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We study the diffusive instability subject to a solid–liquid interface and a Kolmogorov
flow using modal, non-modal analyses and energy analysis. It is found that the phase
boundary has different effects on the threshold of diffusive convection for weak and
strong salinity stratification. In the context of oceanography where the salinity Rayleigh
number RS is very high, the ice–water interface has negligible influence on the onset of
diffusive convection. In the presence of shear, the diffusive convection for RS < 106 tends
to be inhibited and with the increase of shear intensity, the oscillatory, steady convective
and Kelvin–Helmholtz instabilities will be successively dominant. For RS > 106, the
shear has a destabilizing effect on the diffusive convection, due to the generation of
thermohaline-sheared instability found by Radko (J. Fluid Mech., vol. 805, 2016, pp.
147–170). Non-modal analysis indicates that for realistic parameters of high-latitude
oceans, with the transition of the ultimate energy source of instability from the density
gradient to background current, the thermohaline-shear instability is expected to transition
from oscillatory to steady instability. The initial transient amplification due to double
diffusion has also been studied, which is due to the generation of overstable instability
at the initial phase. For RS < 106, the optimal initial condition to achieve the maximum
transient growth favours longitudinal rolls. For thermohaline-shear instability, however,
it favours transverse rolls and specifically, in oscillatory thermohaline-shear instability,
the transient amplification can be enhanced by the shear by one order of magnitude, thus
having important influence on the stability of the system.
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1. Introduction

Double-diffusive convection represents a mixing process driven by two fluid components
that diffuse at different rates. It is of great significance in oceanography, geophysics,
astrophysics and engineering (e.g. Turner 1985; Schmitt 1994; Radko 2013; Garaud
2018). Regarding the double-diffusive convection in oceanography, the temperature field
constitutes the faster diffuser while the salinity field the slower diffuser (Schmitt 1994).
Away from the freezing point, the density of water is a decreasing function of temperature
but an increasing function of salinity. In low-latitude regions, warm and salty waters are
generally located above cold and fresh waters (Radko 2013), which makes the (sub)tropical
oceans susceptible to the well-known fingering convection, i.e. salt fingers. In contrast,
seawater in polar regions is stratified such that both salinity and temperature decrease
upward, thus prone to diffusive convection, viz. oscillatory double-diffusive convection
(ODDC). The onset conditions for instability in double-diffusive convection have been
well understood in classical cases (e.g. Veronis 1965; Baines & Gill 1969; Balmforth
et al. 2006). Generally, the linear instability of double-diffusive convection can take place
in the form of either steady or oscillatory convection, depending on the detailed sets of
parameters (Veronis 1965; Balmforth et al. 2006).

Over the past decades, sea ice in the Arctic Ocean has been observed to decrease at
least by 40% in volume (Rothrock, Yu & Maykut 1999; Wadhams & Davis 2000; Deser
& Teng 2008). Solar radiation and basal melting are the two main driving factors of
the dramatic sea ice loss (e.g. Perovich et al. 2014). Regarding the basal melting, the
thermohaline stratification lying between the cold, fresh meltwater and the warm, saline
Atlantic intruding water was quite stable in the past, so that the warm Atlantic intruding
water, which carries enough heat to melt all the ice in the Arctic, cannot effectively transfer
its heat to the lower surface of the ice (Turner 2010). However, recent measurement of the
Eurasian Basin has indicated that the Atlantic warm tongue is shoaling and the stability
of the stratification layer is weakened, which allows more heat to penetrate through the
halocline and enter in the lower surface of sea ice, thereby leading to the so-called
‘Atlantification’ of the Arctic Ocean (Polyakov et al. 2017). In fact, basal melting plays
an even more important role in the melting of the Antarctica ice shelves, which have lost
more than 50% of their mass by the basal double-diffusive process (Rignot et al. 2013;
Begeman et al. 2018). As mentioned before, high-latitude oceans are generally stratified
in the diffusive regime. For instance, a borehole oceanographic observation on the Ross
Ice Shelf indicates that near the grounding zones, the value of the Turner angle, which is
a common measure of the stratification pattern, is mainly within (−90°, −45°), thereby
susceptible to diffusive convection (Begeman et al. 2018). So far, however, instability
properties of the subglacial double-diffusive convection in various ocean conditions, e.g.
buoyancy by double diffusion, ice melting and background current, have not been well
understood. Specifically, while previous studies have demonstrated the non-trivial effect
of a solid–liquid phase boundary on the stability of Rayleigh–Bénard convection (Davis,
Müller & Dietsche 1984; Kim, Lee & Choi 2008; Vasil & Proctor 2011; Toppaladoddi &
Wettlaufer 2019), this effect has not been examined in a subglacial diffusive convection
system. In addition, despite of the systematic examination of the combined effects of the
shear and double diffusion (i.e. the thermohaline-shear instability) from the perspective of
asymptotic stability analysis and direct numerical simulation (DNS) (Radko 2016; Brown
& Radko 2019; Radko 2019), the transient behaviour and the nature (i.e. oscillatory, steady
and dynamic) of this newly found instability are still left to be resolved. These two points
are reviewed individually below.
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Effects of phase boundary and shear on diffusive instability

Regarding the effects of melting/freezing on the buoyancy-driven instability, let us first
have a look at the results of investigations on single-component cases (that is, with the heat
transport only). Davis et al. (1984) have studied the bifurcation and pattern formation of
single-component buoyancy-driven convection underneath a steady solid–liquid interface.
They considered a steady base state by assuming that the heat entering and leaving
the interface balances each other. It is found that at the onset of flow motion, the
solid–liquid interface behaves like a planar rigid solid of imperfect thermal conductivity.
With the increase of solid depth, the conductivity effectively decreases so that the critical
Rayleigh number Rac and critical wavenumber kc both decrease. For sufficiently large solid
thickness, (Rac, kc) asymptote to (1493, 2.815). Recently, this work has been extended by
Toppaladoddi & Wettlaufer (2019) to study the effect of low-Péclet-number Couette flow.
It is found that the imposed shear tends to stabilize the system by inhibiting the vertical
heat flux. Vasil & Proctor (2011) studied the instability of Rayleigh–Bénard convection
subject to a different solid–liquid interface. They considered a Stefan system with an
isothermal solid, in which the liquid layer will slowly deepen as time progresses. At the
large-Stefan-number limit in which the melting is very slow, the phase interface acts as a
fixed-flux boundary, which results in the convection threshold decreasing from (1707.763,
3.116) (Chandrasekhar 1961) to (1295.78, 2.552). The decrease of convection threshold
due to the phase boundary has also been observed by Kim et al. (2008) in a fast-melting
system.

In two-component cases, few attempts have been made to study the double-diffusive
instability in the presence of an ice–water interface. In places such as Greenland (e.g.
McDougall 1983; McPhee 2008; Chandler et al. 2013) and the Arctic (e.g. Polashenski,
Perovich & Courville 2012; Polashenski et al. 2017), strong solar radiation in summer
is able to cause the seasonal melting/freezing at the surface of ice shelves. Martin
& Kauffman (1974) studied the dynamics of under-ice melt ponds resulting from the
aforementioned process. They focused on the ice growth (the so-called false bottom) in the
system, which was found to go through three different stages: nucleation, lateral growth
and upward migration due to the temperature and salinity gradient. The formation of a false
bottom is closely correlated with the double diffusion. Recently, Hirata, Goyeau & Gobin
(2012) investigated the onset of double-diffusive convection in the under-ice melt ponds.
They considered the water density inversion and showed that the depth of the ice matrix
plays a key role in the stability of the under-ice melt layer. Particularly, increasing the
depth of the ice layer will decrease the convection threshold, which is consistent with the
single-component cases (Davis et al. 1984; Toppaladoddi & Wettlaufer 2019). However,
the depth of the melt layer has a marginal influence, due to the compensation between
stabilizing salinity gradient and destabilizing temperature gradient which simultaneously
change when increasing the liquid depth.

