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The importance of matric algebras in Function Theory and in
Physics (Birtwistle—The new Quantum Mechanics; and Courant and
Hilbert—Methoden der mathematischen Physik) has resulted in
comprehensive works on finite matrices1. Very little progress has,
however, been made in the necessary algebras of infinite matrices.

Some general theory, together with application to Function
Theory and Physics, has been developed by Dienes2 and supple-
mented3 by recent papers by R. Cooke. Little is yet known of
functional properties, and before the algebra of infinite matrices can
be fully developed it is essential that knowledge should be gained of
the structural properties of the matrix. This work is being pursued
at Birkbeck College by a group of research students working under
Dr Dienes. One of the problems he put forward at a lecture to this
group was the examination of the structure of infinite semi-matrices,
suggesting, for distinct roots, the form Ai\Gi (as given in the paper) for
the idempotent element. Under his guidance I have been able to
obtain the structural form of infinite semi-matrices of a certain class
on a parallel with the exposition4 given by Wedderburn for finite
matrices.

Direct examination of the matrix involves considerable diffi-
culties, and even the solution for semi-matrices of the X~x AX = D

} See for example, Turnbull, 9 ; Turnbull and Aitken, 10 ; Wedderburn, 12 ; Julia,
7 ; Volterra and Hostinsky, 11.

2 Dienes, 3, 4, 5.

- Cooke, 1, 2.
4 Wedderburn, 12.
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62 C. E. GURR

problem in the Heisenberg-Dirac theory of atom mechanics is only
possible under certain conditions. Therefore it is not surprising that
at present, owing to the difficulty of establishing the existence of
products in infinite matrices, it has been found necessary to restrict
in general the class of matrices in this paper to those for which
2 l/\au\ is convergent.
i

It will be seen that an examination of the structure necessitates
elucidation of certain functional properties, and the incidental pro-
perties, e.g. commutability of matrices, have some claim to considera-
tion of their own.

It has been found possible to express infinite lower semi-matrices
or matrices which can be transformed into lower semi-matrices
(restricted in general to the class T1\./\aii\ convergent) in terms of

i
the principal (or unique) idempotent elements1. This method of
expression enables rational functions of the matrix to be expressed
simply in terms of the principal idempotent and nilpotent 'elements.
Throughout this paper capital letters are used to denote infinite
lower semi-matrices.

It has been found possible, by algebraic construction of the
idempotent and nilpotent elements to extend the class of matrices
analysed to certain important special cases. The most important
case so dealt with is that in which every element of the principal
diagonal is distinct, e.g. The Arithmetic Means.

1. Preliminary note on the exponential function2.

1.1. D E F I N I T I O N . By the "matrix modulus" is meant the matrix
obtained by replacing aik in A by j aik \, and will be denoted by \A\ .

Thus the matrix modulus must be distinguished from the Bound
as used by Dienes.

Then in the field of lower semi-matrices we have

(i) j c . A | = | c | . | A | where by A | = | B | is meant | aik | = | bik j ,
and c is any scalar matrix, for { | c . A \ }ik = c | . {| A \ }ik.

(ii) |JB/| = 1.

( i i i ) {\A + B \ } i b = \ a a + bik | ^ | aik \ + \ b i k \ = { \ A \ } i k + {\B\ } i k ,

1 Of. Wecldeiburn, 12.

- Dienes, 4.
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AN INFINITE LOWER SEMI-MATRIX 63

that is,

( i v ) {\A.B[}ik = \ £ a i j b i k \ ^ i \aij\.\bik\ = {\A\}ik.{\B\}ik,
j = k j = i

that is,
A . B | ^ | A | . | B ' .

1.2. THEOREM. TAe exponential function exists for every row-finite
matrix, all its values are row-finite matrices, and it misses all the
nilpotent values in the field.

(i) Since row-finite matrices form an associative field, and in
particular are self-associative, the exponential function may be
defined as

where the matrix element {E (A)}nk is of the form

2 ani. aik 2 ani Say S atp apk

{E ( A ) } n k = 8 » t + ani+ ' 2 j + . . . . + ; 1 -f—z

Let b be the maximum modulus of the elements in the first n
rows of A, then

< graft

where m is the number of elements in the row. Therefore E (A) has
a definite meaning in the field.

