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On the Mobius function of a non-singular
binary relation

P. D. Finch

Some of the results in the theory of Mobius functions of finite

partially ordered sets are extended to arbitrary non-singular

binary relations on finite sets.

1. Introduction

A systematic theory of inversion formulae on a partially ordered set

was developed in Rota [2]. The purpose of this note is to indicate how

certain of the key ideas in that theory, for instance Mobius function,

incidence algebra and Galois connection, can be discussed in the context

of a general binary relation and not just a partial order. For reasons

of simplicity we discuss only finite sets and restrict ourselves to just

a few instances of results analagous to those established by Rota.

2. The incidence algebra of a binary relation

Let p £ S x S be a binary relation on a non-empty finite set S .

We often write xpy instead of (x, y) € p . For U , y) in S x S we

write

[a;, y] = iz : z S S, xpz & spy)

and we call [x, y] a p-interval of S . We note the trivial statements

of

LEMMA 2.1.

(i) [x, y] ?D (the empty set) if and only if there is z in S
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with xpz and zpy 3

(ii) if p is transitive and [x, y] # • then xpy 3

(Hi) if p is transitive and reflexive then [x, y] + • whenever

xpy .

We denote the (real) vector space of real-valued functions on 5 x £

by A = A(S) . In fact A is a linear associative algebra with

multiplication defined by

fg(x, y) = I f{x, z)giz, y)
z«5

for any / and g in A . The algebra A has a unique identity, namely

the Kronecker delta, 6ix, y) = 1 or 0 according as x = y or x # y .

We define the zeta-function of p, ^ ?= C. by the equation

1 if ix, y) $ p ,

0 otherwise.

We note the obvious

LEMMA 2.2.

, y) = I K.ix, s)£(z, i/) = \[x, y]\ .

We say that f in A is p-restricted when

[x, y) f p = /(a:, z/) = 0 .

Note that the zeta-function is p-restricted. We write A = A (S) for

the subset of A consisting of its p-restricted elements. The set A

is a vector subspace of A but it is not, in general, a subalgebra of

A .

LEMMA 2.3. A is a subalgebra of A if and only if p is

transitive.

Proof. Suppose that p is transitive, ix, y) \ p and that / and

g are in A . Then for any z in S at least one of ix, z) and

iz, y) is not in p and since f and g are in A we obtain
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fg(x, y) = I /"(*> z)g(z, y) = o ,

that is fg belongs to A . Conversely suppose that A is a

subalgebra of A , then C2 is in A and so, by Lemma 2.2

[x, y] t O => (a;, y) € p .

From this implication it follows at once that p is transitive.

To facilitate comparison with Rota [2] introduce another binary

composition in A by writing

I f(x, z)g(z, y) , if (ar, j) S p ,

f o g(x, y) =

0 , otherwise,

where we interpret the sum as 0 when [x, y) is in p but

[x, y] = D . Then f ° g is in A for each / and g in A ; in

particular this is so whenever f and g are both in A . Indeed when

f and g belong to A one has

{x, y) $ p => / o g(x, y) = fg(x, y) ,

and if, in addition, p is transitive then fg{x, y) = 0 when

(a;, y) \ p and so, under this additional assumption, f o g = fg for any

/ and g in A Thus when p is a partial order, what Rota calls the

incidence algebra is just the subalgebra A . In the general case,

however, A is not a subalgebra of A and the binary composition '«'

is not associative.

For our purposes it is convenient to work in the algebra A and,

although we shall not make further reference to the term, it is that

algebra which we would call the incidence algebra of p .

3. Non-singular relations

If \s\ = n then each element / of A may be thought of as an

n x n matrix, ||/(a;, y)\\ , the multiplication in A is Just matrix
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multiplication and the algebra A is just that of the corresponding

algebra of n x n matrices. We say that the binary relation p is

non-singular when the matrix V, = ||c(a:, y)\\ is a non-singular matrix, and

correspondingly that p is singular when the same is true of the matrix

t, . When p is non-singular the matrix £ has an inverse; we denote it

by y = ||y(x, t/)|| and call the corresponding element of A the Mobius

function of p . The well-known Mobius inversion formula is, in this

context, nothing more, of course, than a matrix inversion applied to a

system of linear equations. Thus if k is a real-valued function on 5

and

Hy) = I k(x) = I *(x)c(x, y)
x:(x,y)ep xeS

then, in matrix notation,

h' = fc'c

where h' , k' are row vectors {h, k being interpreted as column

vectors). If p is non-singular then k' = h'\i where y = £ , that is

k(x) = I HyMy, x) .
y*S

This is just the Mobius inversion formula. It is to be noted that when p

is a partial order the zeta-function is not only invertible but invertible

in A ; this is no longer true in the general cas'e, that is the Mobius
P

function may not be p-restricted.

Again when p is a partial order the Mobius function of a

p-interval is just the restriction to it of the Mobius function of p .

This result is not generally true; however we note, without proof, the

following

LEMMA 3.1. If p is non-singular and transitive with Mobius

function u then the Mobius function of p restricted to a p-interval

is the restriction of y to that interval.

