn