
ON EXTENSIONS OF TOPOLOGIES 

CARLOS J. R. BORGES 

1. Introduction. If (X, r) is a topological space (with topology r) and 
A is a subset of X, then the topology r(A) = {UU (VC\ A)\U, V £ T} is 
said to be a simple extension of r. I t seems that N. Levine introduced this 
concept in (4) and he proved, among other results, the following: 

(A) If (X, r) is a regular (completely regular) space and A is a closed sub
set of X, then {X, r(A)) is a regular (completely regular) space. 

(B) Let (X, r) be a normal space, and A a closed subset of X. Then 
(X, T(A)) is normal if and only if X — A is a normal subspace of (X, r ) . 

(C) Let (X, r) be a countably compact (compact or Lindelôf) and A (£ r. 
Then (X, r(^4)) is countably compact (compact or Lindelôf) if and only if 
(X — A, T C\ (X — A)) is, respectively, countably compact (compact or 
Lindelôf). 

However, Levine failed to give necessary and sufficient conditions for 
(X, r(A)) to inherit the following topological properties from (X, r ) : regu
larity, complete regularity, normality, perfect normality, collectionwise 
normality, paracompactness, stratifiability,1 and metrizability. We shall 
settle this matter by proving the following: 

(A') (X, T(A)) inherits regularity from (X, r) if and only if cA — A 
(where cA denotes the closure of A in (X, r)) is a closed subset of (X, r ) . 

(B') (X, T(A)) inherits complete regularity (normality, collectionwise nor
mality, paracompactness, stratifiability, or metrizability) from (X, r) if and 
only if (X, r{A)) (X — A, r(X — ̂ 4)) does, and is a regular space. 

Furthermore we shall prove some results concerning the connectedness of 
(X, r(A)) and give some applications of our results. 

Finally, we shall develop the concept of infinite extensions (see Definition 
5.1) of topologies and prove that most results which are valid for simple 
extensions are also valid for countably infinite extensions. 

Unless otherwise specified we adopt the terminology of Kelley (3), except 
that all our spaces are T\. 

Received December 9, 1965, and in revised form, April 22, 1966. This research was sup
ported by the NSF Grant GP-4770. 

*A topological space (X, r) is stratifiable if and only if to each open U C X one can assign 
a sequence { Ui, Ui, . . .} of r-open subsets of X such that Un~ C U for each n, U£°=i Un = U, 
and Un C Vn (for each n) whenever U C V. The correspondence U —> {Z7i, Vi, . . .} is called 
a stratification of (X, r ) . Our stratifiable spaces are equivalent to the ikf3-spaces of Ceder 
(2). For the sake of perspective we point out that metrizable spaces are stratifiable, stratifi
able spaces are perfectly paracompact, and all Cl^-complexes of Whitehead are stratifiable. 
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2. Notation and preliminary results. Let (X, r) be a topological space, 
T(A) a simple extension of r, and N any subset of X. Then we make the 
following definitions: 

(a) rr\B = {c/n£|c/e T}, 
(b) N is r-open (r-closed) provided that N £ r (iV is a closed subset of 

(X , r ) ) , 
(c) cN (Int iV) denotes the closure of N (interior of N) with respect to r, 
(d) cA N denotes the closure of N with respect to r(A), 
(e) A family % of subsets of X is r-locally finite (ro^locally finite) if it is 

locally finite (c-locally finite) with respect to r. 
The same applies to any subset of Y of X and any topology /x on F. 

Finally we state some obvious, but vital, facts about T(A), some of which 
already appear in Levine (4). 

LEMMA 2.1. Let (X, r) be a topological space and T{A) a simple extension of 
r. Then 

(a) rC\A = r(A)C\A, 

(b) r r\ (x - A) = T(A) r\ (x - A), 
(c) X — A is T(A)-closed, 
(d) If x i A and B is any subset of X, then x £ cB if and only if x Ç cA B. 

3. Basic properties of simple extensions. Before we embark on our 
main task, it seems appropriate to point out that whenever A is a r-closed 
subset of X, then (X, r{A)) is the disjoint union of two r(^4)-clopen2 subsets 
A and X — A such that r(A) C\ A = T C\ A and 

T(A) n (x - A) = r n (x - A). 

Consequently, the following are easily seen to be true: 
(a) If A is a r-closed subset of X, then (X, r(^4)) inherits regularity, 

complete regularity, normality, perfect normality, collectionwise normality, 
paracompactness, stratifiability, or metrizability from (X, r) if and only if 
(X - A,T(X - A)) does. 

(b) If A is a r-closed subset of X, with A ^ X, then (X, T(A)) is never 
a connected or pathwise connected space (the same is not true otherwise, as 
will be demonstrated in Theorem 4.1). 

We shall now prove, in the next two results, necessary and sufficient con
ditions for (X, T(A)) to inherit regularity from (X, r) . Our Theorem 3.2 will 
thus improve (4, Theorem 2). 

PROPOSITION 3.1. Let (X, r) be a regular topological space and let A be a 
subset of X. Then (X, r(^4)) is not a regular space if and only if there exists 

2A subset A of any topological space (X, r) is r-clopen provided that A is r-open and 
r-closed. 
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an element x of A such that every r-neighbourhood N of x contains some element 
of cA — A. 

Proof. First we prove the "if" part: Let U be a r(A)-neighbourhood of x 
such that [ / C A and assume that there exists a r (A) -closed r (A) -neighbour
hood M of x such that M C U. Then x G M' C\ A C M for some i f ' £ r 
and there exists 3/ Ç ikf P\ (ĉ 4 —A), by hypothesis. Hence 

y G c(M' Pi 4 ) C cM = cA M, 

due to (4, Lemma 4), a contradiction (since cA M = M C A). 
Now we prove the "only if" part: Assume that (X, r(A)) is not a regular 

space. Then there exists x G X at which r(^4) is not regular (i.e., some T(A)-
neighbourhood U of x contains no r(A)-closed r(^4)-neighbourhood of x). 
Clearly, x f i (assume that x d A and [ / = F U ( 0 P i i ) , where 0 is the 
empty set, is a r (^4)-neighbourhood of x and IF is a r-closed r-neighbourhood 
of x such that IF C F (note that (X, r) is a regular space). Since cAW C cW, 
due to (4, Lemma 2), then W U ( 0 H 4 ) is a r(^4)-closed r(4)-neighbour
hood of x which is contained in U and thus (X, r{A)) is regular at x). Fur
thermore if some r-neighbourhood N of x does not contain any point of 
cA — A, then (X, r(A)) is certainly regular at x (let [ / = 0 U ( O H i ) be 
a r (̂ 4 )-neighbourhood of x and let F be a r-closed r-neighbourhood of x 
such that F C i V n O . Then cA(VC\ A) = c(V f\ A) C VC\ cA due to (4, 
Lemma 4) and the fact that F is r-closed. However V C\ cA = F Pi 4̂ since 
V (Z N f~\0 and iV contains no points of cA —A. Consequently, we get that 

cA(vr\A) cvr\Ac(Nr\o)r\Acu 
and thus (X, r(A)) is regular at x, a contradiction which completes the proof. 

THEOREM 3.2. Let (X, r) be a regular topological space and let A be a subset 
of X. Then (X, r{A)) is a regular space if and only if cA — A is a r-closed 
subset of X {i.e., A C\ bdry A C X - (cA - A) Ç r) . 

Proof. I t suffices to show that for each x 6 A C\ bdry A there exists a 
r-neighbourhood N of x such that N C\ bdry A (Z A C\ bdry A, a fact which 
follows immediately from Proposition 3.1. 

We are now ready to improve (4, Theorem 4) as follows: 

THEOREM 3.3. Let {X, r) be a completely regular topological space and let A 
be a subset of X. Then (X, r(A)) is a completely regular space if and only if it 
is a regular space. 