Regarding the effect of background current on double-diffusive instability, much
attention has been paid to salt fingers in the early stage. Linden (1974) studied the effect
of a steady Couette flow on fingering convection between two planes. Results showed
that the shear affects the fingering instability in a way similar to thermally stratified shear
flow. For instance, longitudinal rolls are the preferred mode and unaffected by the shear.
In addition, the instabilities of both transverse and oblique rolls tend to be inhibited
by the shear since the mean flow can absorb energy from the spanwise perturbations.
Recently, Konopliv, Lesshafft & Meiburg (2018) performed a transient growth analysis of
a similar problem. Their results showed that even though the Couette flow is vertically
unbounded, it can also damp the fingering instability. Most importantly, they detected
the transient growth of fingering convection which exists regardless of whether there is a
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shear or not. This transient growth is attributed to a mechanism relying on the density
stratification, different from the Orr mechanism or lift-up mechanism which relies on
shear (Jerome, Chomaz & Huerre 2012). It should be noted that Linden (1974) and
Konopliv et al. (2018) were not concerned with the shear-driven instability in their studies.
In fact, the basic shear itself may yield dynamic instability such as Kelvin–Helmholtz
instability, which can interact with double-diffusive stratification and thus lead to the
formation of thermohaline staircases (Symth & Kimura 2007). Radko & Stern (2011)
studied the fingering instability in the presence of a shear with sinusoidal velocity profile
(namely the Kolmogorov flow). By assuming triply periodic boundary conditions, they
identified two kinds of instability that dominate the system. For small values of Richardson
number Ri, the classical Kelvin–Helmholtz instability is the fastest growing mode; for
large values of Ri, however, the Kelvin–Helmholtz instability will be superseded by
the thermohaline-shear instability, a newly found oscillatory instability that bears strong
resemblance to the collective instability observed in thermally stratified Kolmogorov flow
(Balmforth & Young 2002).

Recently, to understand the thermohaline layering of diffusively stable oceans in
high-latitude regions, Radko (2016) investigated the diffusive instability in the presence
of the Kolmogorov flow. Both results of DNS and linear stability analysis indicated that
the interaction between the shear and density stratification can surprisingly destabilize
the system that is individually stable to Kelvin–Helmholtz and diffusive instabilities.
It is clear that as with Kelvin–Helmholtz instability, the fastest growing mode in the
thermohaline-shear instability is the transverse rolls, which is in contrast to the fingering
cases (Linden 1974; Symth & Kimura 2007; Radko & Stern 2011; Konopliv et al. 2018).
Radko (2016) performed an energy analysis to suggest that there exist two regimes of the
energy balance of thermohaline-shear instability. Different from the low-Pe regime (Pe
is the Péclet number) in which the energy production by shear is negligible compared
with that by temperature gradient, the dominant energy balance in the high-Pe regime is
between the energy produced by shear and dissipated by viscosity. It is noted that in this
seminal work, there are three questions remaining to be resolved, which partially motivates
us to further study the sheared diffusive convection by analysing the energy budgets with
the help of non-modal analysis.

First, in the high-Pe regime, the author attributed the main energy source of amplifying
the disturbance to the unstable temperature gradient, which is definitely true in the
low-Pe regime only. This might be because in the energy analysis, the author fixed all
controlling parameters except Pe, which leads to the overestimation of energy contribution
of heat diffusion (especially in the high-Pe regime). Note that in the thermohaline-shear
instability, the critical temperature gradient is varied when varying Pe (specifically, we
will show that in fact the critical Rayleigh number is a rapidly decreasing function
of Pe).

Second, Radko (2016) rationalized the catalytic role of shear in the energy transfer
from the density gradient to the perturbed hydrodynamic field by hypothesizing that the
existence of a shear increases the residual energy gain of a particle in an oscillation cycle.
However, this hypothesis requires that the thermohaline-shear instability is within the
oscillatory rather than steady instability regime, which will be addressed in this work.

Finally, the analysis of Radko (2016) focused only on the asymptotic growth of the
perturbation, while as mentioned before, it has been confirmed by Konopliv et al.
(2018) that the initial transient growth can occur in double-diffusive convection even
in the absence of a shear. Considering that the short-term disturbance behaviour can
sometimes overdraw the long-term one determined by the eigenvalue analysis (Schmid &
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Henningson 2001), it is necessary to inspect the initial transient growth of
thermohaline-shear instability.

Nevertheless, as a plausible mechanism of the generation of staircases in the
Arctic, thermohaline-shear instability has been discussed by Garaud (2017) in wider
geophysical prospects and also studied numerically with a linear velocity profile
(Yang et al. 2022). In addition, to consider the effects of internal gravity waves, this
instability has been investigated in the case of shear with time-dependent magnitude
(Brown & Radko 2019; Radko 2019). Specifically, a temporal record of the quadratic
perturbation norm (not the non-modal analysis) by Radko (2019) indicated that the
overall exponential growth is modulated by small-scale oscillations. Since the small-scale
oscillations acquire the angular frequency twice of the time-dependent mean shear,
it is believed that this oscillatory behaviour is inherited from the base flow so that
it cannot help to identify whether the thermohaline-shear instability is oscillatory
or steady.

As shown above, few works have studied the effects of an ice–water interface on the
linear instability of diffusive convection. However, previous studies of effects of shear
on diffusive instability focused mainly on the thermohaline-shear instability, so a more
comprehensive investigation in this regard is necessary. As for the thermohaline-shear
instability, there are still several essential problems left to be resolved. This leads to
the aims of the present study: (i) investigate the diffusive instability in the presence
of an ice–water interface; (ii) study the transition from oscillatory to steady, and to
dynamic instability; and (iii) examine the transient growth of diffusive convection in
the absence/presence of shear. To this end, in addition to the modal stability analysis,
non-modal stability analysis and energy analysis are also adopted to improve our
understanding of the problems. This paper is organized as follows. In § 2, we formulate
the problem. In § 3, we derive the linearized equations and provide a systematic code
validation. The results are present in § 4 and conclusions are drawn in § 5.

2. Problem formulation

This work extends on that of Toppaladoddi & Wettlaufer (2019) to account for salinity
stratification. As sketched in figure 1, we consider an idealized system which consists of an
infinite horizontal liquid layer of thickness h0 sandwiched between a lower fixed plane and
an upper solid layer. The upper solid layer corresponds to the ice shelf of thickness d0. A
Cartesian coordinate system (x, y, z) is centred on the bottom of the channel with the y-axis
pointing vertically upwards. The base of the water is held at the temperature Tb higher than
that at the upper surface of ice shelf Tu. The melting/freezing temperature of ice, i.e. Ti, is
such that Tu < Ti < Tb, which allows the phase interface to move upwards or downwards,
depending on the heat fluxes towards and away from the interface. When the heat flux
across the liquid layer is larger than those across the ice layer, the system undergoes
melting, which produces fresh water near the ice–ocean interface so that the ambient
salinity is stratified as with the temperature in the liquid. The configuration considered
here, that both the temperature and salinity are increasing functions of the water depth,
is based on the observations of Begeman et al. (2018). The salinities of lower and upper
surfaces of the liquid layer are denoted by Sb and Si. Following Hewitt (2020), we assume
the ice void of salinity for convenience. In addition, as with Radko (2016), we impose a
Kolmogorov flow in the liquid layer to model the effect of ambient current, with U0 being
the maximum of the velocity profile.
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Figure 1. Schematic description of the problem.