(ii) In the Cauchy product of E (A) . E (B) the term containing
the nth combined index of A and B is,

An An~^ B11

n\ (n — 1)! n!

which is congruent with (A + B)"/n\ in an associative field when
AB = BA.

Hence there is absolute equivalence between corresponding
powers in E (A) . E (B) and E {A + B).

(iii) Since E(A+B) = E (A) . E {B) when AB=BA, put B= -A,
so that E {—• A) is an ordinary element in the field.
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Now from definition E (0) = 1; hence it follows that

1 = # ( 0 ) = E(A).E{- A),

and therefore that it is impossible for E {A) to assume the value zero.
Further suppose that E (A) = U so that E {nA) — Vn.
Then, since E (nA) cannot be zero, E (A) cannot assume a value

U such that Un = 0, that is E (A) misses all the nilpotent values of
the field.

These results can be easily extended to row-bounded, column-
finite, column-bounded, K and T matrices1.

2. THE EXISTENCE THEOREM. It becomes necessary to establish the
( A\existence of products of the form II ( 1 -\ ).

' V aiiJ

When £ , •— , is convergent it can be established that
i | au I

(i) Any product of the form U ( 1 + — ) exists.
i \ aii/

00 / A\ . n / A\(ii) II (1 \ = 0 in the sense that Urn II I I )

exists and is the zero matrix.

(iii) // A, = fi«> (l-—\ and if Ci = n<« (l - °^\ ,
* = 1 \ akkJ *=1 \ akkj

where (i) signifies that the factor(s) where akk = au are omitted, then
Ai and cL exist, and further AjAk = 0, (j=j=i).

2.1. PROOF. Using the matrix modulus it is apparent that

and

and

since

E(

hence

A ,- and
aH

— \.E
iaii /

that

?('

1

A
Oii

(
—

are commutable

\ aki-

+

A
('a a

+

j j

it

A

— J

follows

) •

E( A

that

2 1 )7\au\J'

1 See also Dienes, 3.
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By comparison with 1.2 it follows that, since 2 (l/|afi|) converges,
i

the right-hand side exists. That is, every such product exists and, in

( A \
1 — — J exist.

2.2. (i) LEMMA. Let U be such that the elements in its first n rows are
all zero. Let V be commutable with U, and such that vn + l n + l = 0 for a
given n. Then in U V the elements in the first n + 1 rows are all zero.
For, if B= UV then

k
bki= 2 ukjVji.

i=i

Now ukj = 0 for k ̂  n; hence bki = 0 for k fS n. Further since
B = UV = VU, it follows that

and ujt = 0 for j sS n, and vn+lt j = 0 for j = n + 1; hence bn+h { = 0,
that is bki = 0 for k ̂  n + 1.

2 2. (ii) In (1 — A/an) the first row is zero, and in (1 — A/a2z) the
second element in the principal diagonal is zero; therefore from 2.2. (i)
it follows that the elements in the first two rows of

(l-A/an)(\ -A/an)
are all zero.

The complete result then follows by induction, that
n / A

iim n ( i - —

is the zero matrix.

2.3. The existence of c; follows as a direct result of the convergence
of 2 (1/| ati\) and the existence of At from 2.1. Further,

the rearrangement of the factors given by ait = a^ being justified by
commutability. Hence, by 2.2. (ii), it follows that AjAk= 0, (j

3. MATRICES WITH DISTINCT ROOTS.

THEOREM. / / in the principal diagonal of A no two elements are
equal, then
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00 A• A-
(i) 2 —l = 1, and —l is idenipotent.

i = l Cj Ct

rj A-(ii) 4 = 2 a;; —l, and further, if g (x) is any function containing
i — l Cj

only positive and negative powers of x, then

g(A) = lg (au) ̂ .

PROOF. 3.1. LEMMA. / / B is commutable with A where aii^ai+ki %+k
for all i and k, and if the first n elements of the principal diagonal of
B are all equal to c, then the elements of the first n rows of B other than
those of the principal diagonal are zero.

If all the elements of the principal diagonal of B are equal to c,
then B = c.