Proof. I f x Ç X - i o r x É Int^4, then r(^4) is clearly completely regular 
at x (i.e., for every r(^4)-neighbourhood N of x there exists a continuous 
function / : X —> 7, where I is the closed unit interval, such that f(x) = 0 
and jf(X — N) = 1) since any r-continuous function on X is r (^4)-continuous 
and any r-neighbourhood base for x is also a r(A)-neighbourhood base for x. 
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If x Ç A H bdry A let N C\ A be any r(A)-neighbourhood of x and con
sider a r (̂ 4) -neighbourhood U C\ A of x, with UC.N, such that 

[ / H bdry ,4 C ^ P b d r y A 

Since 04, r ( 4 ) C\ A) is completely regular by (4, Lemma 3), there exists a 
r04)-continuous function/: A —•» / such tha t / (x) = 0 and/(^4— [ / r \ i ) = l. 
Now we define/: X —» / as follows: 7̂  (a) = / (a) for each a f i and F(y) = 1 
for each y £ X - A. Clearly F ( Z - N C\ A) = 1 (since U C iV), ^ ( s ) = 0 , 
and it is easily seen that F is r (^4)-continuous (since any z £ U — A has a 
r-neighbourhood which misses A). 

Next we improve Theorem 5 in Levine (4). 

THEOREM 3.4. Let (X, r) be a normal space and A a subset of X. Then (X, r{A)) 
is a normal space if and only if it is a regular space and X — A is a normal 
subspace of (X, r) . 

Proof. The "only if" part is obvious. We therefore prove the "if" part. 
Let F and G be disjoint r(A)-closed subsets of X. Since cA — A is a 

r-closed subset of X, due to Theorem 3.2, then Ff = F C\ \cA —A] and 
G = G C\ [cA — A] are disjoint r-closed subsets of X. Therefore there exist 
r-open subsets U and V of X such that U P V = 0, F' C U, and G' C V 
(indeed, we shall choose U and V such that cU P cV =• 0 and 

cUC\cG = 0 = c F H ^ , 

which can be done because i7' P cG = 0 and G' P cF = 0, and (X, r) is 
normal). Then F* = (F — A) — U and G* = (G — A) — V are closed sub
sets of (X — A, r (^ (X — A)). Therefore there exist r-open subsets Ur and 
V of X such that {V - A)C\ (V -A) = 0, U' - A D Fm, and 
F ' - 4 D G*. However Fm, G* C X - cA and hence Z7 - cA and F ' - cA 
are disjoint r-open sets such that Uf — cA D T7* and F ' — cA D G*. Conse
quently, U*= UU[U' - (cA \J cV)] and F* = F U f F ' - M U ctO] 
are disjoint r-open sets such that F — A C. U* and G — A C F*, since 
c l 7 P (G - A) = 0 = c F H (F - A). 

Finally let FA = F — U* and GA = G — F#. It is easily seen that FA and 
G A are disjoint r-closed subsets of X and hence cU^J FA and c F U G ^ are 
disjoint r-closed subsets of X. Therefore there exist disjoint r-open subsets 
M and N of X such that M D cï/ U FA and TV 3 cV \J GA. Consequently, 
U" = U*VJ(Mr\A) and V" = V*\J <^NC\ A) are disjoint r(^)-open 
subsets of X (note that M P F = 0 and N C\ U = ti) such that T7 C Z7" 
and G C F" , completing the proof. 

Similarly we can prove the following: 

THEOREM 3.5. Let (X, r) be an hereditarily normal space and A a subset 
of X. Then (X, T(A)) is an hereditarily normal space if and only if it is a 
regular space. 
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Proof. This is immediate from the preceding result and the fact that, for 
each subset F of X, (F, (r H Y) (A r\ F)) = (F, r(A) H F). 

Furthermore, the following is also true: 

THEOREM 3.6. Let (X, r) be a perfectly normal space and A a subset of X. 
Then (X, r(A)) is a perfectly normal space if and only if it is a regular space. 

Proof. Since the "only if" part is clear, we proceed to prove the "if" part. 
Because of Theorem 3.4 (X, T(A)) is a normal space. We shall now show 
that each W £ r(A) is the union of countably many r(^4)-closed subsets of 
X: Clearly W = U\J {VC\ A) such that U, V G r, and V C\ {cA - A) = 0 
(since cA — A is r-closed by Theorem 3.2). Then 

U = U An and V = U Bn 
n=l n=l 

for some sequences {A\, A2l . . .} and {Bh B2} . . .} of r-closed subsets of X. 
Hence 

CO 

W= U[AH\J (BnC\A)} 

and each An \J (Bn P\ A) is r (^4)-closed (since each .£„ H 4̂ is r 04)-closed). 
Consequently (X, r{A)) is perfectly normal, which completes the proof. 

Using the same basic method of proof of Theorem 3.4 we can also prove 
the following: 

THEOREM 3.7. Let (X, r) be a collectionwise normal space and A a subset 
of X. Then (X, T(A)) is a collectionwise normal space if and only if it is a 
regular space and X — A is a collectionwise normal subspace of (X, r). 

Proof. Since the "only if" part is clear, we proceed with the proof of the 
"if" part. Let {Aa)a^F be a r(A)-discrete collection of T(A)-closed subsets 
of X and let A'a = AaC\ (cA —A) for each a £ F. Then there exists a 
r-discrete family { Va}a^F of r-open subsets of X such that A'a C Ua for each 
a 6 F (since {Ar

a)a<zF is a r-discrete family of r-closed sets). Clearly, for 
each a £ F, 

A'a H c(\J {Ap | 0 G i? and 0 ^ a} ) = 0 

and thus we shall choose the sets Ua such that cUar^Ap = 0 whenever 
a ^ 0. Letting ^4a* = (̂ 4a — 4 ) — Ua, we get that {^4a*}a€F is a discrete 
family of closed subsets of (X — A, r C\ (X — A)) such that Aa* C X — cA 
for each a £ F. Consequently there exist pairwise disjoint r-open subsets U'a 

of X such that U'a — cA 3 ^4a*. Letting ^4a(^4) = 4̂« — [7'a we get that 
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\cUa\J Aa(A)}açF is a discrete family of r-closed subsets of X. Therefore 
there exists pairwise disjoint r-open subsets Va of X such that 

cUaVJAa(A) C Va 

for each a G F. Consequently { Z7«* VJ (Var\ A)}aeF is a pairwise disjoint 
family of r 04)-open subsets of X such that ^4a C Ua* U (Fa Pi ^4) for each 
a (z F, and hence (X, r(^4)) is collectionwise normal. 

Finally we improve (4, Theorem 6) as follows: 

THEOREM 3.8. Let (X, r) be a regular Lindelôf (compact; countably compact) 
space and A a subset of X. Then (X, r(A)) is a regular Lindelôf (compact; 
countably compact) space if and only if it is a regular space and X — A is 
respectively a Lindelôf (compact; countably compact) subspace of (X, r) . 

Proof. Immediate from our Theorem 3.2 and (4, Theorem 6). 

We conclude this section with results concerning simple extensions of para-
compact, stratifiable, and metrizable spaces. No similar results appear in (4). 

THEOREM 3.9. Let (X, r) be a paracompact regular space and A a subset of 
X. Then (X, r(A)) is a paracompact regular space if and only if it is a regular 
space and X — A is a paracompact subspace of (X, r) . 

Proof. First we prove the "if" part. Let U be a r (^4)-open cover of X 
(without loss of generality we assume that for each x G cA there exists some 
U G II H r such that x G U and U H A = 0, for each a G A there exists 
some U G r such that a G U H A G U, and for each y G cA — A there exists 
some V G U H r such that y G V) and let SB = { U G U| U G r and 
Ur\ [cA — A] 9* 0}. Since cA — A is a r-closed subset of X, due to Theorem 
3.2, there exists a r-locally finite (and thus r(^4 )-locally finite) family SB' of 
r-open subsets of X which covers (bdry A) — A and refines SB (we simply 
observe that SB U (X — (<̂ 4 — 4̂ ) ) is an open cover of the paracompact 
space (X, r) and thus it has a r-locally finite (r-open) refinement SB*; there
fore we let SB' = {W G SB*| W C\ [bdry A) - A] 9* 0}). We let W = \JW. 
Since 4 - W is a r-closed subset ol X (A - W = (A\J bdry A) - W 
= cA - W since W" D (bdry 4 ) - ,4), we let 

33 = {FG r| F O i G U and F H (4 - W) 9*0}. 

Then we can also find a r-locally finite family S3* of r-open subsets of X which 
covers A - W and refines S3. Hence 25' = { V H 4 | V G 2?*} is a r-(^)locally 
finite family of r (̂ 4) -open subsets of X which refines 

{vr\A G u| vr\ (A - USB) ̂ 0}. 

https://doi.org/10.4153/CJM-1967-040-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-040-9


480 CARLOS J. R. BORGES 

Finally, let 

© = \ut u| ue r, ur\ ( x - (WUA)) ^0 and t / n ^ = 0}. 

