M. Furushima Nagoya Math. J. Vol. 127 (1992), 145-165

MUKAI-UMEMURA'S EXAMPLE OF THE FANO THREEFOLD WITH GENUS 12 AS A COMPACTIFICATION OF C³

MIKIO FURUSHIMA

§0. Introduction

Let (X, Y) be a smooth projective compactification with the non-normal irreducible boundary Y, namely, X is a smooth projective algebraic threefold and Y a non-normal irreducible divisor on X such that X - Y is isomorphic to C^3 . Then Y is ample and the canonical divisor K_X on X can be written as $K_X =$ $-r Y (1 \leq r \leq 4)$. Thus X is a Fano threefold. In particular, Pic $X \cong \mathbb{Z} \mathcal{O}_X(Y)$. The non-normality of Y implies that $r \leq 2$ (cf. [4]). In the case of r = 2, such a (X, Y) is uniquely determined up to isomorphism, in fact, $(X, Y) \cong (V_5, H_5^{\circ})$, where $X = V_5$ is a Fano threefold of degree 5 in \mathbf{P}^6 , and $Y = H_5^{\infty}$ is a ruled surface swept out by lines which intersect the line Σ with the normal bundle $N_{\Sigma|X}$ $\cong \mathscr{O}_{\Sigma}(-1) \oplus \mathscr{O}_{\Sigma}(1)$, in particular, Σ is the singular locus of Y. In the case of r=1, there is an example of such a compactification of \mathbf{C}^3 , in fact, let $X=V_{22}'$ be a Fano threefold of genus g = 12 constructed by Mukai-Umemura [11] and Y = $H_{22}^{'}$ be the ruled surface swept out by conics which intersect the line ℓ in $V_{22}^{'}$ with the normal bundle $N_{\ell|X} \cong \mathscr{O}_{\ell}(-2) \oplus \mathscr{O}_{\ell}(1)$, then H'_{22} is a non-normal hyperplane section of V'_{22} such that $V'_{22} - H'_{22}$ is isomorphic to ${f C}^3$, in particular, the line ℓ is the singular locus of H'_{22} (cf. [6]).

Now, in this paper, we will construct a birational map $\pi: V_{22}' \cdots \to V_5$ such that the restriction π_0 of π on $V_{22}' - H_{22}'$ gives an isomorphism $V_{22}' - H_{22}' \cong V_5 - H_5^{\infty} \cong \mathbb{C}^3$, via the resolution of indeterminancy of the double projection of V_{22}' from the singular locus Sing H_{22}' of H_{22}' which is a line on V_{22}' (see Theorem 1). Furthermore, we will study the detailed structure of the desingularization and the normalization of the boundary divisor H_{22}' (see Theorem 2).

Recently, Mukai ([11_a]) proved that there is a 4-dimensional family of Fano threefolds of first kind with index one, genus 12 which are the compactifications of \mathbb{C}^3 with non-normal boundaries, in particular, our example (V'_{22} , H'_{22}) belongs

Received December 10, 1990.

to this Mukai's family.

I would like to thank Professor N. Nakayama for the stimulating conversations we had and for his valuable comments.

Notation

K_X	Canonical divisor on a variety X		
ω_X	Canonical sheaf on X		
$N_{C X}$	Normal bundle of C in X		
H	Complete linear system associated with a divisor H		
Bs H	Base locus of the linear system $\mid H \mid$		
Sing X	Singular locus of X		
$\rho(X)$	Picard number of X		
$E_{ m red}$	Reduction of a scheme E		
$\operatorname{supp} D$	Support of a divisor D		
(i)-curve	Smooth rational curve with self-intersection number $-i$		
$b_i(X)$	$:= \dim H^i(X; \mathbf{R})$		
$h^i(\mathcal{F})$	$:= \dim H^i(*; \mathcal{F})$		
$\chi(\mathcal{F})$	$:=\sum_{i=1}^{\infty}(-1)^{i}h^{i}(\mathcal{F})$		
	i=0		

§1. Mukai-Umemura's example

Let C[x, y] be the polynomial ring of two complex variables x and y. The special linear group SL(2, C) acts C(x, y) as follows:

$$\begin{cases} x^{\sigma} = ax + by \\ y^{\sigma} = cx + dy \end{cases} \quad \text{for } \sigma = \begin{pmatrix} a & b \\ c & a \end{pmatrix} \in SL(2, \mathbb{C}).$$

Let us denote by R_n a vector space of homogeneous polynomials of degree nin $\mathbb{C}[x, y]$. Let $f(x, y) = \sum_{i=0}^{n} a_i {n \choose i} x^{n-i} y^i \in R_n$ be a non-zero homogeneous polynomial of degree n. We take $(a_0 : a_1 : \ldots : a_n)$ as homogeneous coordinates on the projective space $\mathbb{P}(R_n) \cong \mathbb{P}^n$, on which $SL(2, \mathbb{C})$ acts. Let us denote by X(f) the closure of $SL(2, \mathbb{C})$ -orbit $SL(2, \mathbb{C}) \cdot f$ of f in $\mathbb{P}(R_n)$. Then $SL(2, \mathbb{C})$ acts on X(f).

Now, we consider the following two polynomials:

$$f_6(x, y) = xy(x^4 - y^4)$$
, and
 $h_{12}(x, y) = xy(x^{10} + 11x^5y^5 + y^{10}).$

We put

$$V_5 := X(f_6) \hookrightarrow \mathbf{P}(R_6) \cong \mathbf{P}^6$$
, and
 $V'_{22} := X(h_{12}) \hookrightarrow \mathbf{P}(R_{12}) \cong \mathbf{P}^{12}$.

Then we have

LEMMA 1 (Lemma 3.3 in [11]). (1) $V_5 \hookrightarrow \mathbf{P}^6$ is a Fano threefold of index 2, genus 21 and the hyperplane section of V_5 is the positive generator of Pic $V_5 \cong \mathbf{Z}$

(2) V'_{22} is a Fano threefold of index 1, genus 12 and the hyperplane section of V'_{22} is the positive generator of Pic $V'_{22} \cong \mathbb{Z}$.

The defining equations for V_5 , V'_{22} are given as follows respectively:

$$(V_5) \begin{cases} a_0a_4 - 4a_1a_3 + 3a_2^2 = 0\\ a_0a_5 - 3a_1a_4 + 2a_2a_3 = 0\\ a_0a_6 - 9a_2a_4 + 8a_3^2 = 0\\ a_1a_6 - 3a_2a_5 + 2a_3a_4 = 0\\ a_2a_6 - 4a_3a_5 + 3a_4^2 = 0 \end{cases}$$

$$(V_{22}) \qquad \sum_{\lambda=0}^{\rho} \binom{8}{\lambda} \binom{8}{\rho-\lambda} (a_{\lambda}a_{\rho+4-\lambda} - 4a_{\lambda+1}a_{\rho+3-\lambda} + 3a_{\lambda+2}a_{q+2-\lambda}) = 0$$
$$(0 \le \rho \le 16)$$

Now, we put

$$H_5^{\infty} := V_5 \cap \{a_0 = 0\} \hookrightarrow \mathbf{P}^5,$$
$$H_{22}' := V_{22}' \cap \{a_0 = 0\} \hookrightarrow \mathbf{P}^{11}.$$

Let us denote by Sing H_5^{∞} (resp. Sing H_{22}') the singular locus of H_5^{∞} (resp. H_{22}'). Then we have

PROPOSITION 1 ([5]). (1) $V_5 - H_5^{\infty} = V_5 \cap \{a_0 \neq 0\} \cong \mathbb{C}^3$, (2) $\Sigma := \operatorname{Sing} H_5^{\infty} = \{a_0 = a_1 = \cdots = a_4 = 0\} \cong \mathbb{P}^1(a_5 : a_6) \hookrightarrow \mathbb{P}^6$ is a line on V_5 . In particular, H_5^{∞} is a non-normal hyperplane section of V_5 swept out by lines which intersect the line Σ .

PROPOSITION 2 ([6]). H'_{22} is a non-normal hyperplane section such that $V'_{22} - H'_{22}$ = $V'_{22} \cap \{a_0 \neq 0\} \cong \mathbb{C}^3$.

We will study the detailed structure of $H_{\rm 22}^{'}$ below.

LEMMA 2. (1) ℓ : = Sing $H'_{22} = \{a_0 = \cdots = a_{10} = 0\} \cong \mathbf{P}^1(a_{11}: a_{12}) \hookrightarrow \mathbf{P}^{12}$ is a line on V'_{22} .

(2) The normal bundle $N_{\ell|V_{22}} \cong O_{\ell}(-2) \oplus O_{\ell}(1)$, and there is no other line in V_{22}' which intersects the line ℓ .

(3) H'_{22} is a unique member of the linear system $|O_{V'_{22}}(1) \otimes I^3_{\ell}|$, where I_{ℓ} is the ideal sheaf of ℓ in $O_{V'_{22}}$. In particular, H'_{22} is a ruled surface swept out by conics in V'_{22} which intersect the line ℓ .

Proof. We shall rewrite the defining equation (V'_{22}) as follows:

$(V'_{22})*$	1	$a_0a_4 - 4a_1a_3 + 3a_2^2 = 0$
	(e.1)	$a_0a_5 - 3a_1a_4 + 2a_2a_3 = 0$
	(e.2)	$7a_0a_6 - 12a_1a_5 - 15a_2a_4 + 20a_3^2 = 0$
	(e.3)	$a_0a_7 - 6a_2a_5 + 5a_2a_4 = 0$
	(e.4)	$5a_0a_8 + 12a_1a_7 - 42a_2a_6 - 20a_3a_5 + 45a_4^2 = 0$
	(e.5)	$5a_{0}a_{8} + 12a_{1}a_{7} - 42a_{2}a_{6} - 20a_{3}a_{5} + 45a_{4}^{2} = 0$ $a_{0}a_{9} + 6a_{1}a_{8} - 6a_{2}a_{7} - 28a_{3}a_{6} + 27a_{4}a_{5} = 0$ $a_{0}a_{10} + 12a_{1}a_{9} + 12a_{2}a_{8} - 76a_{3}a_{7} - 21a_{4}a_{6}$
	(e.6)	$a_0a_{10} + 12a_1a_9 + 12a_2a_8 - 76a_3a_7 - 21a_4a_6$
		$+72a_5^2=0$
	(e.7)	$a_0a_{11} + 24a_1a_{10} + 90a_2a_9 - 130a_3a_8 - 405a_4a_7$
		$+ 420a_5a_6 = 0$
	(e.8)	$a_0a_{12} + 60a_1a_{11} + 534a_2a_{10} - 380a_3a_9 - 3195a_4a_8$
		$-720a_5a_7+2940a_6^2=0$
	(e.9)	$a_1a_{12} + 24a_2a_{11} + 90a_3a_{10} - 130a_4a_9 - 405a_5a_8$
		$+ 420a_6a_7 = 0$
	(e.10)	$a_2a_{12} + 12a_3a_{11} + 12a_4a_{10} - 76a_5a_9 - 21a_6a_8$
		$+72a_7^2=0$
	(e.11)	$a_3a_{12} + 6a_4a_{11} - 6a_5a_{10} - 28a_6a_9 + 27a_7a_8 = 0$
	(e.12)	$5a_4a_{12} + 12a_5a_{11} - 42a_6a_{10} - 20a_7a_9 + 45a_8^2 = 0$
	(e.13)	$a_5a_{12} - 6a_7a_{10} + 5a_8a_9 = 0$
	(e.14)	$5a_4a_{12} + 12a_5a_{11} - 42a_6a_{10} - 20a_7a_9 + 45a_8^2 = 0$ $a_5a_{12} - 6a_7a_{10} + 5a_8a_9 = 0$ $7a_6a_{12} - 12a_7a_{11} - 15a_8a_9 + 20a_9^2 = 0$ $a_7a_{12} - 3a_8a_{11} + 2a_9a_{10} = 0$
	(e.15)	$a_7a_{12} - 3a_8a_{11} + 2a_9a_{10} = 0$
	l (e.16)	$a_8a_{12} - 4a_9a_{11} + 3a_{10}^2 = 0$

For simplicity, let us denote by $\{a_i = 1\}$ the affine part $\{a_i \neq 0\}$ of $\mathbf{P}^{12}(a_0;\ldots;a_j;\ldots;a_{12})$, namely, $\{a_j=1\}\cong \mathbf{C}^{12}(a_0,\ldots,a_{j-1},a_{j+1},\ldots,a_{12})$.

CLAIM 1. $H'_{22} \cap \{a_1 = 1\} \cong \mathbf{C}^{12}(a_2, a_6)$

In fact, setting $a_0 = 0$, $a_1 = 1$ in the equations (e.0) - (e.9) in $(V'_{22})^*$, one can easily see that the coordinate functions a_3 , a_4 , a_7 , a_8 , ..., a_{12} are given by the polynomials of a_2 and a_6 . This proves the claim.

Now, we have $H'_{22} \cap \{a_1 = 0\} = V'_{22} \cap \{a_0 = a_1 = 0\} = \{a_0 = a_1 = \ldots = 0\}$ $a_{10}=0\}\cong {f P}^1(a_{11}:a_{11})$ (a line in V_{22}'). Since $H_{22}'-H_{22}'\cap \{a_1=0\}\cong {f C}^2$ by the Claim 1, we have that H_{22}' is non-normal (cf. [5]) and hence Sing $H_{22}' = H_{22}' \cap$ $\{a_1 = 0\}$. This proves (1).

Next, let us consider the affine part $H'_{22} \cap \{a_{12} = 1\} \subset C^{12}(a_1, \ldots, a_{11})$ of H'_{22} . Setting $a_0 = 0$, $a_{12} = 1$ in the defining equation $(V'_{22})^*$, one can get the defining equation of $H'_{22} \cap \{a_{12} = 1\}$ in \mathbb{C}^{11} . More precisely, from (e.9) - (e.16) with $a_{12} = 1$, putting $x := a_9$, $y := a_{10}$, $z_{10} := a_{11}$, one can get the following:

$$\begin{cases} (e.16)' & a_8 = 2^2xz - 3y^2 \\ (e.15)' & a_7 = 2^2 \cdot 3xz^2 - 3^2y^2z - 2xy \\ (e.14)' & 7a_6 = 2^4 \cdot 3^2xz^3 - 2^2 \cdot 3^3y^2z^2 + 2^2 \cdot 3^2xyz \\ & - 3^2 \cdot 5y^3 - 2^2 \cdot 5x^2 \\ (e.13)' & a_5 = 2^3 \cdot 3^2xyz^2 - 2 \cdot 3^3y^3z + 3xy^2 - 2^2 \cdot 5x^2z \\ (e.12)' & a_4 = -2^4 \cdot 3x^2z^2 - 2^5x^2y + 2^3 \cdot 3^3xy^2z - 3^3 \cdot 5y^4 \\ (e.11)' & a_3 = -2^4 \cdot 5x^3 - 2^4 \cdot 3^3x^2z^3 + 2^4 \cdot 3^3x^2yz \\ & + 2^3 \cdot 3^4xy^2z^2 - 2^2 \cdot 3^4xy^3 - 3^5y^4z \\ (e.10)' & a_2 = -2^5 \cdot 5^2x^3z - 2^7 \cdot 3^3x^2z^4 + 2^4 \cdot 3^3 \cdot 11x^2yz^2 \\ & + 2^6 \cdot 3^4xy^2z^3 - 2^3 \cdot 3^3 \cdot 29xy^3z - 2^3 \cdot 3^5y^4z^2 \\ & + 2^3 \cdot 3^2 \cdot 7x^2y^2 + 3^4 \cdot 5^2y_5 \\ (e.9)' & a_1 = -2^4 \cdot 3^2 \cdot 5 \cdot 7x^3z^2 - 2^8 \cdot 3^4x^2z^5 + 2^6 \cdot 3^3 \cdot 19x^2yz^3 \\ & + 2^7 \cdot 3^5xy^2z^4 - 2^5 \cdot 3^4 \cdot 17xy^3z^2 - 2^4 \cdot 3^6y^4z^3 \\ & -2^3 \cdot 3^3x^2y^2z + 2^2 \cdot 3^6 \cdot 5y^5z + 2^7 \cdot 5x^3y \\ & + 3^3 \cdot 5 \cdot 19xy^4 \end{cases}$$

CLAIM 2. $H'_{22} \cap \{a_{12} \neq 0\} \cong V(f) := \{(x, y, z) \in \mathbb{C}^3; f(x, y, z) = 0\}$, where

$$(*) \quad f(x, y, z) = b_0 x^4 + (b_1 y z + b_2 z^3) x^3 + (b_3 y^3 + b_4 y^2 z^2 + b_5 y z^4) x^2 + (b_6 y^4 z + b_7 y^3 z^3) x + b_8 y^6 + b_9 y^5 z^2,$$

$$(b_0 = -2^8 \cdot 5^2, \ b_1 = 2^9 \cdot 3^3 \cdot 5, \ b_2 = -2^6 \cdot 3^4 \cdot 5,$$

$$b_3 = -2^8 \cdot 3^3 \cdot 7, \ b_4 = -2^4 \cdot 3^4 \cdot 127, \ b_5 = 2^9 \cdot 3^5,$$

$$b_6 = 2^2 \cdot 3^6 \cdot 89, \ b_7 = -2^8 \cdot 3^6, \ b_8 = -3^6 \cdot 5^3, \ b_9 = 2^5 \cdot 3^7).$$

In fact, putting a_1, \ldots, a_8 in (e.k)' $(9 \le k \le 16)$ into (e.8) with $a_{12} = 1$, one can get the equation f(x, y, z) = 0. It is easy to see that the polynomial f(x, y, z) is irreducible. Hence, V(f) is the defining equation of $H'_{22} \cap \{a_{12} \ne 0\}$ in \mathbb{C}^3 .

By the defining equation of V(f), one can see the singular locus Sing $V(f) = \{x = y = 0\}$ and the multiplicity of V(f) at a general point of Sing V(f) is equal to three.

Thus $H'_{22} \in |\mathcal{O}_{V'_{12}}(1) \otimes I^3_{\ell}|$. Since $h^0(\mathcal{O}_{V'_{12}}(1) \otimes I^3_{\ell}) \leq 1$ by Iskovskih [7], H'_{22} is a unique member of $|\mathcal{O}_{V'_{12}}(1) \otimes I^3_{\ell}|$. This implies that any conics in V'_{22} intersecting the line ℓ is always contained in H'_{22} . By Iskovskih [7], for every point $p \in V'_{22}$, there is a finite number of conics passing through p. Thus we have the assertion (3). The assertion (2) is proved in Mukai-Umemura [11].

Q.E.D.

§2. Double projection

We will study the double projection of V'_{22} from the line ℓ , which is the singular locus of H'_{22} . For simplicity, we put $X := V'_{22}$, $Y := H'_{22}$.

First, let us consider the linear system $|\mathcal{H}| := |\mathcal{O}_X(1) \otimes I_\ell^2|$ on X. Let σ_1 : $X_1 \to X$ be the blowing up of X along the line ℓ in X. By Lemma 2-(2), we have L_1 $:= \sigma_1^{-1}(\ell) \cong \mathbf{F}_3$ (Hirzebruch surface). We put $|\mathcal{H}_1| := |\sigma_1^* H - 2L_1|$, where $H \in |\mathcal{O}_X(1)|$. Let Y_1 be the proper transform of Y in X_1 . By Lemma 2-(3), we have a linear equivalence $Y_1 \sim \sigma_1^* H - 3L_1$. By Lemma 5.4 in Iskovskih [7], we have

LEMMA 3. (1) dim $|\mathcal{H}| = \dim |\mathcal{H}_1| = 6$,

(2) dim $|\sigma_1^*H - 3L_1| = 0$, namely, Y_1 is the unique member of the linear system $|\sigma_1^*H - 3L_1|$,

(3) $(\sigma_1^* H - 2L_1)^3 = 2$,

(4) $Y_1 \cdot L_1 \sim 3\ell_1 + 7f_1$ in L_1 , where ℓ_1 , f_1 is the negative section, a fiber of L_1 respectively.

Let K_{X_1} be a canonical divisor on X_1 . Then we have $K_{X_1} \sim -\sigma_1^* H + L_1$. Since $(L_1 \cdot \ell_1) = 1$, we have $(K_{X_1} \cdot \ell_1) = 0$. By the following exact sequence of normal bundles:

where a + b = 2, we have

Lemma 4.

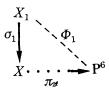
$$N_{\ell_{i}|X_{1}} \cong \begin{cases} (a) \quad \mathcal{O}(-1) \oplus \mathcal{O}(-1), \\ (b) \quad \mathcal{O}(-2) \oplus \mathcal{O} \\ (c) \quad \mathcal{O}(-3) \oplus \mathcal{O}(1). \end{cases}$$

LEMMA 5. Bs $|H_1| = \ell_1$, where Bs $|H_1|$ is the base locus of $|H_1|$.

Proof. Since $(\sigma_1^* H - 2L_1) \cdot \ell_1 = -1$, $\ell_1 \subseteq Bs |\mathcal{H}_1|$. By Lemma 2-(2), there is no other line in X which intersects ℓ . Thus, by the same argument as in the proof of Lemma 5.4-(ii) in [7], we have the claim.

Q.E.D.

Let us denote by $\pi_{2\ell}$ a rational map defined by the linear system $|\mathcal{O}_X(1) \otimes I_{\ell}^2|$, which is called the "double projection from ℓ ". Then we have a diagram:



where $\Phi_1 := \Phi_{|\mathscr{K}_1|}$ is a rational map defined by the linear system $|\mathscr{H}_1|$. Next, we will resolve the indeterminancy of the rational map $\Phi_1 : X_1 \cdots \to \mathbf{P}^6$

LEMMA 6. (1) Sing $Y_1 = 2\ell_1$, namely, ℓ_1 is the singular locus of Y_1 with the

multiplicity 2,

(2) $Y_1 \cap L_1 = A_1 + A_2 + A_3$, where A_i 's are non-singular rational curves and $A_1 \sim 2\ell_1, A_2 \sim \ell_1 + 4f_1, A_3 \sim 3f_1$ in L_1 .

Proof. Looking at the blowing up $\sigma_1: X_1 \to X$ locally, one may identify the Zariski open set $\sigma_1^{-1}(X_1 \cap \{a_{12} \neq 0\})$ with the blowing up $\mu: M \to \mathbb{C}^3(x, y, z)$ with the center Sing $V(f) = \{x = y = 0\}$. *M* is covered by two coordinate patches $U_0 = \mathbb{C}^3(r, s, t), U_1 = \mathbb{C}^3(u, v, w)$, with $r \cdot v = 1$ on $U_0 \cap U_1$, and μ is given by

$$\mu:\begin{cases} x = rs = u\\ y = s = uv\\ z = t = w. \end{cases}$$

Let V_1 be the proper transform of V(f) in M. Then we have

$$V_1 \cap U_0 = \{f_1^*(r, s, t) = 0\}, \text{where}$$

$$f_1^* := b_0 r^4 s + (b_1 s t + b_2 t^3) r^3 + (b_3 s^2 + b_4 s t^2 + b_5 t^4) r^2$$

$$+ (b_6 s^2 t + b_7 s t^3) r + b_8 s^3 + b_9 s^2 t^2, \text{ and}$$

$$V_1 \cap \{s = 0\} = \{r^2 t^3 (b_2 r + b_5 t) = 0\}.$$

This shows that $\{r = s = 0\}$ is the singular locus of V_1 with the multiplicity 2 and $V_1 \cap \{s = 0\}$ consists of three irreducible non-singular rational curves. Since $Y_1 \cdot L_1 \sim 2\ell_1 + 7f_1$, we have the assertions (1) and (2).

Q.E.D.

Let $\sigma_1: X_i \to X_{i-1}$ be the blowing up of X_{i-1} along the section ℓ_{i-1} of L_{i-1} with $(\ell_{i-1}^2)_{L_{i-1}} \leq 0$, and put $L_i := \sigma_i^{-1}(\ell_{i-1})$ $(i \geq 2)$. Let f_i be a fiber of L_i , Y_i the proper transform of Y_{i-1} in X_i , and put $\mathcal{H}_i := \sigma_i^* \mathcal{H}_{i-1} - L_i$.

LEMMA 7. (1) $Y_2 \cap L_2 = B_1 + B_2$, where $B_1 \sim 2\ell_2$, $B_2 \sim 2f_2$ in L_2 , (2) Sing $Y_2 = 2\ell_2$, (3) Bs $|\mathcal{H}_2| = \ell_2$.

Proof. By Lemma 4, we have the following three cases:

$$L_2 \cong \begin{cases} (a) & \mathbf{P}^1 \times \mathbf{P}^1, \\ (b) & \mathbf{F}_2, \\ (c) & \mathbf{F}_4. \end{cases}$$

Since $Y_2 \sim \sigma_2^* Y_1 - 2L_2$, we have

$$Y_2 \cdot L_2 \sim \begin{cases} (a) & 2\ell_2 & \text{if } L_2 \cong \mathbf{P}^1 \times \mathbf{P}^1, \\ (b) & 2\ell_2 + 2f_2 & \text{if } L_2 \cong \mathbf{F}_2, \\ (c) & 2\ell_2 + 4f_2 & \text{if } L_2 \cong \mathbf{F}_4. \end{cases}$$

On the other hand, by blowing up $U_0 = \mathbb{C}^3(r, s, t)$ along $\{r = s = 0\}$, one can get the local equation for Y_2 . From this, one can show that Sing $Y_2 = 2\ell_2$, and $Y_2 \cap L_2 = B_1 + B_2$, where $B_1 \sim 2\ell_2$, $B_2 \sim 2f_2$ in L_2 . Thus we have $L_2 \cong \mathbf{F}_2$. Since $(H_2, \ell_2) = -1$, $\ell_2 \subseteq \mathbb{B}_2 | \mathcal{H}_2 |$. On the other hand, since $| \mathcal{H}_2 | \cap L_2 \subseteq | \mathcal{H}_{2|L_2} | = | \ell_2 + f_2 |$, we have the claim.

Q.E.D.

COROLLARY 8. $L_2 \cong \mathbf{F}_2$, namely, $N_{\ell_1|X_1} \cong \mathcal{O}(-2) \oplus \mathcal{O}$.

Similarly, one can show the following

Lemma 9.

- (1) $Y_3 \cap L_3 = C_1 + C_2$, where $C_1 \sim 2\ell_3$, $C_2 \sim 2f_3$ in L_3 .
- (2) Sing $Y_3 = 2\ell_3 + 2f_3$,
- (3) Bs $|\mathcal{H}_3| = \ell_3$,
- (4) $L_3 \cong \mathbf{F}_2$, namely, $N_{\ell_3|X_3} \cong \mathcal{O}(-2) \oplus \mathcal{O}$,
- (5) $Y_4 \cap L_4 = D$, where $D \sim 2\ell_4$ in L_4 ,
- (6) $L_4 \cong \mathbf{P}^1 \times \mathbf{P}^1$, namely, $N_{\ell_{\mathfrak{s}}|X_\mathfrak{s}} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Let $L_i^{(4)}$ $(1 \le j \le 3)$ be the proper transform of L_j in X_4 and $A_i^{(4)}$ $(1 \le i \le 3), f_1^{(4)}$ be the proper transforms of A_i , a fiber f_1 in X_4 respectively. Then we have easily

(2.1) $\mathscr{H}_4 = \sigma_4^* \, \mathscr{H}_3 - L_4 \sim Y_4 + L_1^{(1)} + 2L_2^{(4)} + 3L_3^{(4)} + 4L_4$

(2.2)
$$K_{X_4} \sim -(Y_4 + 2L_1^{(4)} + 3L_2^{(4)} + 4L_3^{(4)} + 5L_4)$$

- (2.3) $(L_4 \cdot \ell_4) = (L_4 \cdot f_4) = -1, \ (\ell_4 \cdot \ell_4) = 0$
- (2.4) $(\mathcal{H}_4^3) = (\mathcal{H}_4 \cdot \mathcal{H}_4 \cdot \mathcal{H}_4) = 5$

MIKIO FURUSHIMA

$$(2.5) \qquad \qquad |\mathcal{H}_4| \cap L_4 = |\ell_4|$$

$$(2.6) \qquad \qquad (\mathcal{H}_4 \cdot \mathcal{H}_4 \cdot Y_4) = 0$$

(2.7) $(\mathscr{H}_4 \cdot \mathscr{H}_4 \cdot L_1^{(4)}) = 5$

(2.8)
$$(\mathscr{H}_4 \cdot \mathscr{H}_4 \cdot L_4) = (\mathscr{H}_4 \cdot \mathscr{H}_4 \cdot L_j^{(4)}) = 0 \ (j = 2,3)$$

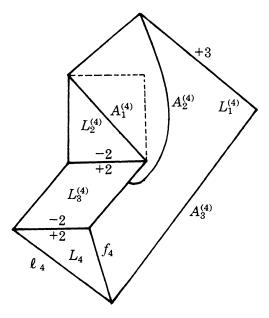
(2.9)
$$(\mathscr{H}_4 \cdot A_2^{(4)}) = 5, \ (\mathscr{H}_4 \cdot f_1^{(4)}) = 1.$$

By (2.5), we have

154

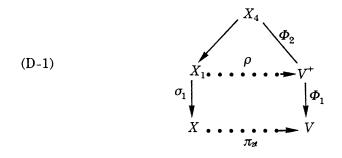
Lemma 10. Bs $|\mathcal{H}_4| = \phi$.

Let $\Phi: X_4 \to \mathbf{P}^6$ be a morphism defined by the linear system $|\mathscr{H}_4|$. We put $V := \Phi(X_4)$. By (2.4), deg V = 5. By (2.6), (2.7), (2.8), $X - Y \cong X_4 - (Y_4 \cup L_4 \cup L_1^{(4)} \cup L_2^{(4)} \cup L_3^{(4)}) \cong V - \Phi(L_1^{(4)}) \cong \mathbf{C}^3$.



By (2.3), L_4 can be blown down along ℓ_4 , and then blowing downs can be done step by step (cf. Reid [12]). Finally we have a smooth projective threefold V^+ with $b_2(V^+) = 2$, and morphisms $\Phi_2: X_4 \to V^+$, $\Phi_1: V^+ \to V$, a birational map $\rho: X \cdots \to V^+$ (which is called a flop) such that

- (i) $\Phi = \Phi_1 \circ \Phi_2$
- (ii) $X_1 \ell_1 \stackrel{\rho}{\cong} V^+ \Sigma_1$, where $\Sigma_1 := \Phi_2(L_4 \cap L_1^{(4)})$
- (iii) $V^+ \rho(Y_1) \cong V \Phi(Y_4)$



Let Y_1^+ , L_1^+ be the proper transforms of Y_1 , L_1 in V^+ respectively. We put $\Gamma := \Phi(Y_4) = \Phi_1(Y_1^+)$ and $Z := \phi(L_1^{(4)}) = \Phi_1(L_1^+)$. Then, by (2.6), (2.7), (2.9), Γ is a smooth rational curve of degree 5 in \mathbf{P}^6 and Z is a ruled surface swept out by lines which intersect the line $\Sigma := \Phi_1(\Sigma_1)$ on V. In particular, $\Gamma \hookrightarrow Z$ and $\Gamma \cap \Sigma = \{\text{one point}\}$. Let γ be a conic in X which intersect the line ℓ . Then $\gamma \hookrightarrow Y$. Let γ_1 be the proper transform of γ in X_1 and $\gamma_1^+ := \rho(\gamma_1) \hookrightarrow Y_1^+$. Since $K_{V^+} = \rho_*(K_{X_1}) = -Y_1^+ - 2L_1^+$, we have $(K_{V^+} \cdot \gamma_1^+) = -1$. Thus, $\Phi_1 : V^+ \to V$ be the contraction of an extremal ray by K.M.M. [9]. Since Y_1^+ is contracted to the smooth curve Γ by Φ_1 , V is smooth by Mori [10]. By (2.4), we have deg V = 5. Moreover, we have $K_V \sim -2Z$. Since $V - Z \cong \mathbb{C}^3$ by construction, Z is ample, thus, V is a Fano threefold of first kind with index 2, genus 21. Since Z is swept out by lines in V, Z is non-normal. In fact, the singular locus of Z is just the line $\Sigma := \Phi_1(\Sigma_1)$. Therefore we have $(V, Z) \cong (V_5, H_5^\infty)$ (see §1), namely

THEOREM 1. Let $(V'_{22}, H'_{22}), \ell := \text{Sing } H'_{22}, (V_5, H_5^{\infty})$ be as before. Then the double projection $\pi_{2\ell} : V'_{22} \to V_5$ of V'_{22} from the line ℓ gives an isomorphism $V'_{22} - \mathcal{H}'_{22} \to V_5 - H_5^{\infty} (\cong \mathbb{C}^3)$.

Remark 1. Let $\Sigma := \operatorname{Sing} H_5^{\infty}$ be the singular locus of H_5^{∞} . Then, Σ is a line on V_5 with the normal bundle $N_{\Sigma | V_5} \cong \mathcal{O}(-1) \oplus \mathcal{O}(1)$. The set $\{x \in \Sigma ; \text{ there is}$ a unique line passing through the point x} consists of the only point p (cf. [5]). One can easily see that there is a smooth rational curve Γ of degree 5 in V_5 such that

MIKIO FURUSHIMA

 $\Gamma \cap \Sigma \{p\}$ and $\Gamma \hookrightarrow H_5^{\infty}$. Then the linear system $|\mathcal{O}_{V_5}(3) \otimes I_{\Gamma}^2|$ defines the inverse birational map $\pi_{2\ell}^{-1}: V_5 \cdots \to V_{22}'$ with $V_5 - H_5^{\infty} \xrightarrow{\sim} V_{22}' - H_{22}'$ (cf. [7]).

§3. Normalization and resolution of the boundary divisor

First, we will prepare some general results on a non-normal hyperplane section of a Fano threefold of special series.

Let X be a Fano threefold of special series, namely, X is a smooth threefold $V_{2g-2} \hookrightarrow \mathbf{P}^{g+1}$ of degree 2g-2. Then the anticanonical line bundle $-K_X$ is an ample generator of Pic $X \cong \mathbf{Z}$. Let Y be a non-normal member of the linear system $|-K_X|$. Since Pic $X \cong \mathbf{Z}[Y]$, Y is irreducible. Let $\sigma: S \to Y$ be the normalization, and let $I \hookrightarrow \mathcal{O}_Y$ be the conductor of σ . We put $E := \operatorname{loc} I$ (the locus of I) and $D := \sigma^{-1}(E)$. Since Y is Cohen-Macaulay, E and D are Cohen-Macaulay. Since $Y \sim -K_X$, $H^i(X, \mathcal{O}_X) = 0$ for i > 0 and $H^i(X, \mathcal{O}_X(-Y)) = 0$ for i < 3, we have

$$(3.1) \qquad \qquad \omega_Y \cong \mathscr{O}_Y$$

(3.2)
$$H^{1}(Y, \mathcal{O}_{Y}) = 0, H^{2}(Y, \mathcal{O}_{Y}) \cong \mathbf{C}$$

(3.3)
$$\omega_s \cong I \otimes \sigma^* \omega_Y \cong I$$
 (i.e. $K_s \sim -D$ as a Weil divisor).

By (3.34.2), (3.34.3) in Mori [10], we have exact sequences:

$$(3.4) 0 \to \mathcal{O}_Y \to \sigma_* \mathcal{O}_S \to \omega_E \to 0$$

$$(3.5) 0 \to \sigma_* \omega_s \to \mathcal{O}_Y \to \mathcal{O}_E \to 0$$

Taking σ^* in (3.5), we have

$$(3.6) 0 \to \omega_s \to \mathcal{O}_s \to \sigma^* \mathcal{O}_E \cong \mathcal{O}_D \to 0.$$

By (3.2), (3.3), (3.3), we have

LEMMA 11 ([14]). $h^0(\mathcal{O}_E) = 1$ and $h^1(\mathcal{O}_E) = 0$, namely E_{red} is connected and each irreducible component E_i of E_{red} is a smooth rational curve.

Take a general hyperplane section H of X. From (3.4), we get

$$(3.7) 0 \to \mathcal{O}_{Y}(H) \to \sigma_{*}\mathcal{O}_{s} \otimes \mathcal{O}_{Y}(H) \to \omega_{E}(H) \to 0.$$

Since $H^1(Y, \mathcal{O}_Y(H)) = 0$, we have

(3.8)
$$h^{0}(\sigma_{*}\mathcal{O}_{s}\otimes \mathcal{O}_{Y}(H)) = h^{0}(\mathcal{O}_{Y}(H)) + h^{0}(\omega_{E}(H)).$$

We put $\delta := (H \cdot E)_{X}$.

CLAIM (3.9). $h^0(S, \sigma^*H) = g + \delta$.

In fact, since E is Cohen-Macaulay, $h^0(\omega_Y(H)) = h^1(\mathcal{O}_E(-H))$. By the following exact sequence:

$$0 \to \mathcal{O}_E(-H) \to \mathcal{O}_E \to \mathcal{O}_{E \cap H} \to 0,$$

we have $h^1(\mathcal{O}_E(H)) = h^0(\mathcal{O}_{E\cap H}) - h^0(\mathcal{O}_E) = \delta - 1$. Since $h^0(\sigma^*H) = h^0(\sigma_*\mathcal{O}_S(\sigma^*H)) = h^0(\sigma_*\mathcal{O}_S \otimes \mathcal{O}_Y(H))$ and $h^0(\mathcal{O}_Y(H)) = g + 1$, we have $h^0(S, \sigma^*H) = g + \delta$.

Let $\Delta(S, \sigma^*H) := \dim S + \deg \sigma^*H - h^0(S, \sigma^*H)$ be the Δ -genus of the polarized variety (S, σ^*H) (cf. [3]). Since dim S = 2 and deg $\sigma^*H = (H^3)_X = 2g - 2$, we have

LEMMA 12. $\Delta(S, \sigma^*H) = g - \delta$.

LEMMA 13. $(D \cdot \sigma^* H) = 2(E \cdot H) = 2\delta$.

Proof. By (3.36.2) in Mori [10], we have

 $0 \to \mathcal{O}_E \to \sigma_* \mathcal{O}_D \to \omega_E \to 0.$

Thus we have $\chi(\sigma_*\mathcal{O}_D \otimes H) = \chi(\mathcal{O}_E(H)) + \chi(\omega_E(H)) = 2\delta + \chi(\mathcal{O}_E) + \chi(\omega_E)$ = 2. On the other hand, $\chi(\sigma_*\mathcal{O}_D \otimes H) = \chi(\mathcal{O}_D \otimes \sigma^*H) = (D \cdot \sigma^*H) + \chi(\mathcal{O}_D)$. Since $\chi(\mathcal{O}_D) = \chi(\mathcal{O}_S) - \chi(\omega_S) = 0$, we have $(D \cdot \sigma^*H) = 2\delta$.

Q.E.D.

Let $C \in |\sigma^*H|$ be a smooth member. By Bertini's theorem, such a member C exists. Let us denote by g(C) the genus of C.

LEMMA 14. $g(C) = g - \delta$.

Proof. By the adjunction theorem, $2g(C) - 2 = C(\omega_s + C)$. Since $(C^2) = 2g - 2$ and $(C \cdot \omega_s) = 2\delta$ by Lemma 13, we have $g(C) = g - \delta$.

Q.E.D

Let $\mu: M \to S$ be the minimal resolution, and put $\psi:=\mu \circ \sigma: M \to Y$. Since $K_s \sim -D$ (as a Weil divisor), we have $K_M \sim -\widehat{D} - \sum_i m_i \Delta_i$ $(m_i > 0, m_i \in \mathbb{Z})$, where \widehat{D} is the proper transform of D in M and $\bigcup_i \Delta_i$ is the exceptional set of μ .

LEMMA 15. M is rational or ruled.

Proof. Since $H^0(M, \mathcal{O}_M(mK_M)) = 0$ for m > 0, by the classification of surfaces, we have the lemma.

Q.E.D.

LEMMA 16. If $h^1(\mathcal{O}_M) = 0$, then Sing S consists of at worst rational singularities, in particular, S is rational.

Proof. Let us consider the following exact sequence:

$$0 \to H^1(S, \mathcal{O}_S) \to H^1(M, \mathcal{O}_M) \to H^0(S, R^1\mu_*\mathcal{O}_M) \to H^2(S, \mathcal{O}_S) \to .$$

By assumption, we have $H^1(M, \mathcal{O}_M) = 0$. Since $H^2(S, \mathcal{O}_S) \cong H^0(S, \omega_S) = 0$, we have the claim.

Q.E.D.

Now, Mukai-Umemura's example V'_{22} is a special class of Fano threefolds of special series with the genus g = 12, and H'_{22} is a non-normal hyperplane section of V'_{22} such that $V'_{22} - H'_{22} \cong \mathbb{C}^3$. We can apply the above lemmas to these $X := V'_{22}$ and $Y := H'_{22}$.

