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Abstract
We study a distributionally robust reinsurance problem with the risk measure being an expectile and under expected
value premium principle. The mean and variance of the ground-up loss are known, but the loss distribution is other-
wise unspecified. A minimax problem is formulated with its inner problem being a maximization problem over all
distributions with known mean and variance. We show that the inner problem is equivalent to maximizing the prob-
lem over three-point distributions, reducing the infinite-dimensional optimization problem to a finite-dimensional
optimization problem. The finite-dimensional optimization problem can be solved numerically. Numerical examples
are given to study the impacts of the parameters involved.

1. Introduction
The optimal reinsurance problem has been a popular topic since the seminal work of Borch (1960) and
Arrow (1963). Especially after the introduction of coherent risk measure in Artzner et al. (1999) and
convex risk measure in Frittelli and Rossaza Gianin (2002) and Föllmer and Schied (2002), the classical
optimal reinsurance problem based on a risk measure has been widely studied under various choices
of risk measures and different constraints on premiums; see for example Cai and Tan (2007), Chi and
Tan (2011), Cui et al. (2013), Cheung et al. (2014) and Cai et al. (2016). See Cai and Chi (2020) for a
review of optimal reinsurance designs based on risk measures.

In a classical reinsurance problem, the distribution of a loss is assumed to be precisely known.
However, oftentimes only partial information is available for the loss distribution due to the lack of
data and estimation error in practice. Recently, including model uncertainty in evaluation of a risk
and reinsurance design has drawn increasing attention. Generally, model uncertainty is described by
an uncertainty set. Two common ways are the moment-based uncertainty set and the distance-based
uncertainty set. The former considers distributions satisfying certain constraints on moments while the
latter considers distributions that are within a distance from a reference distribution. The introduction
of uncertainty in evaluation of a risk motivates the study of the worst-case risk measure. For instance,
El Ghaoui et al. (2003) studied the worst-case Value-at-Risk (VaR) and obtained a closed-form solution
for the worst-case VaR over an uncertainty set that contains distributions with known mean and vari-
ance. Natarajan et al. (2010) showed that the worst-case Conditional Value-at-Risk (CVaR) for the same
uncertainty set in El Ghaoui et al. (2003). In addition, Li (2018) extended those results to a general class
of law invariant coherent risk measures. See Schied et al. (2009) for a review of robust preferences as
a robust approach to the problem of model uncertainty. In reinsurance design, Hu et al. (2015) studied
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optimal reinsurance with stop-loss contracts and incomplete information on the loss distribution in the
sense that only the first two moments of the loss are known. See Pflug et al. (2017), Birghila and Pflug
(2019) and Gavagan et al. (2022) for the design of an optimal insurance policy with the uncertainty
set defined by the Wasserstein distance. Asimit et al. (2017) considered model uncertainty in insurance
contract design by maximizing over a finite set of probability measures.

In this paper, we study a distributionally robust optimal reinsurance problem with a risk measure
called expectile. Expectiles, introduced in Newey and Powell (1987) as the minimizers of an asymmet-
ric quadratic loss function in the context of regression, are gaining increasing popularity in econometric
literature (e.g. Kuan et al. 2009) and actuarial science (e.g. Bellini et al. 2014 and Cai and Weng 2016).
Bellini et al. (2014) showed that expectile is a coherent risk measure under certain conditions, and
it is robust in the sense of lipschitzianity with respect to the Wasserstein metric. We assume that the
distribution of a loss is partially known in the sense that the mean and variance of the loss are known.
The distributionally robust optimal reinsurance problem we study is a minimax problem, where the inner
problem is a maximization of the total retained loss over all distributions with known mean and variance
and the outer problem is a minimization problem over all possible stop-loss reinsurance contracts. The
main idea of solving the inner problem is to show that the inner problem is equivalent to optimization
over all three-point distributions with known mean and variance, thus we reduce the infinite-dimensional
optimization problem to a finite-dimensional optimization problem. At first glance, this conclusion
seems similar to the one obtained in Liu and Mao (2022) for solving a distributionally robust rein-
surance problem with VaR and CVaR. However, the proof of the main result is different from that in Liu
and Mao (2022) because an expectile with levels different from 1/2 does not admit an explicit formula
based on the distribution function as for VaR or CVaR. In addition, in contrast to Liu and Mao (2022),
we did not obtain a closed-form solution to the reinsurance problem based on expectile, but came up
with a finite-dimensional optimization problem. The main contribution of this paper is that we show that
the worst-case distribution is among three-point distributions, which reduces the infinite-dimensional
optimization problem to a finite-dimensional optimization problem. We emphasize that our main results
appear nontrivial as the classical minimax theorem or duality cannot apply directly to the problem and
a new technique is needed to obtain the main result.

The rest of the paper is organized as follows. In Section 2, the definition and properties of an expec-
tile are given, and we present our distributionally robust reinsurance problem as a minimax problem.
Section 3 aims to tackle the inner problem of the minimax problem. Proofs of the main results are given
in Section 4. Numerical examples are given in Section 5 to study the impacts of the parameters on the
optimal solution. Concluding remarks are given in Section 6.

2. Expectile and problem formulation
2.1. Expectile
Expectile, first introduced in Newey and Powell (1987) as the minimizer of an asymmetric quadratic
loss function in the context of regression, is defined as follows.

Definition 1. The α-expectile of a loss random variable X with E[X2] < ∞ at a confidence level α ∈
(0, 1), denoted by eα(X), is defined as the unique minimizer of the following problem:

eα(X) = arg min
x∈R

{
αE[(X − x)2

+] + (1 − α)E[(x − X)2
+]

}
, (2.1)

where (x)+ := max{x, 0}.
Being the minimizer of a weighted mean squared error, an expectile has the property of elicitability,

which is desirable as a risk measure has to be estimated from historical data and an elicitable risk
measure makes it possible to verify and compare competing estimation procedures (e.g. Gneiting 2011;
Kratz et al. 2018 and Bettels et al. 2022). Built on Weber (2006), Bellini and Bignozzi (2015) provided
a full characterization of all elicitable monetary risk measures. See Bellini et al. (2014), Ziegel (2016),
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Embrechts et al. (2021) and references therein for more discussions on the elicitability of risk measures
and related properties. The following proposition is a list of properties of expectiles given in Bellini
et al. (2014) and Cai and Weng (2016).

Proposition 1. Let X be a loss random variable with E[X2] < ∞ and eα(X) be the α-expectile of X,
α ∈ (0, 1). Then

(i) A number eα(X) ∈R solves optimization problem (2.1) if and only if

αE [(X − eα(X))+] = (1 − α)E [(eα(X) − X)+] . (2.2)

(ii) The expectile eα(X) is a coherent risk measure if α � 1/2.
(iii) eα(X) � ess-sup X.
(iv) eα(X) =E[X] + βE[(X − eα(X))+] with β = 2α−1

1−α
.