Clearly © covers X - (W KJ A) since F U i D d U IT . Since 
X - ( V ' U 4 ) is a closed subset of (X - A, r H (X - A)), because 
X - (W'KJA) = (X - A) - W, then there exists a r H (X - 4)-locally 
finite family ©' of r-open subsets of X which covers X — ( W VJ A) and 
refines @. Since X — A is a r (̂ 4) -closed subset of X, ©' is also r(^4) -locally 
finite. 

I t is now easily seen that U' = SB' U 55' U ©' is a r (4)-locally finite 
r 04) -open refinement of U. 

To prove the "only if" part we need only observe that X — A is a closed 
subspace of (X, r(A)), and closed subspaces of paracompact spaces are para-
compact. 

Similarly we can prove the following: 

THEOREM 3.10. Let (X, r) be an hereditarily paracompact regular space and 
A a subset of X. Then (X, T(A)) is an hereditarily paracompact regular space 
if and only if it is a regular space. 

Proof. This is essentially the same as the proof of Theorem 3.5, due to 
Theorem 3.8. 

THEOREM 3.11. Let (X, r) be a stratifiable space and A a subset of X. Then 
(X, r(A)) is a stratifiable space if and only if it is a regular space. 

Proof. Since the "only if" part is obvious, we proceed with the proof of 
the "if" part. Because of Theorem 3.2, if N = X — (cA — A), then n G r. 
Therefore for each 0 VJ (0' P A ) G T (A ) we get that 

ou(o 'n i ) =ou (o'r\NnA). 
We now let U -* {Z7i, C/2, . . .} be a stratification (see footnote 1) of (X, r) . 
Then 

ou(o 'n^ ) -^ [on u [o' n mn n A]}Z.I 
is a stratification of (X, r{A)). We only need show that 

cA(on u [or n i v ) M n i ) c o u (o' p 4), 
for which it suffices to show that cA((0' P iV)n Pi ^4) C O ' H i . However, 
by (4, Lemma 4), 

cA((o' r\ N)n p A) = c((o; P JV)„ n 4) c c((o' P #)„) p ^ . 
But ^ c ( ( 0 ' n iV)„) Pi cA implies that x G 0' P TV and thus x £ A (clearly 
x g (bdry^4) — A since x £ N and x f d ) . Hence 

cA((o' P N)n p 4) c c(o' P TV)J) n i c o ' n i , 
completing the proof. 
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THEOREM 3.12. Let (X, r) be a metrizable space and A a subset of X. Then 
(X, r{A)) is metrizable if and only if it is a regular space. 

Proof. Since {X, r) is metrizable, it has an open base 

23= U93w 

such that each 93w is discrete (i.e., 23 is a (r-discrete base for (X, r)). For each 
n let 23 / = 93„ U {93 H A\ B G 23, and B C\ A ^ 0}. Then 

oo 

93* = U 93/ 

is an open base for (X, r(A)) such that each 93 / is r(A)-locally finite (i.e., 
93* is a (j-locally finite base for (X, rC4)). Consequently (X, r(A)) is metriz
able (see, for example, (3, Theorem 18, p. 127). 

We end this section by summarizing the preceding results in the following 
fashion: 

THEOREM 3.13. Let (X, r) be a completely regular (hereditarily normal; per
fectly normal; hereditarily paracompact; stratifiable or metrizable) space and A 
a subset of X. Then (X, r(A)) i,s respectively, completely regular (hereditarily 
normal; perfectly normal; hereditarily paracompact; stratifiable or metrizable) 
if and only if cA —A is a r-closed subset of X. 

THEOREM 3.14. Let (X, r) be a normal (paracompact; Lindelôf; compact; 
countably compact) space and A a subset of X. Then (X, r(A)) is, respectively, 
a normal (collectionwise normal; paracompact; Lindelôf; compact; countably 
compact) space if and only if cA —A is a r-closed subset of X and X — A 
is respectively a normal (collectionwise normal; paracompact; Lindelôf; compact; 
countably compact) subspace of (X, r). 