LEMMA 17. Assume that $(X, Y) = (V'_{22}, H'_{22})$. Then we have

- (1) $E_{\text{red}} \cong \mathbf{P}^1$,
- (2) $Y E_{red} \cong \mathbb{C}^2$,
- (3) $H^1(Y; \mathbf{Z}) = 0, H^2(Y; \mathbf{Z}) \cong \mathbf{Z}, H^3(Y; \mathbf{Z}) = 0,$
- (4) S is a rational surface and Sing S consists of at worst rational singularities.
- (5) $g(C) = 12 \delta$ for a general smooth member $C \in |\sigma^*H|$.

Proof. By Lemma 2 and its proof, we have (1) and (2). Since $X - Y \cong \mathbb{C}^3$, we have $H^i(X; \mathbb{Z}) \cong H^i(Y; \mathbb{Z})$ for $i \ge 0$. It is known that $H^i(V'_{22}; \mathbb{Z}) = H^i$ (\mathbb{P}^3 ; \mathbb{Z}) for $i \ge 0$, that is, V'_{22} has the same cohomology as \mathbb{P}^3 . This proves (3). Let us consider the following exact sequence (cf. [1]):

$$(*) \quad 0 \to H^2(Y ; \mathbf{Z}) \to H^2(S ; \mathbf{Z}) \oplus H^2(E ; \mathbf{Z}) \to H^2(D ; \mathbf{Z}) \to$$

 $\rightarrow H^3(Y; \mathbf{Z}) \rightarrow H^3(S; \mathbf{Z}) \rightarrow 0$

Since $H^{3}(Y; \mathbb{Z}) = 0$, we have $H^{3}(S; \mathbb{Z}) = 0$. Since $b_{3}(M) = b_{3}(S) = 0$ (cf. [2]), $b_{1}(M) = 0$, hence, $h^{1}(\mathcal{O}_{M}) = h^{1}(\mathcal{O}_{S}) = 0$. By Lemma 16, we have (4). Since g = 12, by Lemma 14, we have (5).

Q.E.D.

LEMMA 18. $K_M + \phi^* H$ is nef.

Proof. Assume that $K_M + \phi^* H$ is not nef. Then, by Cone theorem and Contraction theorem in [8] (cf. [9]), there is a contraction $\pi: M \to Z$ of the extremal ray, where Z is normal and $\pi^{-1}(z)$ is connected for any $z \in Z$.

Case (a). dim Z = 2. Then there is a curve R such that $\pi(R)$ is a point and $R^2 < 0$, $(K_M + \psi^* H) \cdot R < 0$. Since $(\psi^* H \cdot R) \ge 0$ and $R^2 < 0$, we have $R \cong \mathbf{P}^1$ and $R^2 = -1$, hence, $(\psi^* H \cdot R) = 0$. Thus R is an exceptional curve of μ . Since $\mu: M \to S$ is the minimal resolution, this is a contradiction.

Case (b). dim Z = 1. Since M is rational, we have $Z \cong \mathbf{P}^1$. Since $\rho(M) = \rho(Z) + 1 = 2$, M is isomorphic to \mathbf{F}_n (Hirzebruch surface), namely, $\pi: M \to Z \cong \mathbf{P}^1$ is a \mathbf{P}^1 -bundle over \mathbf{P}^1 . For a fiber f, we have $(K_M + \psi^* H) \cdot f < 0$. Hence, $(\psi^* H \cdot f) = (H \cdot \psi(f)) = 1$ since $(K_M \cdot f) = -2$. Thus, Y is a ruled surface swept out by lines on X. By Lemma 2-(2), E_{red} is a line on X and $E_{\text{red}} \cap \psi(f) = \emptyset$ for a general fiber f. This shows that $\psi(f) \subset Y - E_{\text{red}} \cong \mathbf{C}^2$. This is a contradiction.

Case (c). dim Z = 0. In this case, $M \cong \mathbf{P}^2$. For a smooth member $C \in |\phi^*H|$, we put deg C = d. Then, $C^2 = d^2 = 22$, this is a contradiction.

Q.E.D.

By Lemma 2-(3), $Y := H'_{22}$ is a ruled surface swept out by conics which intersect the line $\ell := \operatorname{Sing} Y$ in $X := V'_{22}$, where $\ell = E_{\operatorname{red}}$. Take a general conic γ in Y. Then, $\gamma \cap E_{\operatorname{red}} \neq \emptyset$. Let $\hat{\gamma}$ be the proper transform of γ in M. Then we have $(\phi^*H \cdot \hat{\gamma}) = (H \cdot \gamma) = 2$. Since $K_M + \phi^*H$ is nef by Lemma 18, we have $(K_M + \phi^*H) \cdot \hat{\gamma} \ge 0$, hence, $(K_M \cdot \hat{\gamma}) \ge -2$. On the other hand, since $K_M \sim -\hat{D} - \sum_i m_i \Delta_i$ $(m_i \ge 0, m_i \in \mathbb{Z})$, we have $(K_M \cdot \hat{\gamma}) \le 0$.

CLAIM (1). $(K_M \cdot \hat{\gamma}) \neq 0.$

In fact, if $(K_M \cdot \hat{\gamma}) = 0$, then $(\hat{D} \cdot \hat{\gamma}) = 0$, $(\Delta_i \cdot \hat{\gamma}) = 0$ for each *i*. We take a general γ . Thus $\mathbf{P}^1 \cong \hat{\gamma} \hookrightarrow M - \hat{D} - \bigcup \Delta_i Y - E_{\text{red}} \cong C^2$. This is a contradiction.

CLAIM (2). There is an irreducible conic γ_0 in Y such that $(K_M \cdot \hat{\gamma}_0) = -2$ (that is, $\hat{\gamma}_0 \cong \mathbf{P}^1$ with the self-intersection number $\hat{\gamma}_0^2 = 0$).

In fact, by Claim (1), we have $(K_M \cdot \hat{\gamma}) = -1$ or -2 for any conic γ in Y. If $(K_M \cdot \hat{\gamma}) = -1$, then $\hat{\gamma}$ is a (-1)-curve. Thus, M contains a continuous family of (-1)-curves. This is a contradiction.

Let $\tau: M \to \mathbf{P}^1$ be a morphism defined by the linear system $|\hat{\gamma}_0|$. For a general p in \mathbf{P}^1 , $\tau^{-1}(p) \sim \hat{\gamma}_0$.

LEMMA 19. $K_M + \phi^* H \sim (11 - \delta) \hat{\gamma}_0$.

Proof. By Basepoint-free Theorem of Kawamata [7], we have Bs $| m(K_M + \psi^*H) | = \emptyset$ for $m \gg 0$. We put $\hat{f} := \tau^{-1}(p)$ (a general fiber of τ). By Claim (2), $(K_M + \psi^*H)\hat{f} = 0$. Let $\tau_m : M \to Z_0$ be a morphism defined by the linear system $| m(K_M + \psi^*H) |$. Since M is rational and since $\tau_m(\hat{f})$ is a point, we have $Z_0 \cong \mathbf{P}^1$, in particular, we have $m(K_M + \psi^*H) \sim k \hat{\gamma}_0$. Since $(\psi^*H \cdot K_M) = -2\delta$, $(\psi^*H \cdot \psi^*H) = 22$ and $(\psi^*H \cdot \hat{\gamma}_0) = 2$, we have $(22 - 2\delta)m = 2k$, hence, $k = (11 - \delta)m$. Since Pic M has no torsion, we have $(K_M + \psi^*H) \sim (11 - \delta)\hat{\gamma}_0$. Q.E.D.

COROLLARY 20. Bs $|K_M + \phi^* H| = \emptyset$.

Let \hat{f} be a regular fiber of τ . Then $\psi(\hat{f}) = \gamma \hookrightarrow Y \hookrightarrow X$ is a conic in X.

LEMMA 20. Each Δ_i is contained in a singular fiber of τ .

Proof. Assume that Δ_1 not contained in any singular fiber of τ . Then $\tau_{|\Delta_1} \colon \Delta_1 \to \mathbf{P}^1$ is a surjective morphism, hence, $(\Delta_1 \cdot \hat{f}) \neq 0$ for a regular fiber \hat{f} . Since $\psi(\Delta_1)$ is a point and since $\psi(\hat{f}) =: \gamma$ is a conic in $Y \hookrightarrow X$, we have an infinite number of conics in X passing through the point $\psi(\Delta_1) \in X$. On the other hand, for each point $x \in X$, the number of conics passing through the point x is finite by Iskovskih [7]. Thus we have an contradiction.