2.1. Governing equations
In the liquid, the governing equations for sheared double-diffusive process are (e.g. Radko
2013)

∇ · U = 0, (2.1a)

∂U
∂t

+ U · ∇U = −∇P
ρ0

+ υ∇2U + g
ρ − ρ0

ρ0
y, (2.1b)

∂T
∂t

+ U · ∇T = kT∇2T, (2.1c)

∂S
∂t

+ U · ∇S = kS∇2S, (2.1d)

where U = (U, V, W) is the velocity field, P the dynamic pressure, g the acceleration due
to gravity, ρ (ρ0) the (reference) density, υ the kinematic viscosity and y the unit vector
in the y direction. Here, (T, S) represent the temperature and salinity, with their molecular
diffusivities denoted by (kT , kS). We assume the linear equation of state for simplicity
(Radko 2013):

ρ = ρ0[1 + αS(S − S0) − αT(T − T0)], (2.2)

where (αT , αS) are the constant expansion/contraction coefficients, and (T0, S0) are the
reference temperature and salinity.

The heat transport in the solid is governed by thermal diffusion, viz.

∂Ts

∂t
= kT∇2Ts, (2.3)

where Ts is the temperature in the solid. Note that the thermal diffusivities in the solid and
the liquid are identical for simplicity.

The ice–water interface is at the temperature of melting/freezing, and its evolution is
governed by the Stefan condition, i.e.

T = Ts = Ti, ρ0L
∂h
∂t

= n · κ(∇Ts − ∇T), (2.4a,b)

where L is the latent heat of fusion, h = h(x, z) the height of the interface, n the unit vector
normal to the interface and κ the thermal conductivity.
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In addition to the Stefan condition, the remaining boundary conditions are

U = 0, T = Tb, S = Sb at y = 0, (2.5a)

U = 0, S = Si for y = h0, (2.5b)

Ts = Tu at y = h0 + d0. (2.5c)

To place the above formulations in dimensionless form, we introduce the following
scales:

x, y, z ∼ h0, u, v, w ∼ U0, t ∼ h0

U0
,

T − T0 ∼ ΔT = Tb − Ti, S − S0 ∼ ΔS = Sb − Si, P ∼ ρU2
0 .

⎫⎬
⎭ (2.6)

Here we have T0 = Ti. These scalings give rise to the following dimensionless numbers,
viz.

Ra = gαTΔTh3
0

υkT
, RS = gαSΔSh3

0
υkS

, Re = U0h0

υ
,

Pr = υ

αT
, β = kS

kT
, St = L

cpΔT
, Λ = Ti − Tu

ΔT
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

Here, Ra and RS are the thermal and the salinity Rayleigh numbers which measure the
buoyancy due to temperature and salinity gradients, respectively. The Reynolds number
Re represents the strength of the shear flow. The Prandtl number Pr compares kinematic
viscosity to thermal diffusivity. Additionally, β is the diffusivity ratio of salt and heat.
Since we are concerned here with the diffusive convection of high-latitude oceans, we will
consider Pr and β to be fixed at Pr = 10 and β = 0.01 throughout all calculations, unless
otherwise specified. The Stefan number St denotes the ratio between the latent heat and
specific heat (cp), and Λ is the ratio of the temperature differences across the liquid and
the ice layers. Maintaining the pre-scaled notation, the governing equations become

∇ · U = 0, (2.8a)

∂U
∂t

+ U · ∇U = −∇P + 1
Re

∇2U + Ra
Pr · Re2 · T · y − RS · β

Pr · Re2 · S · y, (2.8b)

∂T
∂t

+ U · ∇T = 1
Pr · Re

∇2T, (2.8c)

∂S
∂t

+ U · ∇S = β

Pr · Re
∇2S, (2.8d)

∂Ts

∂t
= 1

Pr · Re
∇2Ts, (2.8e)

with accompanying boundary conditions

U = 0, S = 1, T = 1 at y = 0, (2.9a)

U = 0, S = 0, T = Ts = 0, St
∂h
∂t

= n · (∇Ts − ∇T), for y = 1, (2.9b)

Ts = −Λ at y = 1 + d0. (2.9c)
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3. Linear stability equations

In this section, we derive the stability equations for infinitesimal disturbances in the
present system. We first focus on the dynamics in the liquid. Based on the linear stability
theory (Schmid & Henningson 2001), all variables are separated into the basic state and a
departure from it, i.e.