4. Connectivity and some applications. 

THEOREM 4.1. Let (X, r) be a topological space and A any subset of X which 
is not r-closed. If A and X — A are connected subspaces of (X, r), then (X, r(A)) 
is connected. 

Proof. Suppose U and V are r(A)-open disjoint sets which cover X. By 
(4, Corollary 1), U 9* A and V 9* A. Therefore U C\ A ^ 0 a n d V Pi A F ^ 0 
or U — A 9e- 0 and V — A 9+ 0, contradicting the fact that A and X — A 
are connected (if UC\ A 9e 0 and VPi A 9^ 0, then they separate (A,r C\ A)\ 
similarly, if U — A 9e 0 and V — A 9e 0, then they separate X — A). 

The following two easily proved results are interesting consequences of 
Theorem 4.1. 
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COROLLARY 3.2. Let (X, r) be a topological space and A any subset of X 
which is not T-closed. If A and X — A are connected subspaces of (X, r) , then 
(X, T) is connected. 

COROLLARY 4.3. Let (X, r) be a connected completely regular space which is 
not compact. Then the Stone-Cech compactification (3X of X is connected when
ever PX — X is connected. 

THEOREM 4.4. Let (X, r) be a topological space and A a subset of X which 
is not T-closed. If cA and X — A are pathwise connected, then (X, r(A)) is 
pathwise connected. 

Proof. Assume we have x £ A and y £ A. To get a path from x to y simply 
get a path p\\ [0, | ] —> X from x to some point w £ cA — A which is con
tained in cA; then get another path pï.\\, 1]—>X from w to y which is 
contained in X — A. Then the path pi KJ p2 is a path in (X, r(A)) from 
x to y. 

We end this section with an example which shows that the usual topology 
of the real line R is not maximal with respect to connectedness. 

EXAMPLE 4.5. Let (/, \i) be the closed unit interval with the usual topology JJL. 

Then there exists a simple extension n(A) of /x, with A (? ju, such that (I, v(A)) 
is a connected space. 

Proof. Let 

A = U AH, 
n=l 

where A\ = [f, f] and, for each n > 1, An is the union of the closed middle 
fourths of the maximal intervals contained in [0, 1] — An-\. Note that 
[0, 1] — A ?£ 0 since the Lebesgue measure of A is less than 1; furthermore 
[0, 1] — A contains no intervals, and A is a dense subset of ]0, 1[. We shall 
now show that (R, p(A)) is a connected space. Suppose it is not. Then 
I = UyJ V such that U, V G fx(A) and UC\ V = 0. Since A is the union 
of closed (connected) intervals, we must have that, whenever u (or V) inter
sects one of the closed intervals contained in A, then U contains it. 

Furthermore, no maximal closed subinterval of A is a ju(^4)-open subset of 
R. Hence we must have that, if U contains a maximal closed subinterval / 
of A, then U contains a ju-open set U' such that / C V. Hence one can 
easily show that both U, V G M (since both must intersect closed intervals 
contained in A) and thus U P\ V 5* 0 (since (R, ;u) is connected), a contra
diction. 

I t is quite easily seen (from Theorems 3.1, 3.12, and 4.1) that the usual 
topology of the cartesian plane is not a maximal pathwise connected separable 
metrizable topology. 
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5. Infinite extensions. 

Definition 5.1. Let (X,T) be a topological space and % = {T(Aa)}aeL be 
a family of simple extensions of r. Then A is the ^-extension of r if A is the 
smallest topology on X which contains r(Aa) for each a £ L. 

It is easily seen that (X, A) may not even be a normal space though 
(X, r(Aa)) is a separable metrizable space for each a f L . Let (£2, r) be the 
plane with the half-open rectangle topology r, see (3, Exercise L, p. 59) and 
for each (a, b) £ E2 let ^4a& = {(x, y) 6 £2 | « < x < a + 1, b < y < b + 1}. 
Also let pt be the usual topology of the plane. If g = {n(Aab)\(a, b) £ £2}, 
then it can be easily shown that r is the g-extension of //, and clearly each 
(X, n(Aab)) is a separable metrizable space. However, (E2, r) is not a normal 
space, see (3, Exercise I, p. 133). Furthermore, infinite extensions of con
nected topologies are not necessarily connected: Let (E, /*) be the cartesian 
plane with the usual topology \x, A = {(x,y) (E E\ y > 0 or y = 0 and x > 0} 
and 5 = E — ^4. Then ]u(i) and /z(5) are connected topologies, due to 
Theorem 4.1, but the g-extension 0f /z, where g = {M'C<4)> M (5)}, is clearly 
not connected. 

