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THE CONVEX FUNCTION DETERMINED BY A MULTIFUNCTION

M. COODEY AND S. SlMONS

We shall show how each multifunction on a Banach space determines a convex
function that gives a considerable amount of information about the structure of
the multifunction. Using standard results on convex functions and a standard
minimax theorem, we strengthen known results on the local boundedness of a
monotone operator, and the convexity of the interior and closure of the domain of
a maximal monotone operator. In addition, we prove that any point surrounded
by (in a sense made precise) the convex hull of the domain of a maximal monotone
operator is automatically in the interior of the domain, thus settling an open
problem.

INTRODUCTION

We shall assume throughout this paper that E is a nontrivial Banach space. We
shall show how each multifunction 5 : E —> 2E with D(S) ^ 0 determines a convex
function xs '• E —> R U {oo}, and we shall also show that xs gives a considerable
amount of information about the structure of S.

We define xs in Definition 2. Lemma 3 contains a technical result which will
be useful later in the paper, and Lemma 4 is our main result about xs • Our first
application of Lemma 4 is in Theorem 6, in which we give a sufficient condition for S
to be locally bounded at a point of E.

We next discuss the concept of an element x of E being "surrounded" by a subset
A of E. This concept is related to x being an "absorbing point" of A, but differs in
that we do not require that x E A (see [5, Definition 2.27(b), p.28]). Among other
things, this difference will enable us to strengthen (in Theorem 12(b)) the result of
Borwein and Fitzpatrick (see [1]) on the local boundedness of monotone operators.

Lemma 13(b) contains a result on the existence of elements of E*, which we apply
to maximal monotone operators in Theorem 14. Rockafellar proved in [7, Theorem 1,
p.398] (see also [6, Theorem 1.9, p.6] that if S is maximal monotone and int (co D(S)) ^
0, then int D(S) and D(S) are both convex. (As usual, "co" stands for "convex hull
of".) In Theorem 14, we give more explicit results and prove that, in fact,

int D(S) = int (domxs) and D(S) = domxs-
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88 M. Coodey and S. Simons [2]

The first of these results is true even if int (co D(S)) = 0.

The equation "int D(S) = sur(coD(S))" in Theorem 14 means the following: if

x £ E and,

for all w 6 E \ {0}, there exists 6 > 0 such that x + Sw £ co D(S)

then x G int D(S). This result answers in the affirmative a question raised by Phelps

(see [5, p.29] and [6, p.8]).

The analysis in this paper gives insight into the "relative difficulty" of the results

on the convexity of intD(5) and domxs on the one hand, and the results on local

boundedness on the other. The former use Lemma 4 in full generality, while the latter

use Lemma 4 only for m = 1.

A word about tools. In Lemma 4 we use the standard result that a proper convex

lower semicontinuous function on E is continuous on the interior of its domain. In

Lemma 13(b), we use a minimax theorem. In fact, we could have used the Hahn-

Banach theorem or a sandwich theorem instead, but a minimax theorem gives the

fastest proof. We use the following classical minimax theorem, which can be deduced

from more general results of Fan (see [2]) or Sion (see [9]). Fan's proof used a separation

theorem for sets in finite dimensional spaces, and Sion's proof used the KKM theorem,

but Theorem 1 can easily be proved without any functional analysis or fixed-point

related concepts. See, for instance, the proof of Sion's theorem given by Komiya in [4].

THEOREM 1 . Let X and y be nonempty compact convex subsets of topological

vector spaces. Let / : X x 7 - t I be (separately) concave and upper semicontinuous

on X and convex and lower semicontinuous on Y. Then

max min / = min max / .
x Y Y x

T H E CONVEX FUNCTION DETERMINED BY A MULTIFUNCTION

DEFINITION 2: If m ^ 1, let

am := {a = (ai,... ,am) : au... ,am > 0, aj + • • • + am = 1} C Rm.

If S : E -> 2E* and D(S) ± 0, we define Xs : E -> R U {oo} by

(2.1) Xs{w) •= sup ~

Xs is clearly convex and lower semicontinuous. (Here G(S) stands for the graph of 5.)

https://doi.org/10.1017/S0004972700015100 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015100


[3] Convex functions 89

In [8], a function V>s : E —> R U {oo} was defined by the formula

(f ,»*)eo(S) 1 + Hvll

which is the m = 1 version of the formula used to define xs • This was adequate for
proving the convexity of int D(S) and D(S) in the reflexive case, but it seems that the
more complicated function xs is required in the general case.

The results on translation contained in Lemma 3 will enable us to simplify the
computations in Theorems 6 and 14 considerably.

LEMMA 3 . Let S : E -> 2E' with D{S) ^ 0, and z £ E. Define T : E -> 2B'
by

Tx := S(x + z).

Then:

(a) ForaMw£E,

(b) Domxr = domxs — 2.
(c) D(T) = D(S)-z.
(d) If S is monotone or maximal monotone then so is T.

PROOF: In (a), we shall prove the second inequality — the first inequality follows

by replacing z by —z and interchanging the roles of S and T.

Let m > 1, (l/i.yD,-" ,(ym,Vm) G G(S) m d a€<rm. Then

Thus, using the definition of XT(W) ,
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We obtain (a) by dividing by (l + ||52°«1'»||) > taking the supremum over m, (y;,y,*)
i

and o, and using the definition of xs{w + z)-
(b) follows from (a), and (c) and (d) are immediate. D

LEMMA 4 . Let S : E -> 2B* with D(S) ^ 0, and 0 6 int(domxs)- Then there
exist J] G (0,1] and P > 0 such that

™ > 1, (2/i,yi)>-- ,{ym,y*m) € G(S) and aE<rm

imply

PROOF: From [5, Proposition 3.3, p.39], there exist r\ £ (0,1] and P > 0 such

that

w £ E and \\w\\ ^ri = > xs(w) < P.

Thus,

to G E, \\w\\ ^7), m^ 1, (J/I,T/I),...,(ym,2/m) G G(S) and a G <rm

imply that

that is to say,

E«f(«. y.*) > Ea'(w'»?) - p ( ! + I E ^11) = (w'Ea^.*) - p ( ! + I E ^ID-
i t t i i

We complete the proof of Lemma 4 by taking the supremum of the right hand expression
over all w € E such that ||w|| ^ rj. U

DEFINITION 5: Let 5 : E -> 2B* with £>(S) ^ 0, and x e E. Following [6,

Definition 1.8, p.5] we say that S is locally bounded at x if there exist S, Q > 0 such

that

and | | » - * | | < « = > | | y ' K Q.

Note that this definition does not require that i G D(S).

THEOREM 6. Let S : E -» 2E* witi D(S) ^ 0. Tien 5 is locally bounded at

each point of int (dom^s) •

PROOF: From the results on translation in Lemma 3, it suffices to prove that

0 G int (domxs) => S is locally bounded at 0.
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So suppose that 0 € in t (domxs ) - Let ij and P be as in Lemma 4. From Lemma 4
with m — 1,

(y,y*)&G(S) =* !?||»l<<y,if)

So

(y,y*)£G{S) and ||y|| < | => ij||»l < § I

* HTIK

Thus Definition 5 is satisfied with 6:=T]/2 and <? := 3P/»/. D

Since Theorem 6 only uses the m = 1 version of Lemma 4, it could in fact be
strengthened to give the result that 5 is locally bounded at each point of int (doings)
— see the comment following Definition 2.

SURROUNDED POINTS AND SURROUNDING SETS

DEFINITION 7: Let x £ E and A C E. We say that A surrounds x if, for each
w £ E\ {0}, there exists S > 0 such that x + Sw £ A. Furthermore, we define

sur.4 := {x : x 6 E, A surrounds x}.

We note that, in general, sur A <{_ A. (Consider, for example, the case where A is
the circumference of a circle in the plane and x is the centre of A.)

Lemma 8 provides some general culture concerning surrounding sets.

LEMMA 8 . Suppose that C is a nonempty, convex subset of E. Then:

(a) surC is convex.
(b) s u r C c C .
(c) x G surC if and only if, for each w £ E there exists 5 > 0 such that

x + [—S,6]w C C, that is to say, x is o radial point of C, (see [3, p.14]).
(d) If surC ^ 0 then C = surC.

PROOF: (a) Suppose that x,y £ surC and 6 G [0,1]. Let w £ E\{0}, and pick
Si,S2 > 0 such that x + Siw E C and y + 62w £ C. Define 6 := (1 - 0)6x + 6S2 •
Then, from the convexity of C,

[(1 - 9)x + Oy) +6w = ( l - 0){x + Siw) + 6{y + 62w) £ C.

Since this holds for all w € E \ {0}, (1 - 0)x + Oy £ surC, as required.
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(b) Suppose that x G s u r C . Let w G E \ {0} and pick 6i,S2 > 0 such that

x + Siiv G C and x — 62W G C.

Since C is convex, [x + S\w,x — 6210] C C. In particular, 2 G C.

(c) Suppose that x G s u r C Let u> G E. If to = 0 then, by (b), x + [ - l , l ] t» =

{x} C C. If w ^ 0, pick 61,62 > 0 such that

x + 6\w G C and a — #2to G C.

Let 6 = min{5i,62}. Since C is convex,

x + [—6,6)w7 = [a; — 6w, x + 610] C [x + 61 w, a; — S2W] C C.

The converse is immediate.
(d) Suppose that x E C. Let y G sur C. We claim that

0G(O,1] = » ( l - t f )z+«y GsurC.

So let 0 G (0,1]. L e t t o £ £ \ {0}, and pick p > 0 such that 3/ + pw G C. Define
8 := pO. Then, from the convexity of C,

[(1 - 0)x + 9y] +6w = (l- 6)x + 9{y + pw) G C.

Since this holds for all w G E \ {0}, (1 — 0)x + $y G s u r C , as required. It now follows
by letting 0 —> 0+ that x G sur C. So we have proved that C C sur C, from which it
follows immediately that C C s u r C . The reverse inclusion follows from (b), and this
completes the proof of (d). U

Let E be infinite dimensional. Then there exists a discontinuous linear functional
L : E -> R . Let C := {x G E : \Lx\ ^ 1} . Then C is convex and 0 G s u r C , but
0 ^ int C. The point of this simple example is to contrast the situation for general
convex sets with that exhibited in Theorem 9.

THEOREM 9 . Let 0 ^ C C E. Suppose that {Fn} is an increasing sequence 0/
closed convex sets such that C = \J Fn . Then sur C = int C.

PROOF: It suffices from a translation argument to show that

0 G sur C ==> 0 G int C.

Since 0 G s u r C , E = \J kC. So E = \J kFn. By the Baire category theorem, there

exist n,k ^ 1 such that int kFn ^ 0, from which int Fn ^ 0. Choose x G i n t F n . If
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x = 0 then 0 6 int Fn C int C. If x ^ 0 then, since 0 6 sur C , there exists p > 0 such
that —x 6 pC, from which there exists m ^ 1 such that — x £ pFm. Let q = m V ra.
Then

z 6 int F , and £ .F-.
P

Using [3,13.1(i), p.110], the convexity of Fq imphes 0 G int Fq C int C. This completes

the proof of Theorem 9. D
COROLLARY 1 0 . Let f : E —> R U {oo} be proper, convex and lower semicon-

tinuous. Then sur (dom / ) = int (dom / ) .

PROOF: This follows from Theorem 9, with Fn := E{f ^ n}. D

RESULTS FOR MONOTONE OPERATORS

LEMMA 1 1 . Let S : E -> 2E' be monotone, with D(S) ^ 0. Tien:

(a) D{S) Ceo D(S)cdomXs-
(b) Let m^l, {(yi,yl),-- ,(ym,y^)}cG(S) undo. ecrm. Then

PROOF: (a) Since dom^s is convex, it suffices to prove that

(11.1) D(S) C domxs

To this end, let w € D(S). Pick w* 6 Sw, and define j3 := (to, w*) V ||to*||. Let

m ^ 1, (yi,yj)>- • • ,(9m,!/m) € G(5), and a £ <rm. Then, since 5 is monotone,

] T Oi(to - y,-, yi) ^ ^ Oi(io - yi, to*)
t t

= (1B, 10*) -

^ (to, to*)+ 11^0^11 ||to*

Dividing by 1 + ||X^a*y«|| > w e obtain
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Taking the supremum over m ^ 1, (yi,yj),- • • , (t/m,2/m) G *»(S) and o £ irm we see
that xs(™) ̂  P, which imphes that w 6 domxs- This completes the proof of (11.1),
and hence that of Lemma ll(a).