U = Ū + u, P = P̄ + p, T = T̄ + θ, Ts = Ts + θs, S = S̄ + s, (3.1)

where u = (u, v, w), p, θ , θ s and s represent the velocity vector, pressure, temperature and
salinity in the perturbed state, while Ū , P̄, T̄ , Ts and S̄ are the corresponding base-state
variables. Inserting the decompositions into (2.8a–d), subtracting the equation for the
basic state and omitting the nonlinear terms, we obtain

∇ · u = 0, (3.2a)

∂u
∂t

+ (u · ∇)Ū + (Ū · ∇)u = −∇p + 1
Re

∇2u + Ra
Re2 · Pr

· θ · y − RS · β

Re2 · Pr
· s · y,

(3.2b)

∂θ

∂t
+ (u · ∇)T̄ + (Ū · ∇)θ = 1

Re · Pr
∇2θ, (3.2c)

∂s
∂t

+ (u · ∇)S̄ + (Ū · ∇)s = β

Re · Pr
∇2s. (3.2d)

The boundary conditions for the velocity and salinity fluctuations read (the Stefan
condition will be discussed later)

u = 0 and s = 0 for y = 0 and y = 1. (3.3)

3.1. Base-state solutions
In this study, we consider a steady and horizontally homogeneous base state in which the
ice–water interface is unmovable unless the vertical flow motion sets in. This steady state
is reasonable due to the fact that, given that the solid is conducting, any melting process
will eventually reach an equilibrium state, as long as the heat fluxes entering and leaving
the interface balance (e.g. Purseed, Favier & Duchemin 2020). Therefore, in the base state,
we have (Toppaladoddi & Wettlaufer 2019)

dT̄
dy

= dTs

dy
at y = 1. (3.4)

This leads to

d0 = Λ, (3.5)

which indicates that the thicknesses of the liquid and solid layers in the equilibrium state
are determined by the values of Tb, Ti and Tu (Davis et al. 1984).
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The base-state temperature profile is given by (Davis et al. 1984; Toppaladoddi &
Wettlaufer 2019)

T̄( y) = 1 − y, 0 ≤ y ≤ 1 and Ts( y) = 1 − y, 1 ≤ y ≤ 1 + d0. (3.6a,b)

Regarding the base state of salinity, we have

S̄( y) = 1 − y, 0 ≤ y ≤ 1. (3.6c)

For the base flow, we are mainly interested in the hydrostatic base state and Kolmogorov
flow (Radko 2016), which are respectively given by

Ū( y) = 0 for hydrostatic state, (3.6e)

Ū( y) = −sin(2πy), V̄ = W̄ = 0 for Kolmogorov flow with 0 ≤ y ≤ 1. (3.6f )

3.2. Matrix representation
After the given base state is substituted in the linearized equations and the pressure term
is eliminated from the obtained equations, the linearized system can be rewritten as

∂∇2v

∂t
=
(

−Ū
∂

∂x
∇2 + d2Ū

dy2
∂

∂x
+ 1

Re
∇4

)
v + Ra

Re2 · Pr

(
∇2 − ∂2

∂y2

)
θ

− RS · β

Re2 · Pr

(
∇2 − ∂2

∂y2

)
s,

(3.7a)

∂η

∂t
= −dŪ

dy
∂

∂z
v +

(
−Ū

∂

∂x
+ 1

Re
∇2
)

η, (3.7b)

∂θ

∂t
= −dT̄

dy
v +

(
−Ū

∂

∂x
+ 1

Re · Pr
∇2
)

θ, (3.7c)

∂s
∂t

= −dS̄
dy

v +
(

−Ū
∂

∂x
+ β

Re · Pr
∇2
)

s, (3.7d)

where η is the vorticity in the y-direction, defined by

η = ∂u
∂z

− ∂w
∂x

. (3.8)

For clarity, the linearized system (3.7) can be recast in matrix notation, viz.