However, we shall prove the following results: 

THEOREM 5.2. Let (X, r) &£ a metrizable (stratifiable) space and 

be a countable family of simple extensions of r such that each (X, r(An)) is a 
regular space. Then (X, A) is a metrizable (stratifiable) space, where A is the 
^-extension of r. 

THEOREM 5.3. Let (X, T) be a perfectly normal (perfectly paracompact3) space 
and % = {r(An)}^==1 be a countable family of simple extensions of r such that 
each (X, r(An)) is a regular space. Then (X, A) is perfectly normal (perfectly 
paracompact), where A is the ^-extension of r. 

THEOREM 5.4. Let (X, r) be a regular hereditarily Lindelof space and 

% = {r(A)}~=i 

be a countable family of simple extensions of r such that each (X, r(An)) is a 
regular space. Then (X, A) is hereditarily Lindelof, where A is the %-extension 
of T. 

3 A topological space X is perfectly paracompact provided that X is paracompact and per
fectly normal. 
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In order to prove the preceding theorems, we need to prove the following 
auxiliary results: 

LEMMA 5.5. Let (X, r) be a topological space, % = {r(An)}™=l a countable 
family of simple extensions of r, %n = {r(Ak)}

n
k=v Ai = T(A1)J and An = An-i(An) 

for each n. Then the following are true: 
(a) An is the ^-extension of r. 
(b) / / (X, r(Ak)) is a regular space for each k < n, then (X, An) is a regular 

space. 
(c) If 33w is an open base for (X, Aw), for each n, then 

oo 

7 1 = 1 

is an open base for (X, A). 
(d) Each (X, An) inherits normality, perfect normality, paracompactness, 

stratifiability, and metrizability from (X, r). 

Proof. The proof of (a) is straightforward. 
(b) Let TI and T2 be any regular topologies on a set Y and A the smallest 

topology on Y which contains n and r2. I t is then easy to see that A is a 
regular topology on F. Hence, by (a) and Definition 5.1, (X, Aw) is a regular 
space if (X, r(Ak)) is a regular space for each k < n. 

(c) Straightforward, since An C Aw+i for each n. 
(d) Immediate from (b), the definition of Aw, and Theorems 3.4, 3.5, 3.6, 

3.9, 3.11, and 3.12. 

LEMMA 5.6. Let (X, r) be a paracompact space and U an open Fa-subset 
of X (i.e. U is the union of countably many closed subsets of X). Then U is 
7-paracompact (i.e. every r Pi U)-open cover U of U has a r-open refinement 

oo 

» = U *n 
7 1 = 1 

such that each S3n is T-locally finite). 

Proof. Clearly 
CO OO 

(J AH= U = U lntAn 
n=l n=l 

for some countable family {Ai, A2, . . .} of closed subsets of X. The rest of 
the proof is straightforward. 

LEMMA 5.7. Let (X, r) be a topological space. Then (X, r) is perfectly normal 
if and only if for each U G r there exists a sequence {t/i, U2, . . .} of r-open 
subsets of X such that 

U Un = U = U cUn. 
7 1 = 1 7 1 = 1 
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Proof. Since the "only if" part is clear, we proceed with the proof of the 
"if" part, for which we assume, without loss of generality, that the sequence 
I Ui, Î72, . . .} is an increasing sequence. Let A and B be two disjoint r-closed 
subsets of X, and let 

oo oo 

U= U [(X - B)n - c(X - A)n] and V = U [(X - A)n - ciX - B)n]. 
n=l n==l 

Clearly U, V £ T, A C U, B C V. Thus we only need show that U Pi V = 0 
to complete the proof. Assume there exists x G U C\ V. Then 

x G (X - B)n - c(X - A)n and x Ç (Z - ^ ) m - c(X - 5ro) 

for some w and m. Then 

x G (X - B)n - ciX - S ) w and x Ç (X - A)m - c(X - A)n. 