Proposition 1(iv) implies that eα(X) �E[X] for α � 1/2 and eα(X) �E[X] for α � 1/2. For the pur-
pose of risk management in insurance and finance, a risk measure of a loss random variable, as a tool
of calculating premium or regulatory capital requirement, is normally required to be larger than the
expected loss. In addition, the expectile is a coherent risk measure for α ≥ 1/2, possessing the sub-
additivity property, which is a natural requirement to meet that “a merger does not create extra risk”.
Therefore, throughout this paper, we are interested in the case of α > 1/2, and we will also show later
that the reinsurance problem is trivial for α � 1/2 (see Proposition 2).

2.2. Distributionally robust reinsurance with expectile
Let X be a non-negative ground-up loss faced by an insurer. The insurer transfers part of the loss, say
I(X), to a reinsurer at the cost of paying reinsurance premium. The reinsurance premium is considered as
a function of the reinsurance contract I(X), denoted by π (I(X)). In a reinsurance contract, the function
I(·) is called a ceded loss function. After purchasing the reinsurance contract I(X), the total retained
risk exposure of the insurer is X − I(X) + π (I(X)). In this paper, we determine the optimal ceded loss
function or reinsurance contract from the insurer’s perspective instead of the reinsurer’s standpoint.

In a classical reinsurance problem, the distribution of the ground-up loss X is assumed precisely
known. The aim of a classical reinsurance problem is to find an optimal reinsurance contract so that the
risk measurement of the total retained risk exposure of the insurer is minimized, that is

minimize ρ (X − I(X) + π (I(X))) over I ∈ I, (2.3)

where ρ is a risk measure and I is a set of candidate reinsurance contracts. See Cai and Chi (2020) for
a review of classical optimal reinsurance designs with risk measures.

In this paper, we consider a distributionally robust optimal reinsurance problem in which the cumula-
tive distribution function (cdf) of the ground-up loss X is not completely known. Throughout the paper,
we assume that the distribution of the ground-up loss is partially known in the sense that only the mean
and variance of X are known. Given a pair of non-negative mean and standard deviation (μ, σ ) of X,
define the uncertainty set:

S(μ, σ ) =
{

F is a cdf on [0, ∞):
∫ ∞

0

xdF(x) = μ,
∫ ∞

0

x2dF(x) = μ2 + σ 2

}
.

Let I be the class of stop-loss reinsurance contracts. A stop-loss reinsurance contract I(X) is defined
as I(X) = (X − d)+, d ∈ [0, ∞], where d is called a deductible. By convention, (X − ∞)+ = 0. Borch
(1960) showed that a stop-loss reinsurance is optimal when the insurer minimizes the variance of its
total retained risk exposure with the premium computed under the expected value premium principle.
Besides, Arrow (1963) showed that a stop-loss reinsurance is also optimal if the insurer maximizes
his/her expected utility of its terminal wealth under the expected value premium principle. A simi-
lar conclusion was also obtained in Cheung et al. (2014) under law-invariant convex risk measures.
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Furthermore, stop-loss reinsurance is popular in practice. Thus, we consider stop-loss reinsurance con-
tracts as our candidate reinsurance contracts. A common premium principle is the expected value
premium principle, which is defined as π (I(·)) = (1 + θ )E[I(·)] for a reinsurance contract I ∈ I, where
θ > 0 is called a safety loading factor. We are interested in the following distributionally robust
reinsurance problem with the risk measure expectile and under expected value premium principle:

min
I∈I

sup
F∈S(μ,σ )

eF
α (X − I(X) + π (I(X)) , (2.4)

where α > 1/2 and the superscript F indicates that the expectile and the premium are calculated with
X following the distribution F. With I(X) = (X − d)+, the total retained risk exposure of the insurer
is X − I(X) + π (I(X)) = X ∧ d + (1 + θ )E[(X − d)+], where x ∧ y := min{x, y}. Furthermore, by the
translation invariance of a coherent risk measure, problem (2.4) can be reduced to

min
d�0

sup
F∈S(μ,σ )

{
eF

α
(X ∧ d) + (1 + θ )EF[(X − d)+]

}
. (2.5)

A distribution F ∈ S(μ, σ ) that solves the inner problem of (2.5) is called the worst-case distribution.
Notably, if α � 1/2, we can show that the objective function eF

α
[X ∧ d] + (1 + θ )EF[(X − d)+] is always

decreasing in d, and thus, the optimal deductible of problem (2.5) is d∗ = ∞.

Proposition 2. For α � 1/2, we have the optimal deductible of problem (2.5) is d∗ = ∞.

Proof. Denote by gF(d) := eF
α
(X ∧ d) + (1 + θ )EF[(X − d)+], d ∈R, and it suffices to show that

gF(d) is decreasing in d � 0, which obviously implies supF∈S(μ,σ ) gF(d) is decreasing in d � 0. By
definition of eF

α
[X ∧ d] =: xd in (2.2), we have xd satisfies

α

∫ d

xd

F(y)dy = (1 − α)
∫ xd

0

F(y)dy.

where F(y) = 1 − F(y). Taking (left-)derivative with respect to d yields

∂xd

∂d
= αF(d)

α + (1 − 2α)F(xd)
.

Noting that ∂E[(X − d)+]/∂d = −F(d), we have

∂gF(d)

∂d
= −(1 − 2α)F(xd)F(d)

α + (1 − 2α)F(xd)
− θF(d) � 0,

where the inequality follows from that α � 1/2. Thus, we have gF(d) is decreasing in d � 0 which
completes the proof. �

The distributional robust reinsurance problem is trivial for α � 1/2 and the optimal deductible is
d∗ = ∞ by Proposition 2. Therefore, in the rest of this paper, we only need to consider the case α > 1/2.
In the next section, we will first solve the inner problem of (2.5) for α > 1/2, that is, we work on the
worst-case distribution of the inner problem of (2.5).

Remark 1. It is tempting to use the minimax theorem to tackle problem (2.5) since both eF
α
(X) and

E
F[(X − d)+] are quasi-linear in F (which does not imply that the objective function as a whole is quasi-

linear in F). However, the quasi-convexity or quasi-concavity of the objective function with respect to
(X, d) or (F, d) for problem (2.5) cannot be established since eα is convex in d but the functional X ∧ d
is concave in d. Therefore, the minimax theorem and duality of the optimization problem cannot apply
directly to problem (2.5).
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3. Main results
3.1. The worst-case distribution
In this section, we focus on tackling the inner problem of (2.5) for α > 1/2, that is,

sup
F∈S(μ,σ )

{
eF

α
(X ∧ d) + (1 + θ )EF[(X − d)+]

}
. (3.1)

We aim to show that the worst-case distribution of the optimization problem (3.1) must be a three-point
distribution if it exists, that is, it belongs to the following uncertainty set

S3(μ, σ ) := {F ∈ S(μ, σ ) : F is a three-point cdf}. (3.2)

Here, we make the convention that two-point distribution and point mass distributions are special cases
of three-point distributions. The following theorem states that the worst-case distribution to problem
(3.1) is among three-point distributions.

Theorem 1. For d � 0 and α > 1/2, the problem (3.1) is equivalent to

sup
F∈S3(μ,σ )

{
eF

α
(X ∧ d) + (1 + θ )EF[(X − d)+]

}
(3.3)

in the sense that the two problems have the same optimal value. Moreover, the worst-case distribution
of the problem (3.1) exists if and only if the worst-case distribution of the problem (3.3) exists, and any
worst-case distribution of the problem (3.3) must be that of the problem (3.1).

Theorem 1 states that we can work on the set of three-point distributions without loss of generality.
We next give an example to illustrate that in general the worst-case distribution of the problem (3.1) is
not unique and we may find distributions outside the set S3(μ, σ ) to attain the supremum.

Remark 2. Generally speaking, the worst-case distribution of the problem (3.1) is not unique. For
example, letting d = 0, the problem (3.1) reduces to

sup
F∈S(μ,σ )

(1 + θ )EF[X].

In this special case, the optimal value is (1 + θ )μ and the worst-case distribution is any feasible distri-
bution. We also point out that the case d = 0 means full reinsurance, which is a common reinsurance
treaty in practice; see numerical results in Section 5.

From Theorem 1, we know that the worst-case distribution of problem (3.1) is among three-point
distributions with a more specific form. Denote by

[x1, p1; x2, p2; x3, p3]

a three-point distribution of a random variable X with P(X = xi) = pi � 0, i = 1, 2, 3, where 0 � x1 �
x2 � x3, p1 + p2 + p3 = 1, and pi ∈ [0, 1], i = 1, 2, 3. More specifically, we can get the following result
from the proof of Theorem 1.

Corollary 1. For d � 0, the problem (3.3) and thus, the problem (3.1) is equivalent to

sup
F∈S∗

3(μ,σ )

{
eF

α
(X ∧ d) + (1 + θ )EF[(X − d)+]

}
, (3.4)

where

S∗
3 (μ, σ ; d) = {

F = [x1, p1; x2, p2; x3, p3] ∈ S3(μ, σ ) : x1 � eF
α
(X ∧ d) � x2 � d � x3

}
.

3.2. Transformations of the main problem
In this subsection, we aim to transform problem (2.5) as a finite-dimensional tractable problem based
on Theorem 1 and Corollary 1. We first make the following observations. For any F ∈ S∗

3 (μ, σ ; d), by
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Proposition 1(i), one can verify that

eF
α
(X ∧ d) = (1 − α)p1x1 + αp2x2 + αp3d

(1 − α)p1 + αp2 + αp3

(3.5)

and hence,

f F(d, X) := eF
α
(X ∧ d) + (1 + θ )EF[(X − d)+]

= (1 − α)p1x1 + αp2x2 + αp3d

(1 − α)p1 + αp2 + αp3

+ (1 + θ )(x3 − d)p3. (3.6)

Combining with Theorem 1, we conclude that the infinite-dimensional optimization problem (3.1) can
be reduced to a finite-dimensional optimization problem:

sup
(1 − α)p1x1 + αp2x2 + αp3d

(1 − α)p1 + αp2 + αp3

+ (1 + θ )(x3 − d)p3 (3.7)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 + p2 + p3 = 1, pi � 0, i = 1, 2, 3,

p1x1 + p2x2 + p3x3 = μ,

p1x2
1 + p2x2

2 + p3x2
3 = μ2 + σ 2,

d − x2

x2 − x1

� (1 − α)p1

αp3

,

0 � x1 � x2 � d � x3.

(3.8)

The fourth constraint in (3.8) guarantees that eF
α
(X ∧ d) � x2. For any three-point distribution G =

[x1, p1; x2, p2; x3, p3] ∈ S3(μ, σ ) satisfying x1 � x2 � eG
α
(X ∧ d) � d � x3, by Proposition 1(i), we obtain

eG
α
(X ∧ d) = (1 − α)p1x1 + (1 − α)p2x2 + αp3d

(1 − α)p1 + (1 − α)p2 + αp3

.

The condition x2 � eα(XG ∧ d) is equivalent to (1 − α)p1(x1 − x2) + αp3(d − x2) � 0, which implies

f G(d, X) = (1 − α)p1x1 + (1 − α)p2x2 + αp3d

(1 − α)p1 + (1 − α)p2 + αp3

+ (1 + θ )(x3 − d)p3

� (1 − α)p1x1 + αp2x2 + αp3d

(1 − α)p1 + αp2 + αp3

+ (1 + θ )(x3 − d)p3.

Together with Corollary 1, dropping the fourth constraint in (3.8) still leads to the same maximum of
(3.7) subject to all constraints in (3.8). Hence, we have the following theorem.

Theorem 2. The optimization problem (3.1) is equivalent to

sup
(1 − α)p1x1 + αp2x2 + αp3d

(1 − α)p1 + αp2 + αp3

+ (1 + θ )(x3 − d)p3 (3.9)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 + p2 + p3 = 1, pi � 0, i = 1, 2, 3,

p1x1 + p2x2 + p3x3 = μ,

p1x2
1 + p2x2

2 + p3x2
3 = μ2 + σ 2,

0 � x1 � x2 � d � x3

(3.10)

in the sense that the two problems have the same optimal value. Moreover, the worst-case distribution of
the problem (3.1) exists if and only if the optimal solution of the problem (3.9) exists, and the worst-case
distribution of the problem (3.1) is F∗ = [x∗

1, p∗
1; x∗

2, p∗
2; x∗

3, p∗
3] if (x∗

i , p∗
i , i = 1, 2, 3) is the optimal solution

of the problem (3.9).
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With Theorem 2, we reduce the infinite-dimensional optimization problem (3.1), or the inner problem
of (2.4), to a finite-dimensional optimization problem, which can be solved numerically. In Section 5, we
will solve problem (2.4) numerically, where the inner problem is solved by the Matlab build-in function
“fmincon” and the outer problem is solved via a grid search.

Lemma 1 and Theorem 1 imply that the worst-case value of problem (3.1) is increasing in σ ; that is,
the optimal value of the problem (3.1) is equivalent to the optimal value of the following problem

sup
F∈∪x�σ S(μ,x)

{
eF

α
(X ∧ d) + (1 + θ )EF[(X − d)+]

}
.

Therefore, we have the following reformulation of the problem (3.1).

Proposition 3. The problem (3.1) is equivalent to the following problem

sup
(1 − α)p1x1 + αp2x2 + αp3d

(1 − α)p1 + αp2 + αp3

+ (1 + θ )(x3 − d)p3 (3.11)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 + p2 + p3 = 1, pi � 0, i = 1, 2, 3,

p1x1 + p2x2 + p3x3 = μ,

p1x2
1 + p2x2

2 + p3x2
3 �μ2 + σ 2,

0 � x1 � x2 � d � x3.

(3.12)

in the sense that they have the same optimal value.

It is worth noting that the result in Proposition 3 is not easy to check due to the non-negativity
assumption. In what follows, we explain why the non-negativity of the loss risk plays an essential role
in the problem and makes the problem more complicated. If we drop the assumption of non-negativity
of the loss, by the translation invariance and positive homogeneity of eα, it follows that for any risk X
with mean 0 and variance 1, Y := μ + σX has mean μ and variance σ 2, and

eα(Y ∧ d1) + (1 + θ )E[(Y − d1)+] = μ + σ (eα(X ∧ d) + (1 + θ )E[(X − d)+]) ,

where d1 = μ + σd. Therefore, it suffices to consider the special case of the uncertainty set with μ = 0
and σ = 1. If the optimal deductible in the case of μ = 0 and σ = 1 is d∗, then the optimal deductible
for the general case (μ, σ ) is μ + σd∗. However, with the constraint of non-negativity, the above
observations do not hold anymore.