Q.E.D.

LEMMA 21. Let B be an irreducible component of a singular fiber of $\tau: M \to \mathbf{P}^1$. Then $B^2 = -1$ or -2. Furthermore,

(i)
$$B^2 = -1 \Leftrightarrow \phi(B) = E_{\text{red}} \cong \mathbf{P}^1$$

Proof. Since $(K_M + \psi^*H) B = (11 - \delta) \cdot (\hat{\gamma} \cdot B) = 0$, we get $(K_M B) = -(\psi^*H \cdot B) \leq 0$. Since $B \approx \mathbf{P}^1$ and $B^2 < 0$, we have $B^2 = -1$ or $B^2 = -2$. (i): $B^2 = -1 \Leftrightarrow (K_M \cdot B) = -1 \Leftrightarrow (\psi^*H \cdot B) = 1 \Leftrightarrow (H \cdot \psi(B)) = 1 \Leftrightarrow \psi(B)$ is a line in $Y \Leftrightarrow \psi(B) = E_{\text{red}}$ (because $E_{\text{red}} = \text{Sing } Y$ is a unique line in Y by Lemma 2-(2)). (ii): $B^2 = -2 \Leftrightarrow \psi(B)$ is a point of $Y \Leftrightarrow B$ is a component of the exceptional set of $\mu \Leftrightarrow B = \Delta_i$ for some *i*.

Q.E.D.

COROLLARY 22. Sing S consists of (at worst) rational double points.

Proof. For each Δ_i , one has $(\Delta_i \cdot \Delta_i) = -2$. This proves the corollary.

LEMMA 23. $\delta = 4$.

Proof. Let $C \in |\sigma^*H|$ be a smooth member. By Bertini theorem, such a member C exists. We put $C_0 := \sigma(C)$. Then $\sigma: C \to C_0$ is the normalization. We may assume that C_0 is contained in a K3 surface H_0 , which is a hyperplane section of $X := V'_{22}$. Since Sing $Y =: E_{red}$ is a line in X, Sing C_0 consists of only one point p_0 . On the other hand, from the defining equation (*) in Lemma 2, the local equation of C_0 around p_0 in H_0 can be written as $u_0x^3 + u_1x^2y + u_2xy^3 + u_3y^5 = 0$, where $p_0 = (0, 0)$. Thus C_0 has two singular points p_0 and p'_0 (infinitely near singular point lying over p_0) with the multiplicity three and two respectively. Since H_0 is a K3 surface, the arithmetic genus $p_a(C_0) = \frac{1}{2}(C_0 C_0) + 1 = 12$, hence, the genus $g(C) = p_a(C_0) - 4 = 8$. Since $g(C) = 12 - \delta$ by Lemma 12, we have $\delta = 4$.

Q.E.D.

LEMMA 24. $K_M^2 = -6$ and $b_2(M) = 16$.

Proof. Since $(K_M + \psi^* H)^2 = K_M^2 - 4\delta + 22 = 0$ and $\delta = 4$, we have $K_M^2 = -6$. By Noether formula, we have $b_2(M) = 16$.

Q.E.D.

LEMMA 24. The number of the singular fiber of $\tau: M \to \mathbf{P}^1$ is equal to one.

MIKIO FURUSHIMA

Proof. Let F_i $(1 \le i \le t)$ be a singular fiber of τ , $1 + \alpha_i$ the number of the irreducible components of F_i , and e_i the number of the irreducible components of $\overline{F_i - \Delta}$, where $\Delta := \bigcup \Delta_i$. By Lemma 21, $e_i =$ the number of irreducible components of $\widehat{D} \cap F_i =$ the number of (-1)-curves in F_i . Since M is rational, we have $b_2(M) = 2 + \sum_i \alpha_i$. Since $b_2(M) = b_2(S) + b_2(\Delta)$ and $b_2(\Delta) = \sum_i (1 + \alpha_i - e_i)$, we have $b_2(S) = 2 - \sum (1 - e_i)$. On the other hand by the following exact sequence (cf. [1]):

$$\begin{array}{c} 0 \to H^2(Y \ ; \ \mathbf{Z}) \to H^2(S \ ; \ \mathbf{Z}) \oplus H^2(E \ ; \ \mathbf{Z}) \to H^2(D \ ; \ \mathbf{Z}) \to 0, \\ & & \\ \mathbb{I} \\ & & \\ \mathbf{Z} \qquad \qquad \mathbf{Z} \end{array}$$

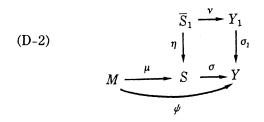
we have $b_2(S) = b_2(D)$. Since $K_M \sim -\hat{D} - \sum m_i \Delta_i$ and $(K_M \cdot \hat{f}) = -2$ for a regular fiber \hat{f} of τ , we have $(\hat{D} \cdot \hat{f}) = 2$. This shows that $b_2(\hat{D}) > \sum e_i$. Thus we have $2 - \sum (1 - e_i) = b_2(S) = b_2(D) = b_2(\hat{D}) > \sum e_i$, that is, $2 > t \ge 1$. Therefore we have t = 1.

Q.E.D.

LEMMA 25. $\hat{D} = 2\hat{D}_1 + 3\hat{D}_2 + 3\hat{D}_3$, where \hat{D}_1 is a section of $\tau: M \to \mathbf{P}^1$ and \hat{D}_i 's are the (-1)-curves in the singular fiber of τ for i = 2,3.

Proof. Let $\sigma_1: X_1 \to X$, Y_1 , L_1 , A_i $(1 \le i \le 3)$, ℓ_1 , f_1 be as in Lemma 6. Since $Y_1 \sim \sigma^* H - 3L_1$, by the adjunction formula, we have $K_{Y_1} \sim -2L_1 |_{Y_1} \sim -2(A_1 + A_2 + A_3)$ as a Weil divisor. Let $\nu: \overline{S}_1 \to Y_1$ be the normalization and A'_1 (resp. $\overline{A'_1}$) be the closed subscheme in Y_1 (resp. \overline{S}_1) defined by the conductor of ν . Since Sing $Y_1 = A_1$, supp $A_1 = \text{supp } A'_1$.

CLAIM (1). There is a morphism $\eta: \overline{S}_1 \to S$ such that $\sigma \circ \eta = \sigma_1 \circ \nu$ (see D-2).



In fact, let \overline{A}_i be the proper transform of A_1 in \overline{S}_1 . Since $\overline{S}_1 - \bigcup$ supp $\overline{A}_i \cong Y_1 - \bigcup$ supp $A_i \cong Y -$ supp E, we have the claim. In particular, η (supp \overline{A}_3) is a point on S, $\overline{S}_1 -$ supp $\overline{A}_3 \cong S - \eta$ (supp \overline{A}_3) and η (supp $\overline{A}_1 \cup$ supp \overline{A}_2) = supp D.

We put $D_1 := \eta_*(\overline{A}_2)$. Since $A_2 \sim \ell_1 + 4f_1$ in L_1 , A_2 is reduced, hence, D_1 is reduced. Let \widehat{D}_1 is the proper transform of D_1 in M.

CLAIM (2). \widehat{D}_1 is a section of $\tau: M \to \mathbf{P}^1$, and $(\psi^* H \cdot \widehat{D}_1) = 1$.

In fact, let γ be a general conic $Y \hookrightarrow X$, and $\overline{\gamma}$ the proper transform of γ in $Y_1 \hookrightarrow X_1$. Then we have $(L_1 \overline{\gamma}) = 1$. Since $Y_1 \cdot L_1 \sim (2\ell_1) + (\ell_1 + 4f_1) + (3f_1)$ and $\overline{\gamma} \hookrightarrow Y_1$, we have $(A_2 \cdot \overline{\gamma}) = 1$, hence, $(\widehat{D}_1 \cdot \overline{\gamma}) = 1$, where $\overline{\gamma}$ is the proper transform of γ in M. Thus \widehat{D}_1 is a section of $\tau : M \to \mathbf{P}^1$. Since $(\sigma_1^*H \cdot A_2) = (\sigma_1^*H \cdot \ell_1 + 4f_1) = 1$, we have $(\phi^*H \cdot \widehat{D}_1) = 1$.