A
∂ζ

∂t
= Bζ ⇒ ∂ζ

∂t
= Lζ, (3.9)

where ζ = (v, η, θ , s)T and L = A−1B is the linearized Navier–Stokes operator.
We seek solutions of (3.9) in the following wave-like form:

f (x, y, z, t) = f ∗( y) exp(ikx + imz − iωt), (3.10)

where f corresponds to (v, η, θ , s), f * = (v*, η*, θ*, s*) is the shape function, k and m the
streamwise and spanwise wavenumbers, and ω the circular frequency of the perturbation.
Note that ω is complex valued, with the real part ωr being the phase speed while the
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imaginary part ωi the growth rate. Substituting (3.10) into (3.9), we arrive at an eigenvalue
problem,

− iωζ ∗ = Lζ ∗, (3.11)

where ζ* is the eigenvector of the eigenvalue −iω.
The boundary conditions for the amplitudes of the perturbed velocity, vorticity and

salinity are

v∗ = ∂v∗

∂y
= η∗ = s∗ = 0 for y = 0 and y = 1. (3.12a)

The boundary condition for the perturbed temperature at the interface is derived from the
Stefan condition (2.9b), which has been discussed by Davis et al. (1984). It is found that
the interface acts as an imperfect thermal conductor such that

Dθ∗ + θ∗γ coth(γΛ) = 0 for y = 1, (3.12b)

where γ = (k2+m2)1/2 is the total horizontal wavenumber. This condition is consistent
with that of Nield (1968) who studied the buoyancy-driven instability underlying a solid
layer of finite conductivity and finite thickness. Therefore, we in fact consider the presence
of an ice–water interface which is steady before the onset of convective rolls, instead of
a melting or freezing boundary. However, while the modified Stefan condition (3.12b)
is independent of St, we still assume that St is large enough following Toppaladoddi &
Wettlaufer (2019) and the possibility of large enough St has been discussed by Vasil &
Proctor (2011). The condition for θ* at the lower boundary is

θ∗ = 0 for y = 0. (3.12c)

Regarding the heat diffusion in the solid, linearizing (2.8e) as with the fluid system leads
to

(D2 − γ 2)θ∗
s = 0, (3.13)

where θ s* is the amplitude of the perturbed temperature in the solid. The corresponding
boundary conditions are given by

θ∗
s = θ at y = 1 and θ∗

s = 0 at y = 1 + Λ. (3.14a,b)

Davis et al. (1984) have given the analytical solution to (3.13), i.e.

θ∗
s = sinh[γ (1 + Λ − y)]

sinh(γΛ)
· θ∗( y = 1) for 1 ≤ y ≤ 1 + Λ, (3.15)

which is easily solved once we determine the perturbed liquid temperature at the interface.

3.3. Energy norm
The modal stability analysis introduced in § 3.2 predicts the conditions for the
exponentially growing instability of a linear system, but fails to examine its
transient behaviour in a finite time interval. The transient behaviour is because the
non-orthogonality of the eigenvectors in the presence of a basic shear might cause a
non-trivial transient energy growth before the eventually exponential growth or decay of
the disturbance (Schmid & Henningson 2001). To give insight into the transient behaviour
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of the present system, we resort to the non-modal stability analysis (Schmid 2007). To this
end, we define the dimensionless perturbation energy as follows:∫

Ω

E dV =
∫

Ω

(ek + eθ + eS) dV =
∫

Ω

[c1(u2 + v2 + w2) + c2θ
2 + c3s2] dV, (3.16)

where E represents the total perturbation energy, ek the perturbed kinetic energy, and eθ

and eS the potential energies of the disturbance with respective to temperature and salinity
fields, respectively (Konopliv et al. 2018). Since the system is horizontally periodic, the
control volume Ω is defined as 0 ≤ y ≤ 1 so that dV = dy. The definitions of perturbation
energy components on the right-hand side of (3.16) follow Konopliv et al. (2018), with the
accompanying coefficients given by c1 = 1, c2 = Ra/(Re2Pr) and c3 = RSβ/(Re2Pr).