The following proposition discusses the attainability of problems (3.11) and (3.9).

Proposition 4.

(i) The supremum value of the problem (3.11) is always attainable.
(ii) The supremum value of the problem (3.9) is attainable if one of the following conditions

(1 + θ )[(1 − α)(1 − μ/d) + αμ/d]2 � α(1 − α), μ < d, and μd < μ2 + σ 2 (3.13)

is violated.

From Proposition 4, we have that for any d � 0, there exists an F∗ withEF∗
[X] = μ and VaRF∗

(X) � σ 2

such that

sup
F∈S(μ,σ )

f F(d, X) = f F∗
(d, X),

where f F∗
(d, X) := eF∗

α
(X ∧ d) + (1 + θ )EF∗

[(X − d)+]. We also point out that if F∗ 	= [0, 1 − μ/d;
d, μ/d], then the problem (3.9) is attainable.

We close this section by showing that the main results in the paper can be generalized to the case
with a higher order moment condition. That is, if we replace the constraint on variance by a constraint
of a higher order moment, then the results that are parallel to Theorems 1 and 2 still hold. To be more
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specific, if the uncertainty set is replaced by

Sk(μ, m) =
{

F is a cdf on [0, ∞) :
∫ ∞

0

xdF(x) = μ,
∫ ∞

0

xkdF(x) = m

}
,

where k > 1, then similarly, we can show that Theorem 1 still holds. The following problem

sup
F∈Sk(μ,m)

eF
α
(X ∧ d) + (1 + θ )EF[(X − d)+], (3.14)

is equivalent to

sup
(1 − α)p1x1 + αp2x2 + αp3d

(1 − α)p1 + αp2 + αp3

+ (1 + θ )(x3 − d)p3 (3.15)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 + p2 + p3 = 1, pi � 0, i = 1, 2, 3,

p1x1 + p2x2 + p3x3 = μ,

p1xk
1 + p2xk

2 + p3xk
3 = m,

0 � x1 � x2 � d � x3,

(3.16)

in the sense that the two problems have the same optimal value and optimal solution. More specifically,
the worst-case distribution of the problem (3.14) exists if and only if the optimal solution of the prob-
lem (3.15) exists, and the worst-case distribution of the problem (3.14) is F∗ = [x∗

1, p∗
1; x∗

2, p∗
2; x∗

3, p∗
3] if

(x∗
i , p∗

i , i = 1, 2, 3) is the optimal solution of the problem (3.15).

4. Proofs of the main results in Section 3
To prove Theorem 1, we need the following lemma.

Lemma 1. For d � 0, σ1 < σ2 and α � 1/2, let F ∈ S3(μ, σ1) be a distribution such that PF(X = xi) = pi,
i = 1, 2, 3, with x1 < x2 < x3 and

x1 � eF
α
(X ∧ d) � x2 � d < x3. (4.1)

Then there exists F∗ ∈ S3(μ, σ2) such that (4.1) holds,

eF∗
α

(X ∧ d) = eF
α
(X ∧ d) and E

F∗
[(X − d)+] �E

F[(X − d)+].

Proof. Our proof mainly involves two steps: We first define a three-point random variable Yc such that
E[Yc] =E

F[X], E[(Yc − d)+] �E
F[(X − d)+], and eα(Yc ∧ d) = eF

α
(X ∧ d). Here in general it does not

hold Var(Yc) = σ 2
2 , and thus, the next step is to modify the definition of Yc to obtain a desired distribution.

To show it, for c ∈ [0, p2], define a random variable

Yc =

⎧⎪⎨
⎪⎩

x1, with probability p1 + a,

x2, with probability p2 − c,

y, with probability p3 + b,

(4.2)

where

a := α(d − x2)c

m
≥ 0, b := c − a ≥ 0, y := μ − (p1 + a)x1 − (p2 − c)x2

p3 + b
,

and

m := (1 − α)[eF
α
(X ∧ d) − x1] + α[d − eF

α
(X ∧ d)].
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One can easily verify that E[Yc] = μ. We claim that y > d. Indeed, as

y > d ⇔ p3x3 − ax1 + cx2 > d(p3 + b) ⇔ p3x3 − ax1 + cx2 > d(p3 + c − a)

⇔ p3(x3 − d) > a(x1 − d) + c(d − x2),

it remains to show p3(x3 − d) > a(x1 − d) + c(d − x2). Note that

a(x1 − d) + c(d − x2) = α(d − x2)c

m
(x1 − d) + c(d − x2)

= c(d − x2)

[
α(x1 − d)

m
+ 1

]

= c(d − x2)
α(x1 − d) + (1 − α)[eF

α
(X ∧ d) − x1] + α[d − eF

α
(X ∧ d)]

m

= c(d − x2)
(1 − 2α)[eF

α
(X ∧ d) − x1]

m
≤ 0, (4.3)

where the last inequality follows from x1 � eF
α
(X ∧ d) � x2 � d and α ≥ 1/2. As x3 > d, we have p3(x3 −

d) > 0 � a(x1 − d) + c(d − x2). Hence,

y > d. (4.4)

Moreover, by standard computation, we have

E[(Yc − d)+] = (y − d)(p3 + b)

= μ − (p1 + a)x1 − (p2 − c)x2 − d(p3 + b)

= p3(x3 − d) + a(d − x1) + c(x2 − d)

� p3(x3 − d) =E
F[(X − d)+], (4.5)

where the inequality follows from (4.3). Next, we show that eα(XF ∧ d) = eα(Yc ∧ d). By Proposition 1(i),
we know

αEF
[
(X ∧ d − eF

α
(X ∧ d))+

] = (1 − α)EF
[
(eF

α
(X ∧ d) − X ∧ d)+

]
,

which is equivalent to

α
[
(x2 − eF

α
(X ∧ d))p2 + (d − eF

α
(X ∧ d))p3

] = (1 − α)(eF
α
(X ∧ d) − x1)p1. (4.6)

It then follows from standard computation that

αE
[
(Yc ∧ d − eF

α
(X ∧ d))+

]
= α

[
(x2 − eF

α
(X ∧ d))(p2 − c) + (d − eF

α
(X ∧ d))(p3 + b)

]
= (1 − α)(eF

α
(X ∧ d) − x1)p1 − α(x2 − eF

α
(X ∧ d))c + α(d − eF

α
(X ∧ d))b

= (1 − α)(eF
α
(X ∧ d) − x1)p1 + αc(d − x2)

(1 − α)(eF
α
(X ∧ d) − x1)

m

= (1 − α)(eF
α
(X ∧ d) − x1)p1 + a(1 − α)(eF

α
(X ∧ d) − x1)

= (1 − α)E
[
(eF

α
(X ∧ d) − Yc ∧ d)+

]
,

where the first equality follows from eF
α
(X ∧ d) � x2 � d and the second equality follows from (4.6). By

Proposition 1(i), we know that eF
α
(X ∧ d) is the α-expectile of Yc ∧ d, that is,

eF
α
(X ∧ d) = eα(Yc ∧ d). (4.7)
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Now we consider the following two cases:

(i) If there exists a c∗ ∈ [0, p2] such that Var(Yc∗ ) = σ 2
2 , combining with (4.5) and (4.7), we know

that the distribution of Yc∗ is the desired three-point distribution.
(ii) Otherwise, Var(Yc) < σ 2

2 for all c ∈ [0, p2] and we need to define a new random variable. Note
that for c = p2, the random variable Yc (defined in (4.2)) reduces to

Y =

⎧⎪⎨
⎪⎩

x1, with probability q,

μ − qx1

1 − q
, with probability 1 − q,

where q = p1 + α(d−x2)p2
m

. By (4.4), we know μ−qx1
1−q

> d. For h ∈ [0, 1 − q), define

Zh =

⎧⎪⎨
⎪⎩

x1, with probability q,

d, with probability h,

z, with probability 1 − q − h,

(4.8)

where z := μ−x1q−dh
1−q−h

. It is straightforward to verify that z > d, E(Zh) = μ, Var(Z0) = Var(Y) and
eα(Zh ∧ d) = eα(Y ∧ d) = eα(Yc ∧ d) = eF

α
(X ∧ d). Moreover, note that

E[(Zh − d)+] = (z − d)(1 − q − h)

= (1 − q)

[
μ − x1q

1 − q
− d

]

=E[(Y − d)+] =E[(Yc − d)+] �E
F[(X − d)+],

where the last inequality follows from (4.5). As Var(Yc) < σ 2
2 for all c ∈ [0, p2], by the continuity

of Var(Yc) with respect to c, we have Var(Yp2 ) = Var(Y) < σ 2
2 . Noting that limh→1−q Var(Zh) = ∞

and Var(Z0) = Var(Y) < σ 2
2 , there exists an h∗ ∈ [0, 1 − q) such that Var(Zh∗ ) = σ 2

2 . In this case,
the distribution of Zh∗ is the desired distribution F∗.

Combining the above two cases, we complete the proof. �
To better understand the main steps in Lemma 1, we give the following example to illustrate the

two-step procedure involved in the proof.

Example 1. Suppose d = 6, α = 0.9. Consider S3(μ, σ1) with μ = 10
3

, σ1 = √
35
3

. Let σ2 > σ1 and F be
the distribution function of a discrete random variable X, where

X =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2, with probability
2

3
,

5, with probability
1

6
,

7, with probability
1

6
.

Obviously, F ∈ S3(μ, σ1). Moreover, 2 < eF
α
(X ∧ d) = 107

22
< 5 < 6 < 7. Hence, X satisfies the conditions

of Lemma 1. For c ∈ [0, 1
6
], define

Yc =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2, with probability
2

3
+ a,

5, with probability
1

6
− c,

y, with probability
1

6
+ b,

(4.9)
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Figure 1. Trend of random variable’s variance with respect to c and h.

where

a = 99c

144
≥ 0, b = 45c

144
≥ 0 and y = 168 + 522c

24 + 45c
.

It is easy to verify that E[Yc] = μ, y > d and eα(Yc ∧ d) = 107
22

.

(i) If σ 2
2 � 400

63
= 6.3492, we can always find a c∗ ∈ [0, 1/6] such that Var(Yc∗ ) = σ 2

2 ; see the left
graph in Figure 1. One can verify that

E[(Yc − d)+] �E
F[(X − d)+], eF

α
(X ∧ d) = eα(Yc ∧ d).

(ii) If σ 2
2 > 6.3492, for all c ∈ [0, 1/6], we have Var(Yc) < σ 2

2 . For c = 1

6
, the random variable Yc

defined by (4.9) reduces to

Y =

⎧⎪⎪⎨
⎪⎪⎩

2, with probability
25

32
,

170

21
, with probability

7

32
.

For h ∈ [0, 7/32), define

Zh =

⎧⎪⎨
⎪⎩

2, with probability q,

6, with probability h,

z, with probability 1 − q − h,

where q = 25

32
, z =

10
3

− 2q − 6h

1 − q − h
. The right graph in Figure 1 plots the relationship between

Var(Zh) and h. One can verify that E[Zh] = 10/3 = μ,

E[(Zh − d)+] �E
F[(X − d)+] and eF

α
(X ∧ d) = eα(Zh ∧ d).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let f F(d, X) = eF
α
(X ∧ d) + (1 + θ )EF[(X − d)+] for each F ∈ S(μ, σ ). Note

that eF
α
(X ∧ d) � d as X ∧ d � d. Let A1 = {X � eF

α
(X ∧ d)}, A2 = {eF

α
(X ∧ d) < X � d}, and A3 = {X > d}.
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Denote E
F[X|Ai] by xi, i = 1, 2, 3. Define a discrete random variable

X̃(ω) =

⎧⎪⎪⎨
⎪⎪⎩

x1, if ω ∈ A1,

x2, if ω ∈ A2,

x3, if ω ∈ A3.

(4.10)

Denote the distribution of X̃ by F̃. Obviously F̃ is a three-point distribution satisfying (4.1), that is,
x1 � eF

α
(X ∧ d) � x2 � d < x3. It follows that EF̃[X̃] = μ and

E
F̃[(X̃ − d)+] = (x3 − d)P(A3) =E

F[(X − d)+].

By Hölder’s inequality, we have (
∫

Ai
xdF(x))2 � (

∫
Ai

x2dF(x))P(Ai), i =1, 2, 3. As a result,

E
F̃[X̃2] =

3∑
i=1

(
∫

Ai
xdF(x))2

P(Ai)
�

3∑
i=1

∫
Ai

x2dF(x) =E
F[X2].

Therefore, VarF̃(X̃) � σ 2 = VarF(X). Note that

αEF̃
[
(X̃ ∧ d − eF

α
(X ∧ d))+

] = α
[
(x2 − eF

α
(X ∧ d))P(A2) + (d − eF

α
(X ∧ d))P(A3)

]
= αEF

[
(X ∧ d − eF

α
(X ∧ d))+

]
,

and

(1 − α)EF̃
[
(eF

α
(X ∧ d) − X̃ ∧ d)+

] = (1 − α)EF [(eα(X ∧ d) − X ∧ d)+] .

By Proposition 1(i), we have eF̃
α
(X̃ ∧ d) = eF

α
(X ∧ d). Hence, for any F ∈ S(μ, σ ), there exists a random

variable X̃ defined in (4.10) following a three-point distribution such that f F̃(d, X̃) = f F(d, X). Next, we
consider the following two cases.

(i) If VarF̃(X̃) = σ 2, then F̃ ∈ S3(μ, σ ) and f F̃(d, X̃) = f F(d, X). The result follows.
(ii) If VarF̃(X̃) < σ 2, by Lemma 1, there exists a three-point distribution F∗ ∈ S3(μ, σ ) such that

E
F∗

[X] =E
F̃[X̃], VarF∗

(X) = σ 2, eF∗
α

(X ∧ d) = eF̃
α
(X̃ ∧ d) and E

F∗
[(X − d)+] �E

F̃[(X̃ − d)+].
Then we have f F∗

(d, X) � f F̃(d, X̃) = f F(d, X).