Using the relation BA = AB it is seen that the second diagonal
of B is determined by the equality

bu j _ ! ai_1> i_x + c . au,-_! = c . a%;_! + au bu i_v

Therefore bi: ;_x = 0 , (i ^ n). Hence the third diagonal is governed by

6i)i_2aj-2,i-2 + c -Ui,i-2 = c . a u _ 2 + aabUi_^ (i ^ n),

that is &1)i_2 = 0, {if^n). Proceeding in this way the (&+l ) th
diagonal is governed by

* A-

^ ^j, i -« a i -n, i - i = -^ ai,i-n"i-n, i-k>
«=0 «=0

which, for i ̂  n, reduces to

&!, i-k ai-k,i-k = O-ii bi, i-k>

tha t is, for i ̂  n the (k + l)th diagonal is zero and the result follows.

00 / A \
3.2. (i) Since A{= Uw ( 1 — —) , it follows that in the principal

* = i \ % /

diagonal of Ai/c^ every element is zero except the ith. and the ith is 1.
n J^,

Hence, if B = 2 —- then bkk = 1 for k ^ n and -B is commutable
i = l c i

with ^4. Then from 3.1 it follows that 6^ = 0 for k 5S n and k^=i,

and hence that lim 2 —- is the unit matrix, and may be expressed
n—¥co i = \ C{

oo A

as 2 =i = 1.
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3.2. (ii) From 2.3 and the above it follows that

that is, Ai/ct is idempotent.

3.2. (iii) From 2.2. (ii), since a(i=%=ai+kii+k for any i or k, it follows
that Ai{l-A/au)=0; that is A (Jt/c,j = a«(^.7ci) f r o m whence it
readily follows that

n A • n A •
lim 4 S —- = Km 2 au —- >

n—>x. t- 1 C,- n—>oo j i i ] C(-

00 4̂ •
and finally A = 21 a;i —-.

3.2. (iv) Using AjAk = 0 we have, for r a positive integer,

since AJCi is idempotent.

Further from A . A~1 = 1 it is easily verified that
00 A- x A-

A~x = S a^1—-, and hence that A~r = S a~lr —-, and finally that
i = l c i i = l cf

2 ^ ( a ) \

4. MATRICES WITH MULTIPLE ROOTS.

THEOREM. Suppose that in the principal diagonal of A there occur
equalities between some of the elements, such as, say, app—ass= . . . . ~avl>

where the consecutive elements in the sequence of equalities are not
necessarily consecutive elements in the diagonal. Then A may be
expressed in terms of its principal idempotent and nilpotent elements,
with an extension to scalar functions as before.

4.1. PROOF. From 3.2 (ii) it is seen that when the roots are distinct
(AJCi) (1 — Aj/Ci) --- 0 and the idempotent element may be written as
1 — (1 — Ai/Cj) If, however, au = ai + 1 i + 1 this is not the case as is
shown at once by a consideration of ai+1 ,-. Consideration of ai+1 i

suggests, in order to retain the same structural form, the examination
of {(Ai/c^l - Ai/c;)}2 with the possibility of ] - (1 - 4,-/c,-)2 as the
idempotent element. This leads to the following construction. Let
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m,; be the "stretch" of the sequence of elements equal with an that
is, if ass is the first and au the last of the sequence, then mi=t-\-\ — s.

( A \mi °°

1 — — ) and consider U = £' (?, where the
signifies that of the mt- congruent terms given by the sequence of
elements equal to au all but one are omitted. Then by comparison
with 3.2 (i) it is seen that U exists.

Further, for values of k such that akk=^aH using AjAk = 0 it
follows that

4.1. (i) GtOk = 0,

that is

Consider the right-hand side of 4.1 (ii).

Let Bx — (Ak/ck) (1 — Ak/ck) so that the principal diagonal of B1 is
zero. Then Bf* has the first rnk diagonals zero. (i)

Further, since AjAk = 0 for values of j such that aj;=)=aw, it
00 J^ .

follows that B"u 2 " —- = 0, where the double dash signifies that all
i = l ci

terms congruent with, and including, Ak/ck are excluded from the
summation. (ii)

Also, if JB™« = B and S" — = C then BC = CB = 0. (iii)
i = l ci

Now consider the k = (raA. + l)th diagonal of B. From (ii) and
(iii) this is determined by

k k

^ bn B_j C"n-j, n-k = 2 cn,n-j ^n-j, n-k = U-

That is, since by (i) 6K n_j = 0 for j < fc, and 6,,^ n_k = 0 for ̂  > 0,

bn, n-k cn-k, n-k = = cnn bn, n-k = 0- (i v)