Since either n < m or m < w, we get a contradiction. Hence [7 P\ V = 0. 

We shall now prove Theorems 5.2, 5.3, and 5.4. 

Proof of Theorem 5.2. (a) Assume (X, r) is metrizable. Because of Lemma 
5.5(d), let 33w be a cr-locally finite open base for (X, an). If 

S = Û 8», 

the 33 is a c-locally finite base for (X, A), by Lemma 5.5(c), and hence (X, A) 
is metrizable, by Lemma 5.5(b) and (3, Theorem 18, p. 127). 

(b) Assume (X, r) is stratifiable. Since our stratifiable spaces are equiva
lent to the ikf3-spaces of Ceder (2; 1 footnote 2), we let $8n be a (j-cushioned 
pair base (2, Definition 1.3) for each (X, An). If 

» = U »„, 

then 93 is a o--cushioned pair base for (X, A), by Lemma 5.5(c), and hence 
(X, A) is stratifiable by Lemma 5.5(b). 

Proof of Theorem 5.3. (a) Assume (X, r) is perfectly normal and U € A. 
Then 

U= U Un 
n=l 

such that Un € Aw, by Lemma 5.5(c). Since (X, Am) is perfectly normal for 
each n, by Lemma 5.5(d), then 

CO 00 

U Wn,m = Un = U cWn,m, 
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where cWn,m denotes the closure of Wn,m in (X, Aw). Note that Wn,m G A 
and Wn,m~ is A-closed for each m. Hence 

CO OO 

U W»,m = U = U cWn,m, 
n,m=l n,m=l 

where cWn,m denotes the closure of Wn,m in (X, A), and thus (X, A) is per
fectly normal, by Lemma 5.7. 

(b) Assume (X, r) is perfectly paracompact and let U be a A-open cover 
of X. Without loss of generality, we assume that U C 33, where 

33 = U33„ 
w = l 

with 33w a base for (X, An) for each n (see Lemma 5.5(c)). If 

Vin = { U e U| C7 G S,} and C/n = UU», 

then [/n is A^-paracompact for each n, by Lemma 5.6, and hence each JJn is 
A-paracompact. Consequently, it is easily seen that 11 has a o-A-locally finite 
A-open refinement and thus (X, A) is paracompact. Clearly (X, A) is per
fectly normal, by part (a), which completes the proof. 

Proof of Theorem 5.4. Let U be a A-open cover of X. By Lemma 5.5(c) there 
exists a A-open refinement 

OO 

8 = US5„ 

of U such that each SSW is a collection of Aw-open sets. Since each (X, An) is 
easily seen to be hereditarily Lindelof, there exists a countable subfamily gw 

of %$n such that 6W covers W2SW. Consequently 

7 1 = 1 

is a countable subcover of 33 and it is now easily seen that U has a countable 
subcover. Hence (X, A) is a Lindelôf space. Similarly we can show that 
(X, A) is hereditarily Lindelôf. 

We must unfortunately point out that we cannot answer the following 
question: Is Theorem 5.3 valid for any normal or paracompact space (X, r)? 
We conjecture that the answer to this question is negative. (We suggest 
that one should search for a completely regular space (X, r) such that (X, r) 
is not normal and 

CO 

x = n un, 
n=l 

with Un an open normal subset of the Stone-Cech compactification (/3X, /3T) 
of (X, r ) . It will then follow that (/5X, An), with An = /5r(/3X - Un), is a 
normal space for each n, but (/3X, A) is a regular non-normal space since X 
is a closed non-normal subset of (/3X, A). 
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We end our study of extensions of topologies with the following two easily 
proved results: 

THEOREM 5.8. Let (X, r) be a separable (second countable) space and 

% = {r(An)}^ 

be a sequence of simple extensions of r such that (Ani r C\ An) is separable for 
each n. Then (X, A) is separable (second countable) where A is the ^-extension 
of r. 

Proof. Because of Lemma 5.5(c), induction, and the definition of An, it 
suffices to prove that (X, T(AI)) is separable (second countable). By (4, 
Theorem 8) the proof is thus completed. 
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