Hence, for any F ∈ S(μ, σ ), we can find a three-point distribution F∗ ∈ S3(μ, σ ) such that f F∗
(d, X) �

f F(d, X). The proof is complete. �
Remark 3. 1 It is worth noting that if we extend the stop-loss contract to I(x) = c(x − d)+, where c ∈
[0, 1], with one more parameter c introduced, the difficulty of solving the problem increases significantly.
With c = 1, we have X − I(X) = X ∧ d, but for a c ∈ [0, 1), X − I(X) = X − c(X − d)+ = X ∧ d + (1 −
c)(X − d)+, and the objective function is

eF
α
(X ∧ d + (1 − c)(X − d)+) + c(1 + θ )EF[(X − d)+]

as opposed to

eF
α
(X ∧ d) + (1 + θ )EF[(X − d)+]

in the case of stop-loss contract. Generally speaking, we could not establish the same result in Theorem 1.
However, we can show that for I(x) = c(x − d)+, we can confine the worst-case distribution to the four-
point distributions set S4(μ, σ ) with similar method in Theorem 1 and Lemma 1.

Proof of Proposition 4. (i) Denote by f ∗ the optimal value of the problem (3.11). There exist feasi-
ble distributions Fn = [xn

1, pn
1; xn

2, pn
2; xn

3, pn
3] ∈ S3(μ, σ ), n ∈N, such that f Fn (d, X) → f ∗, where f F(d, X) is

defined by (3.6). The constraints in (3.10) imply that pn
i ∈ [0, 1], i = 1, 2, 3 and xn

1, xn
2 ∈ [0, d] for k ∈N.

We consider the following two cases.
1This is suggested by one anonymous referee.
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(a) Suppose that {xn
3, n ∈N} is bounded. By Bolzano–Weierstrass Theorem, there exists a subse-

quence of (xn
1, xn

2, xn
3, pn

1, pn
2, pn

3) converging to (x∗
1, x∗

2, x∗
3, p∗

1, p∗
2, p∗

3). By the uniform convergence
theorem, one can verify that (x∗

1, x∗
2, x∗

3, p∗
1, p∗

2, p∗
3) is also a feasible solution and f F∗

(d, X) = f ∗,
where F∗ = [x∗

1, p∗
1; x∗

2, p∗
2; x∗

3, p∗
3], and thus (x∗

1, x∗
2, x∗

3, p∗
1, p∗

2, p∗
3) is an optimal solution.

(b) Suppose that {xn
3, k ∈N} is unbounded. There exists a subsequence of (x

nj

1 , x
nj

2 , x
nj

3 , p
nj

1 , p
nj

2 , p
nj

3 )
such that it converges to (x∗

1, x∗
2, ∞, p∗

1, p∗
2, p∗

3). As p
nj

3 � (μ2 + σ 2)/(x
nj

3 )2, letting nj → ∞ yields
p∗

3 = 0. Denote by F∗ = [x∗
1, p∗

1; x∗
2, p∗

2]. Note that limnj→∞ x
nj

3 p
nj

3 = 0 because x
nj

3 p
nj

3 � (μ2 +
σ 2)/x

nj

3 . One can verify that f F∗
(d, X) = limnj→∞ f Fnj (d, X) = f ∗. It also implies

2∑
i=1

p∗
i x∗

i = lim
nj→∞

2∑
i=1

p
nj
i x

nj
i = lim

nj→∞

3∑
i=1

p
nj
i x

nj
i = μ

and
2∑

i=1

p∗
i (x∗

i )2 = lim
nj→∞

2∑
i=1

p
nj
i (x

nj
i )2 � lim

nj→∞

3∑
i=1

p
nj
i (x

nj
i )2 = μ2 + σ 2.

Therefore, (x∗
1, x∗

2, d, p∗
1, p∗

2, 0) is a feasible solution of the problem (3.11) and the optimal value
is attained.

Combining the above two cases, we complete the proof of (i).

(ii) We consider the same two cases (a) and (b) as in the proof of (i). For case (a), it is obvious
that (x∗

1, x∗
2, x∗

3, p∗
1, p∗

2, p∗
3) is an optimal solution. For case (b), we have f F∗

(d, X) = f ∗ and F∗ =
[x∗

1, p∗
1; x∗

2, p∗
2] where (x∗

1, x∗
2, d, p∗

1, p∗
2, 0) is a feasible solution of the problem (3.11). This implies∑2

i=1 p∗
i (x∗

i )2 �μ2 + σ 2. We will show
∑2

i=1 p∗
i (x∗

i )2 = μ2 + σ 2 by contradiction, which implies
(x∗

1, x∗
2, d, p∗

1, p∗
2, 0) is an optimal solution. Suppose

∑2
i=1 p∗

i (x∗
i )2 < μ2 + σ 2, we consider the

following five cases.
(b.i) If 0 � x∗

1 < x∗
2 < d, define G = [x∗

1, p∗
1 + δ;x∗

2 + ε, p∗
2 − δ], where ε = (x∗

2 − x∗
1)δ/(p∗

2 − δ) and δ ∈
(0, p∗

2) is small enough such that ε ∈ (0, d − x∗
2) and E

G[X2] �μ2 + σ 2. In this case, one can
verify that f G(d, X) > f ∗ which yields a contradiction to that (x∗

1, x∗
2 + ε, d, p∗

1 + δ, p∗
2 − δ, 0) is

a feasible solution of the problem (3.11).
(b.ii) If 0 � x∗

1 = x∗
2 < d, then it’s a degenerate distribution and 0 < μ < d. Define G = [μ − ε, 1

2
; μ +

ε, 1
2
], where ε ∈ (0, μ] is small enough such that μ + ε � d and E

G[X2] �μ2 + σ 2. In this case,
one can verify that f G(d, X) > f ∗ which yields a contradiction to that (μ − ε, μ + ε, d, 1

2
, 1

2
, 0)

is a feasible solution of the problem (3.11).
(b.iii) If 0 < x∗

1 < x∗
2 = d, define G = [x∗

1 − ε, p∗
1 − δ; x∗

2, p∗
2 + δ], where ε = (x∗

2 − x∗
1)δ/(p∗

1 − δ) and
δ ∈ (0, p∗

1) are small enough such that ε ∈ (0, x∗
1] and E

G[X2] �μ2 + σ 2. In this case, one can
verify that f G(d, X) > f ∗ which yields a contradiction.

(b.iv) If 0 < x∗
1 = x∗

2 = d, then it’s a degenerate distribution and 0 < μ = d. Define G = [μ −
ε1, q1; μ + ε2, q2], which satisfies y1q1 + y2q2 = μ = d, qi > 0, i = 1, 2 and ε1 ∈ (0, μ], then
ε2 = q1

1−q1
ε1. There exist an ε1 and a q1 that are small enough such that EG[X2] �μ2 + σ 2 and

f G(d, X) > f ∗, a contradiction.
(b.v) If 0 = x∗

1 < x∗
2 = d, then p∗

1 = 1 − μ/d and p∗
2 = μ/d. One can calculate that

f ∗ = eF∗
α

(X) = αμ

(1 − α)(1 − μ/d) + αμ/d
.