In S"—^ the elements of the principal diagonal are non-zero
i = l ci

except those which correspond with akk and the principal diagonal
elements of A which are equal to akk. Hence, since the stretch from
cn_kn_k to cnn is greater than mk, it follows that cfl_iifl_A and cnn

cannot both be zero for a fixed n. Therefore, using (iv) we have
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*«,n-i = 0 for all n. Similarly briin_t_1 = 0 for all n, and ultimately
it follows that every diagonal of B is zero. Hence 4.1 (ii) becomes

(4,\mt
t) -"•

and since this is true for all k, we obtain

4.1. (iii) (U - 1) 2 (=*) = 0 .

i. = l\cA- /

Now in 2 —* every element of the principal diagonal is non-

to /^J .\™'

zero, therefore in 2 ( —* I every element in the principal diagonal
is non-zero, and it immediately follows that unn is 1 for all n, and, by
successive determinations of the diagonals, that unk = 0 for k =j= n;
that is, U is the unit matrix.

Using 4.1 (i) and 4.1 (iii), it follows from the definition of U and
Gt that
4.1. (iv) G

that is, Gk is idempotent.

Let ^

so that
/ A V*
\ akkj

Bince Gk is idempotent.
Let Sfc be the actual number of elements in the total sequence

4.1. (v) (f

that is, -qk is nilpotent with index sk. Thus we have

4.1. (vi) A = AU = A 1 ' Gt = L' oH ( ^ - ij4),

where Gt- is idempotent and r)t is nilpotent with index st.

Further, it is readily seen that if r is a positive integer

A* = S' oj,- ((?,• - ViY = S' aU^- + (1 - *?;)r - 1};
i = l i = l

that is, if ? (a;) is a scalar polynomial in x, then
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4.1. (vii) g (A) = 2 ' {g (a«) Ot + % T,, -+ a ^ f + . . . . + a ^ f } ,

where n is the degree of the polynomial, and ay is derived from
powers of au.

5. UNIQUENESS.

The matrices Gt are uniquely determined. For, let Ki(i = l, 2 , . . . . )
be any matrices such that

(i) AK^KiA,
(ii) (1 — A/an) . Kt is nilpotent,

00

(iii) S' Ki=\, Ki is idempotent and non-zero.
i = l

Then Z4 = <?<, (» = 1, 2, . . . . ) •
For, if ipj = (1 — A/djj). Kj, we have, since if; and G{ are

commutable with each other and with A, that
a» Gi >Pj = (% — A) • -K* ^u

and
«u^i ^i = («n — A).Kj G^

that is
er# (?i i/rj - a,-£ Kj ry; = (â - — au) K, Gt.

But if a is the higher index of i/ij and Tj;, and if both sides are
raised to the power 2a, then since all the matrices are commutable,
and since Kj Gt is idempotent, the left-hand side becomes zero and
the right-hand side does not, unless a# = ait.

Hence Kj Gt = 0 when aH =)= â -.
Therefore from (iii) we have

Kj = Kj Z,' Gt = Kj Gj = G, 1 ' Kj = Gjt
i=l 3=1

which proves the uniqueness of the Gt. Hence they may be called
the " Principal " idempotent elements.

An algebraic construction for 'particular cases.

6. Case 1. Suppose that A is any lower semi-matrix such that every
element of the principal diagonal is distinct, that is au =(= akk for
any k, &=j= i.

Let Bk, k being a fixed integer, be such that

(i) BkA=ABk

(ii) (£4)K=0/or»=t=fc

= 1 for i = k.
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Then (a) 2 ^ = 1 ,

(6) Bi is idempotent for all i,

(c) A = 2 auBi.
t=i

6.1. PROOF. Determining Bk diagonally the element (Bk)nm is given,
using (i), by

n n
S (Bk)njCjm = S anj (Bk)jm.

j—m j=m

(a) m = n is determined by (Bk)nnann = ann (Bk)nn, that is
(Bk)nn may be fixed to satisfy (ii).

(6) m = w — 1 . Having fixed (Bk)nn the element (-S^ n_j is
determined by

that is since ann^ran-\,n-\ the element (-Bi)»,n-i is fixed.