(b) follows from the following relations:

iy Vi) - ( Y aiyi' Y aiy*i) = Y a<ai(^> Vi) ~ Y aia>^«' ^>

= Y

THEOREM 12. Let S : E -> 2E* be monotone, with D(S) ^ 0. Tien:

(a) SUTD(S)CSUI(COD(S))CSUT (domxs)
= int (domxs) Dint(coD(5)) Dint£»(S).

(b) S is locally bounded at each point of sur (co D(S)).

PROOF: (a) It follows from Lemma ll(a) that surD(S) C sur(co£»(5)) C
sur(domxs) and int (domxs) D int(coD(5)) D intD(5). Since D{S) ^ 0, xs is
proper so, from Corollary 10, sur (domxs) = int (domxs)-

(b) This is immediate from (a) and Theorem 6. U

LEMMA 13 . Let S : E -> 2E* be monotone with D(S) ^ 0, 0 G int (domxs),
and TJ and P be as in Lemma 4. Define M := P/f). NOW let m ^ 1 and
(Vi,Vi),---,(VmM£G(S). Then:

(a) For all a G trm,

(13.1) ^Oi(w,V?) + ^

(b) Tiere exists z* € E* such that

\\z*\\ < M and, foraM i = l , . . . ,m, (yi,y^ -z*} ^ 0.
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PROOF: (a) Let a£am. If | | £ a,y,* || > M then, since M = P/T) ^ P,
i

OitjH, Vi) + MW^aiyiW ^Y^aiiyi, y?) +
i i i

from Lemma 4,

and (13.1) follows. If, on the other hand, ||2a*2/?|| ^ ^1 then, from Lemma ll(b),

)o.-(yi, Vi) + A

and (13.1) follows again. This completes the proof of Lemma 13(a).
(b) From Theorem 1,

a»(y»»y,* -z*)\ = mi

using (a). Thus there exists z* € E* such that ||z*|| ^ M and

for all o € <rm, ^ ai(yi, y,* - z*) ^ 0.

We complete the proof of Lemma 13(b) by letting a run through the vertices of <rm. U

THEOREM 14. Let S : E -> 2E' be maximal monotone. Then:

(a) SurD(5) = sur(co D(S)) = sur(domxs)
= int (domxs) = int (coD(S)) = int D(S).
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(b) If sur (co D(S)) ± 0 then

D(S) = co D(S) = domxs = sur D(S) = sur(coD(5))

= sur (domxs) = int (domxs) = int (coD(S)) = int D(S).

PROOF: (a) We first prove that

(14.1) int(domxs)cZ?(5).

We can suppose that int (domxs) 7̂  0, for otherwise there is nothing to prove. From
the results on translation in Lemma 3, it suffices to prove that

(14.2) 0 G int (domxs) =>• 0 € D(S).

So suppose that 0 £ int (domxs)- Let M be as in Lemma 13. Then, for each finite
subset F of G(S), the set

f) {z* : z* e E\ ||*1 ^ M, (y, y* - z*) > 0}

is nonempty. As F runs, these sets are w(E*,E)-compact and directed downwards,
hence their intersection is nonempty. It follows that there exists z* £ E* such that

for all (y,y*) € G(S), (y, y* - z*) > 0.

Since S is maximal monotone, this implies that z* G 50, from which 0 € D(S). This
establishes (14.2), and hence (14.1). From (14.1), int (domxs) C int D(S) C surD(S).
The result follows from Theorem 12(a).

(b) From Lemma ll(a), D(S) C coD(S) C domxs- From(a), int(domxs) ^ 0-
Thus, from [3, 13.1(i)] again, with C := domxs, and a second application of (a),

domxs = int (domxs) = int D(S) C D(S).

Thus we have proved that

D(S) = co D(S) = domxs = intD(S).

The result now follows from a third application of (a). D
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