In this case, if (1 + θ )[(1 − α)(1 − μ/d) + αμ/d]2 > α(1 − α), define G = [0, p∗
1 + δ; d, p∗

2 −
2δ; 2d, δ], where δ ∈ [0, p∗

2/2] is small enough such that

δ <
α(1 − α) − (1 + θ )[(1 − α)(1 − μ/d) + αμ/d]2

(1 + θ )(1 − 2α)[(1 − α)(1 − μ/d) + αμ/d]
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Table 1. Optimal deductibles and optimal values: μ = 15, σ = 5.

α = 0.9 α = 0.8 α = 0.7 α = 0.6
θ = 0.8 d∗ 15.56 17.79 ∞ ∞

Optimal value 19.00 18.32 17.18 16.02
θ = 0.6 d∗ 14.62 16.23 21.01 ∞

Optimal value 18.51 18.00 17.17 16.02
θ = 0.4 d∗ 13.37 14.57 17.14 ∞

Optimal value 17.91 17.55 17.00 16.02
θ = 0.2 d∗ 11.16 12.09 13.68 18.33

Optimal value 17.08 16.87 16.56 16.00
θ = 0.1 d∗ 8.54 9.46 10.89 13.85

Optimal value 16.48 16.35 16.15 15.82

and E
G[X2] �μ2 + σ 2. We have

f G(d, X) = eG
α
(X ∧ d) + (1 + θ )EG[(X − d)+]

= αμ − αdδ

(1 − α)(1 − μ/d + δ) + α(μ/d − δ)
+ (1 + θ )dδ

>
αμ

(1 − α)(1 − μ/d) + αμ/d
= f ∗.

This yields a contradiction.

Combining the above five cases, we complete the proof. �

5. Numerical examples
This section provides numerical analyses of the problem (3.1). We study the impacts of the parame-
ters θ , α, and (μ, σ ) on the optimal reinsurance design. After that, we compare our robust results with
those obtained in the classical reinsurance model when the loss distributions are assumed to be Gamma,
Lognormal, and Pareto distributions, respectively. To have more insights into model uncertainty, we
further compare our results with the robust reinsurance design with VaR and CVaR in Liu and Mao
(2022).

5.1. Impacts of parameters
Tables 1–3. give the optimal deductibles and the optimal values of the distributionally robust reinsurance
problem (2.4) for three pairs of (μ, σ ), where μ is 15 and σ is 5, 10, 20.

Recall that the expected value premium principle is defined as π (I(X)) = (1 + θ )E[I(X)]. This
implies that for the same reinsurance coverage, the larger the θ is, the more expensive the reinsurance
will be. In other words, larger θ would motivate the insurers to retain more risks by themselves instead of
entering a reinsurance contract. Hence, the optimal deductible d∗ should increase in the same direction
with θ . In addition, the confidence level α of an α-expectile represents the risk tolerance of the insurer.
The higher the α is, the more risk-sensitive the insurer is. Thus, the insurer would like to transfer more
risk to the reinsurer by choosing a smaller deductible. The observations we made in Tables 1 and 2 align
with our intuitions. The same logic applies to Table 3, but it is interesting to notice that when the insurers
face significant uncertainty (large σ ), they would prefer to transfer all risks to the reinsurer regardless of
the price (see columns α = 0.9 and α = 0.8 of Table 3). Moreover, when the optimal contract is a zero-
deductible plan (d∗ = 0), then the corresponding objective function value reduces to (1 + θ )μ, which is
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Table 2. Optimal deductibles and optimal values: μ = 15, σ = 10.

α = 0.9 α = 0.8 α = 0.7 α = 0.6
θ = 0.8 d∗ 16.11 20.58 ∞ ∞

Optimal value 23.00 21.63 19.36 17.04
θ = 0.6 d∗ 14.24 17.50 26.90 ∞

Optimal value 22.02 21.00 19.34 17.04
θ = 0.4 d∗ 11.74 14.13 19.28 ∞

Optimal value 20.81 20.10 19.00 17.04
θ = 0.2 d∗ 0 0 0 21.69

Optimal value 18 18 18 17.00
θ = 0.1 d∗ 0 0 0 0

Optimal value 16.50 16.50 16.50 16.50

Table 3. Optimal deductibles and optimal values: μ = 15, σ = 20.

α = 0.9 α = 0.8 α = 0.7 α = 0.6
θ = 0.8 d∗ 0 0 ∞ ∞

Optimal value 27 27 23.72 19.07
θ = 0.6 d∗ 0 0 38.92 ∞

Optimal value 24 24 23.68 19.07
θ = 0.4 d∗ 0 0 0 ∞

Optimal value 21 21 21.00 19.07
θ = 0.2 d∗ 0 0 0 0

Optimal value 18 18 18 18
θ = 0.1 d∗ 0 0 0 0

Optimal value 16.50 16.50 16.50 16.50

only relevant to the safety loading factor (θ ) and the expected loss (e.g. the two rows with θ = 0.1 and
θ = 0.2 in Table 3).

Intuitively, when both the price of the reinsurance is expensive (large θ ) and the insurer is not risk-
sensitive (small α), then the insurer would prefer not to purchase any reinsurance. We can verify this
result by looking at the right upper corner of all three tables where d∗ = ∞. Numerically, we set d∗ to
be ∞ when the plot of the objective function values exhibits a decreasing yet converging trend as d
increases. We verified our results by examining each of such scenarios with d up to 1000, which should
be sufficient since the probability of a positive payoff for d = 1000 would be less than 1 .

5.2. Comparison with classical reinsurance model
Here, we compare the optimal deductibles and the optimal objective function values obtained in our
distributionally robust model with those obtained in the classical reinsurance model. We assume the
loss random variable in the classical reinsurance model follows the commonly used distributions in
insurance: Gamma, Lognormal, and Pareto distributions.

(i) (Lognormal distribution) Suppose that X follows a lognormal distribution with ln (X) ∼
N(μ, σ 2). Then E[X] = eμ+σ 2/2 and Var(X) = eσ 2+2μ(eσ 2 − 1).
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Table 4. Comparison with nonrobust case with μ = 15, α = 0.9, θ = 0.2.

Robust Lognormal Pareto Gamma
σ = 3 d∗ 12.70 12.38 12.98 12.35

Optimal value 16.25 15.78 15.45 15.81
Premium 3.65 3.43 2.48 3.49
Premium/Risk ratio 0.2246 0.2173 0.1605 0.2207

σ = 5 d∗ 11.16 10.71 11.99 10.58
Optimal value 17.08 16.20 15.67 16.28
Premium 6.09 5.53 3.68 5.75
Premium/Risk ratio 0.3566 0.3414 0.2348 0.3532

σ = 10 d∗ 0 7.34 10.40 6.44
Optimal value 18.00 16.92 16.00 17.18
Premium 18 9.63 5.61 10.80
Premium/Risk ratio 1 0.5691 0.3506 0.6286

σ = 20 d∗ 0 3.7 9.15 1.16
Optimal value 18.00 17.54 16.26 17.92
Premium 18 13.87 7.12 16.78
Premium/Risk ratio 1 0.7907 0.4379 0.9364

(ii) (Pareto distribution) Suppose that X follows a Pareto distribution with cumulative distribu-

tion function F(x) = 1 − (τ/x)β for x � τ , where β > 1. Then E[X] = βτ

β − 1
and Var(X) =

βτ 2

(β − 1)2(β − 2)
.