CLAIM (3). $\hat{D} \sim 2\hat{D}_1 + 3\hat{D}_2 + 3\hat{D}_3$, where \hat{D}_2 , \hat{D}_3 are the (-1)-curves in the singular fiber of τ .

In fact, since $-K_M \sim \hat{D} + \sum m_i \Delta_i$, we have $2 = (\hat{D} \cdot \hat{f}) + \sum m_i (\Delta_i \cdot \hat{f})$ for a regular fiber \hat{f} of τ . Since Δ_i 's are contained in the singular fiber of τ , we have $(\hat{D} \cdot \hat{f}) = 2$. Since $\eta (\text{supp } \bar{A}_1 \cup \bar{A}_2) = \text{supp } D$ and $(A_2 \cdot \bar{\tau}) = 1$, we have $\hat{D} = 2\hat{D}_1 + \sum n_i\hat{D}_i$ $(i \ge 2, n_i \in \mathbb{Z}, n_i > 0)$. We note that the proper transform of τ in M is linearly equivalent to a regular fiber \hat{f} of $\tau : M \to \mathbb{P}^1$. Since \hat{D}_i 's $(i \ge 2)$ are contained in the singular fiber of τ , by Lemma 21, \hat{D}_i 's are the (-1)-curves in the singular fiber of τ . Hence $(\phi^* H \cdot \hat{D}_i) = 1$ $(i \ge 2)$.

Let us recall the normalization $\sigma: C \to C_0$ (see the proof of Lemma 6). From the local defining equation of C_0 in H_0 there, one can see that $\sigma^{-1}(p_0)$ consists of three distinct points, where $p_0: = \operatorname{Sing} C_0$. This shows that $\widehat{D} = 2\widehat{D}_1 + a\widehat{D}_2$ $+ b\widehat{D}_3$, where a + b = 6, since $(\phi^*H \cdot \widehat{D}) = 8$. On the other hand, since $\overline{K}_{S_1} \sim$ $-2\nu^*(A_1 + A_2 + A_3) - \overline{A}'_1$ as a Weil divisor, we have $D \sim -K_S \sim 2\eta_*\nu^*A_2 +$ $(2\eta_*\nu^*A_1 + \eta_*\overline{A}'_1)$. Since $\operatorname{supp} D_1 = \operatorname{supp} \eta_*\nu^*A_2$ and $\operatorname{supp} \eta_*\overline{A}'_1 = \operatorname{supp} \eta_*\overline{A}_1 \hookrightarrow \operatorname{supp} D$, we have a = b = 3. This completes the proof.

Q.E.D.

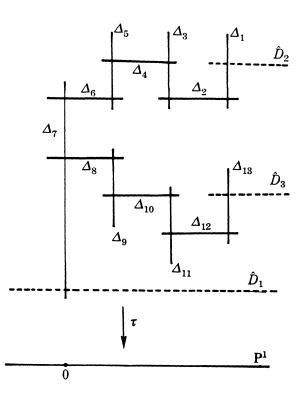
THEOREM 2. Let $(X, Y) := (V'_{22}, H'_{22})$ be as in §1. Let $\sigma : S \to Y := H'_{22}$ be the normalization, and E the non-normal locus defined by the conductor of σ , and Dthe analytic inverse image of E. Let $\mu : M \to S$ be the minimal resolution and $\mu^{-1}(\text{Sing } S) = \bigcup \Delta_i$, where Δ_i 's are irreducible. Then,

- (1) E is non-reduced and $E_{red} \cong \mathbf{P}^1$,
- (2) Sing $S = p_0$, p_0 is a rational double point of A_{13} -type,

(3) $D \sim 2D_1 + 3D_2 + 3D_3$ as a Weil divisor on S, where D_i 's are irreducible reduced Weil divisors on S such that $D_i \cong \mathbf{P}^1$ and $D_1 \cap D_2 \cap D_3 = \{p_0\}$,

(4) there is a fibering $\tau: M \to \mathbf{P}^1$ with exactly one singular fiber $\tau^{-1}(0)$ such that $\tau^{-1}(0) = \bigcup \Delta_i \cup \widehat{D}_2 \cup \widehat{D}_3$, $(\widehat{D}_i \cdot \widehat{D}_i) = -1$, $(\Delta_j \cdot \Delta_j) = -2$ for $i \ge 2, j \ge 1$, in particular, \widehat{D}_1 is a section of τ (see Figure 2 below), where \widehat{D}_i is the proper transform of \widehat{D}_i in M, and

(5) $K_{M} \sim -2\widehat{D}_{1} - 3\widehat{D}_{2} - 3\widehat{D}_{3} - \sum_{i=1}^{7} (3+i) \Delta_{i} - \sum_{i=1}^{6} (3+i) \Delta_{14-i},$ where $(\widehat{D}_{1} \cdot \Delta_{7}) = (\widehat{D}_{2} \cdot \Delta_{1}) = (\widehat{D}_{3} \cdot \Delta_{13}) = 1, \ (\widehat{D}_{i} \cdot \widehat{D}_{j}) = 0 \ (i \neq j), \ (\Delta_{i} \cdot \Delta_{i+1}) = 1, \ (\Delta_{i} \cdot \Delta_{j}) = 0 \ (| i - j | > 1).$



Proof. By Lemma 2-(1), $E_{\text{red}} \cong \mathbf{P}^1$. By Lemma 23, $(E \cdot H) = 4$ for a hyperplane section H of $X := V'_{22}$. This proves (1). By Lemma 24, $\tau : M \to \mathbf{P}^1$ has exactly one singular fiber and the self-intersection number of each irreducible component the singular fiber is equal to -1 or -2. By Lemma 21 and Lemma 25, \hat{D}_2 and \hat{D}_3 are the (-1)-curves in the singular fiber of τ , and other components of the singular fiber are the exceptional divisor of μ . This enables us to determine the type of the singular fiber of τ (see Figure 2). This proves (2), (3), (4).

Since $K_M \sim -\hat{D} - \sum m_i \Delta_i$, by the adjunction formula, we have (5)

Q.E.D.

Remark 2. Our example (V'_{22}, H'_{22}) of a compactification of \mathbb{C}^3 gives a counter example to Theorem (3.16) in the paper of Peternell [14].

REFERENCES

- G. Barthel L. Kaup, Topologie des espaces complexes compacts singulieres, Montreal Lecture notes, Vol. 80 (1986).
- [2] L. Brenton, Some algebraicity criteria for singular surfaces, Invent. math., 41 (1977), 129-147.
- [3] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. of Tokyo, 22 (1975), 103-115.
- [4] M. Furushima, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C³, Nagoya Math. J., 104 (1986), 1-28.
- [5] M. Furushima N. Nakayama, The family of lines on the Fano threefold V₅, Nagoya Math. J., 116 (1989), 111-122.
- [6] M. Furushima, Analytic compactifications of C³, Compositio Math., 76 (1990), 163-196.
- [7] V. A. Iskovskih, Fano 3-folds II, Math. U. S. S. R. Izvestiya, 12 (1978), 469-506.
- [8] Y. Kawamata, The cone of curves of algebraic varieties, Ann. Math., 119 (1984), 603-633.
- [9] Y. Kawamata K. Matsuda M. Matsuki, Introduction to the minimal model problem, in Algebraic Geometry, Sendai, (T. Oda, ed,) Advanced Studies in Pure Math., 10 (1987), Kinikuniya, Tokyo and North-Holland, Amsterdam, 551-590.
- [10] S. Mori, Threefolds whose canonical bundles are not numerical effective, Ann. Math., 116 (1982), 133-176.
- S. Mukai- H. Umemura, Minimal rational threefolds, Lecture Notes in Math., 1016, Springer-Verlag (1983), 490-518.
- [11a] S. Mukai, On Fano threefolds, to appear in "Projective Geometry", Trieste (1989).
- M. Reid, Minimal of canonical 3-folds, Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math., 1(1983), Kinokuniya, Tokyo and North-Holland, Amsterdam, 131-180.
- [13] Th. Peternell M. Schneider, Compactifications of C³, I, Math. Ann., 280 (1988), 129-146.
- [14] Th. Peternell, Compactifications of C³, II, Math. Ann., 283 (1989), 121–137.

Department of Mathematics College of Education Ryukyu University Nishihara-cho, Okinawa 903-01, Japan