If p is the converse of the relation p , that is xpy when j/px

then p is non-singular when p is non-singular and its Mobius function

jj is given by fi(a;, y) = M(J/, X ) .
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Finally we remark here, and make use of the fact in Section 5, that

to establish that p is non-singular it is sufficient to exhibit a

left-inverse y of the zeta-function t, , for y£ = 6 implies £y = 6 .

This is, of course, obvious in matrix notation; if A and B are n * n

matrices with AB = I (the identity matrix) and x is a vector with

Bx = 0 then x = ABx = 0 and so B is non-singular and A = B

4. Galois connections

Let Pi, p2 be binary relations on non-empty finite sets S\, #2

respectively. Correspondences x\ -*• x* and x 2 •* x2 , from Sj to S 2

and from S 2 to Si respectively are said to be a Galois connection when

if and only if x2p2x* .

When Pi, p2 are partial orders this definition of a Galois connection is

equivalent to the standard one in, for example, Rota [2]. We prove now

our main result; it is

THEOREM 4.1. Let 0\} p2 be non-singular binary relations on

non-empty finite sets Si, S 2 respectively, and let yi., y2 he their

... * t
respective Mobius functions. Suppose that Xi -*• xi and x 2 -*• x 2 is a

Galois connection, then for any Xi in Si and any x 2 in 5 2 one has

l I » 1/2) •

Proof. Denote the ze ta - func t ions of P i , p 2 by d , C2

r e s p e c t i v e l y . Since ylPii/2 i f" an<i only i f 2/2P22/I w e have

£2(2/2' 2/l) = £l(j/l» 2/2^ a n d hence

>. 2/l) =

Thus
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hi) = I WiUi, 1/1)6(1/1, «25
y\eS\

= I W i ( * i , 2/1). I V2(a ;2» 2/2)^2(2/2. 2/11
2 / 1 ^ 1 • 2 /2 £ 5 2

= I { I M * l , 2/l)C2(2/2» 2/l)[u2(*2. 2/2)
2/2e52 V i ^ l J

I 6(*i, 2/2)^2(^25 2/2)
2/2^2

This i s the desired r e su l t .

From th i s resu l t one recovers Theorem 1 of Rota [2] in the following

way. Suppose that p x , p2 are par t ia l orders, and hence non-singular,

and tha t Si has a leas t element Ĉ  . Since

01p1x2 i f and only i f a:2p20i

it follows that 5 2 has a greatest element, 1 2 = Oj .

Now suppose, in addition, that the Galois connection has the property

1/2 = 0j if and only if J/2 = °1 >

then Theorem k.1 gives

y2(x2, 12) = ^ Ui(0i, m) ,

2/1:2/1=̂ 2

and, in par t icu la r , when 52 also has a least element 02 ,

y 2 ( 0 2 , 12) = l^ I I I I O L yi) .

2/i:2/i=°2

This i s Rota's Theorem 1.

Replacing p2 by p2 one obtains the following dual version of

Theorem it . l .

THEOREM 4.2. Let Pjj p2 be non-singular binary relations on

non-empty finite sets S\, S2 respectively and let Pi., M2 be their

respective Mobius functions. Suppose that X\ •*• x* and a;2 •+• a;2 are
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correspondences, from S\ to S2 and S2 to S\ respectively, such

that

xip1x2 vf and only if x^p2x2 ,

Then for any x\ in Sx and any x2 in S2 one has

5. Closure operators

Let p be a binary relation on a non-empty finite set 5 . A

function J : S •*• S is said to be a p-closure operator on 5 when

xpJ(y) if and only if J(x)pj(y) .

We note that when p is a partial order our definition of a

p-closure operator is equivalent to the standard one in, for instance,

Rota [2] where, however, the. term closure relation is used. We write

J(S) = {J(x) : x i S}

and

Pj = p n U{S) x J(S)} .

If p f O is a binary relation on J(S) , we denote its
d

zeta-function by £. . We prove
J

THEOREM 5.1. Let p be a non-singular binary relation on a
non-empty finite set S and let J be a p-closure operator. If p . is

not empty it is non-singular and its Mobius function y . is given by

V (a, b) = 7 p(a, y)
J yAy)=b

for any a, b in J{S) . Moreover for any b in J(S) and any x in

S - J(S) one has

y u(x, y) = 0 .
\-.Jly)=by-Jly)-

Proof. Since xpJ{y) if and only if J(x)pJ(y) one has
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Let a, b and a be in J(S) , then

I I" I via, y)]zT{b, a) = I I via, y)&{jiy), b)tTU>, a)
J(S) Hi:jXy)=b -I d beJtS) yeS J

b<

= I via, y)tj(Jiy), a)

= I via, y)t,iy, a)
yeS

= &ia, c) .

This proves that

I Via, y)
y-Jiy)=b

is a left inverse of £ and hence, because of the remark at the end of
d

Section 3, establishes the first part of the theorem. The second part of

the theorem follows from Theorem U.2 by taking S\ = S , S2 = JiS) ,

* t
Xi = Jix\) and x2 = x2 • Indeed had we been willing to assume the

non-singularity of p the first part of the theorem could also have been

established by an appeal to Theorem U.2.

As particular cases of Theorem 5-1 one obtains easily Theorem It of

Crapo [7] and Proposition 2 of Section 5 of Rota [2].
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