(iii) (Gamma distribution) Suppose that X follows a gamma distribution with density function

f (x) = τ γ xγ−1e−τx

�(γ )
, x > 0,

where γ , τ > 0, and � is the Gamma function defined by

�(a) =
∫ ∞

0

ta−1e−t dt.

Then E[X] = γ /τ and Var(X) = γ /τ 2.

Recall that the classical reinsurance model corresponding to our distributionally robust model (2.5)
is as follows:

min
d�0

{eα(X ∧ d) + (1 + θ )E[(X − d)+]} ,

where X follows a precise distribution. In order to make comparisons with our robust results, for each
pair of (μ, σ ) studied in the previous section, the parameters of the aforementioned models are set such
that E[X] = μ and Var(X) = σ 2. Table 4 gives the results for different values of σ , and in order to have
a better illustration on the effect of model uncertainty, we also include the premium/risk ratio under
each model. The premium is the price of the reinsurance contract, and the risk retained by the insurer is
simply the optimal values of our objective functions. It is not surprising to observe that under both robust
and non-robust cases, the premium/risk ratio is increasing with the riskiness of loss variable, measured
by sigma. For σ = 3, 5, the optimal deductible is strictly positive, and the premium/risk ratio in the
robust case is moderately larger than those in the non-robust case. However, if σ is large, the optimal
deductible is zero and the premium/risk ratio is much larger than those in the non-robust case. The large
differences in the premium/risk ratios between robust and non-robust models illustrate the catastrophic
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Figure 2. Comparison of risk measurement values in robust case and non-robust case.

consequences if the insurer failed to select the correct model, and the insurers need to be alert to model
uncertainty. However, due to the limited data in the tail of the loss distribution, determining the true
model is rather difficult, if not impossible, and our results under the robust design suggest the insurer
should take more cautious actions.

Figure 2 plots the values of the objective function with respect to different deductibles d. The robust-
case curve corresponds to the objective function in our distributionally robust reinsurance model, and
the other three curves correspond to the classical reinsurance model when the distribution function is
precisely known as Gamma, Lognormal, and Pareto distribution. The objective value in the robust case
is consistently larger due to the model setting, and we do confirm that the risk may be underestimated
if the distributional uncertainty is ignored. From the graphs in the first row of Figure 2, it is interesting
to observe that the optimal reinsurance contract under the robust case is not necessarily the most con-
servative one in terms of the amount of loss been preserved by the insurer. However, when σ becomes
large, the optimal contract under the robust case eventually becomes the zero-deductible plan, whereas
the optimal contracts under other three cases may still have moderate deductibles. This implies that a
significant portion of the risk may be unintentionally held by the insurer if the optimal design is deter-
mined by a misspecified loss distribution. For example, as illustrated in the bottom right graph, if Pareto
distribution is misused, the value of the expectile function will be underestimated by up to 25%. Model
uncertainty plays a crucial role when the underlying risk is significant, and the distributionally robust
optimization is able to provide a conservative benchmark.

5.3. Comparison with distributionally robust reinsurance model with VaR/CVaR
In this section, we compare optimal deductibles and optimal values obtained in the distributionally robust
model with expectile with the model in Liu and Mao (2022) under VaR/CVaR. Tables 5 and 6 give the
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Table 5. Comparison of optimal deductibles and optimal values: μ = 15 and θ = 0.2.

CVaR0.99 e0.99 e0.991 e0.993 e0.995

σ = 1 d∗ 14.106 14.116 14.115 14.113 14.109
Optimal value 15.447 15.444 15.445 15.445 15.446

σ = 3 d∗ 12.317 12.349 12.347 12.338 12.330
Optimal value 16.342 16.334 16.334 16.336 16.338

σ = 5 d∗ 10.528 10.584 10.577 10.563 10.522
Optimal value 17.236 17.222 17.224 17.227 17.229

σ = 10 d∗ 0 0 0 0 0
Optimal value 18 18 18 18 18

Table 6. Comparison of optimal deductibles and optimal values: μ = 15 and θ = 0.2.

CVaR0.8 e0.8 e0.81 e0.85 e0.9

σ = 1 d∗ 14.106 14.418 14.395 14.313 14.232
Optimal value 15.447 15.374 15.379 15.397 15.416

σ = 3 d∗ 12.317 13.254 13.186 12.944 12.697
Optimal value 16.342 16.123 16.137 16.191 16.249

σ = 5 d∗ 10.528 12.089 11.973 11.576 11.162
Optimal value 17.236 16.871 16.895 16.985 17.082

σ = 10 d∗ 0 0 0 0 0
Optimal value 18 18 18 18 18

results for four different values of σ with μ = 15 and θ = 2. Following the conclusion in Bellini and
Bernardino (2017) that “for the most common distributions, expectiles are closer to the center of the
distribution than the corresponding quantiles,” we choose a series of larger α’s for eα than for VaRα to
make the comparison. Table 5 compares the optimal deductibles and optimal values when α = 0.99 for
VaR and α = 0.99, 0.991, 0.993, 0.995 for the expectile. The results suggest that for the same level α, the
optimal deductible based on VaR is always smaller than that based on expectile, which means that the
VaR users are more conservative and they prefer to transfer more risk to a reinsurer than the expectile
user with the same level. Table 6 compares the optimal deductibles and optimal values when α = 0.8
for VaR and α = 0.8, 0.81, 0.85, 0.9 for the expectile. In this case, we have similar observations, but the
optimal deductibles for VaR user and expectile user vary more significantly as the difference between
the two risk measures, expectile and CVaR, gets larger for a smaller level α. Both tables suggest that
when σ is large, the optimal deductibles are zeros and the optimal values are identical. Intuitively, a large
σ means more uncertainty, and the insurer would rather transfer all risk to the reinsurer concerning the
remarkable uncertainty. In addition, we also want to mention that the optimal deductibles and the optimal
values of CVaR at level α = 0.8 and 0.99 are identical since the result based on CVaR satisfies the hybrid
property. This is because that VaR/CVaR-user in distributionally robust reinsurance is indifferent to the
level α satisfying σ 2/μ2 < θ � α/(1 − α). In sharp contrast, the optimal deductible based on expectile is
continuous in the parameter α. From this perspective, the problem based on expectile is more reasonable.

6. Concluding remarks
In this paper, we investigate a distributionally robust reinsurance problem with expectile under model
uncertainty, where the distribution of loss is partially known in the sense that only its mean and variance
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are known. By showing that the worst-case distribution must belong to the set of three-point distri-
butions, we reduced the infinite-dimensional minimax problem to a finite-dimensional optimization
problem, which is a tractable optimization problem. By comparing the results with the classical rein-
surance problem, the importance of including model uncertainty is presented, and we demonstrate the
consequence of model misspecification may be severe if the underlying risk is significant. In the end,
we want to point out that the characterization of the explicit solution of the worst-case distribution is
very challenging, and we leave it for future work.

Acknowledgments. The authors thank the Editor and three anonymous referees for their insightful comments, which helped
improve the paper.
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