(c) Proceeding in this way the matrix Bk is uniquely
determined.

6.2. The form of Bk.
By inspection of Bk by means of the condition (i) it is at once

apparent that Bk has the simple rectangular form,

(Bk)nj = 0 for n < k, (j = 1, 2, . . . . n),
= 0 for n > k, (j = k + 1, k + 2 n).

6.3. BkBj = 0 for fc=)=j.

Let BkBj = G then OA = ^4C, and it follows that

(a) every element of the principal diagonal of C is zero,

(6) a diagonal determination of C gives
n n

whence it follows, using (o) and condition (i) that every element of
C is zero; that is BkBj — 0.

6.4. Bk is idempotent for all k.
Let Bk (1 — Bk) = C. Then as in 6.3 it follows that 0 is the

zero matrix, that is Bk = B\.
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6.5. From 6.3 and 6.4 it follows that Bk (1 — £ Bt) = 0 is true

for all k.

(a) The principal diagonal of (1 — S Bt) is zero.
t--i

(6) The second diagonal of this matrix is determined by

Letting k = n and therefore {Bk)nn = 1 it follows that

i = l

that is, the second diagonal is zero.

(c) Proceeding in this way it is established that

1 - 2 ^ = 0,
i = l

that is, S J3f = 1.
i = l

6.6. Next consider the matrix Bk (akk — A) = C say.

Then as in 6.3 it follows that C is the zero matrix, that is
ABk = akkBk is true for all k. Hence using 6.5,

A = XauBit

where Bt is idempotent.

6.7. As an example of this case may be taken the very important
Arithmetic means. If those of the first order are taken it may be
observed that in this case Bx is a first column matrix where every
element is 1.

7. Case 2. Suppose that in the principal diagonal of A there occur sets
of consecutive equalities such as

akh = ak + l,k + l — • • • • = ak+m, k+m

and au=^akkfor any value of i outside the set k, . . . . k + m.

7.1. With each set associate one (and only one) lower semi-matrix Bk

such that
(i) BhA = ABk.

Then Bk may be determined such that
(ii) {Bk)u = 1 for i = *, k + 1, .... k + n,

= 0 elsewhere.
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It readily follows from inspection that we may put

(iii) (Bk)ij = 0 for i < k and all j ,

(iv) (Bt.)^ = 0 for j > k + m and all i,

(v) {Bk)ij = 0 for k<i^k + m,j^k,

and that Bk is then uniquely determined.

7.2. Let BA.(1-£A.) = C .
Then (7^4=^4(7, ca = 0 for all i, and cnj = 0 when ahn = a#.

7.2. (i) In the diagonal determination of C it then follows that the
second diagonal is given by

cn, n-1 ttre-l, n - 1 = ann cn, n-1

and hence it follows that cn n_1 = 0 for all n.

7.2. (ii) Proceeding in this way it becomes established that C is the
zero matrix; that is Bk = B\ for all k.

7.3. In the same way it follows that Bk Bj = 0 for k=^j.

7.4. Thus

Bk(l- S B ( ) = 0

is true for all k, and hence as in 6.5 it follows that
00

2Bi=l.
i = l

7.5. Now let Bk (ukk — A) = — -qk.

Then since the principal diagonal of -qk is zero it follows that in
(rjk)

m+1 the first m + 1 diagonals are zero. Therefore it follows that
when ann — a$ then anj = 0. Hence, as in previous arguments, it
follows that (r]k)

m + 1 is the zero matrix, that is, r]k is nilpotent with
index fS m+1, and finally that ABk=(akkBk + r]k) is true for all k, and
that, using 7.4

8.1. The extension to the case where m—> co introduces no contra-
diction or difficulty, but does introduce the conception of a nilpotent
matrix of infinite index. Such a matrix, though dealt with adequately
by the extended argument, is not unique, as any lower semi-matrix
with every element of the principal diagonal zero is nilpotent with
infinite index.
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A special case of the extended argument is the matrix in which
every element of the principal diagonal is equal to c. In this matrix
the idempotent element is the principal diagonal divided by c (that
is, the unit matrix) and the rest of the matrix is the nilpotent
element.

8.2. The extension to the general case where there is no restriction
on the existence of equalities in the principal diagonal seems too
unwieldy for algebraic argument.
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