Since we describe the system in terms of v−η−θ−s, (3.16) is rewritten as∫
Ω

E dV = 1
4

∫
ζ ∗†

diag(M1, M2, M3, M4)ζ
∗ dy = 1

4

∫
ζ ∗†

Mζ ∗ dy, (3.17a)

with

M1 = I + 1
γ 2 D†

1D1, M2 = 1
γ 2 I, M3 = Ra

Re2Pr
I, M4 = RSβ

Re2Pr
I, (3.17b–e)

where the superscript † denotes the complex conjugate and D1 the first-order derivative
with respective to y. Since the weight matrix is positive definite, we apply a Cholesky
decomposition to it, i.e. M = F †F with ξ* = Fζ*, which leads to (Zhang et al. 2015)∫

Ω

E dV = 1
2

∫
ζ ∗†

Mζ ∗ dy = 1
2

∫
ζ ∗†

F †Fζ ∗ dy = 1
2

∫
ξ∗†

ξ∗ dy = ‖ξ∗
2 ‖, (3.18)

where ||ξ*|| is the L2-norm of ξ*. The transient growth is defined as the maximum possible
growth for all initial conditions ξ∗

0, i.e.

G(t) = max
ξ∗

0

||ξ∗(t)||2
||ξ∗(0)||2 . (3.19)

3.4. Code validation
In this study, we solve the numerical problem (3.11) using the spectral method based on
collocation points as the root of Chebyshev polynomials (Weideman & Reddy 2000). This
method has also been used in our previous work (Zhang et al. 2015).

First, to test the performance of our stability code for various grid resolutions, we
consider a case in the diffusive instability regime. Without loss of generality, the combined
effects of phase boundary and low-Re Kolmogorov flow are considered. As shown in
table 1, N = 250 is sufficient to converge the most unstable mode at Ra = 1.15 × 1707.763,
RS = 10 × 1707.763, Re = 0.1, k = 3.2, m = 0 and Λ= 1.

Second, we verify our model by examining the convection threshold of Rayleigh–Bénard
convection in the presence of a solid–liquid interface. In this case, the basic shear and
salinity stratification are neglected. As shown in figure 2, the critical Rayleigh number Rac
and the critical wavenumber kc are the decreasing functions of the thickness of the solid
layer Λ. Our calculations are in good agreement with those of Davis et al. (1984) and
Toppaladoddi & Wettlaufer (2019).

Finally, we also reproduce the marginal stability curves of double-diffusive convection
for validation in the absence of the phase boundary and shear. For clarity, here we assume
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N ωr ωi

100 1.860111180733380 +0.005289616195907i
150 1.860111188290659 +0.005289612485416i
200 1.860111182066328 +0.005289618385907i
250 1.860111173089677 +0.005289602710662i
300 1.860111170988159 +0.005289584440306i

Table 1. Resolution check for diffusive convection in the presence of phase boundary and Kolmogorov flow at
Ra = 1.15 × 1707.763, RS = 10 × 1707.763, Re = 0.1, k = 3.2, m = 0, Λ= 1. In the table, ωr and ωi are the real
and imaginary components of the frequency of the most unstable mode.

0 0.2 0.4

Λ Λ
0.6 0.8 1.0

1500

1550

1600

1650

1700 Davis et al. (1984)

Toppaladoddi & Wettlaufer (2019)

Present results

Rac

0 0.2 0.4 0.6 0.8 1.0

2.8

2.9

3.0

3.1

kc

(b)(a)

Figure 2. Linear stability of Rayleigh–Bénard convection subject to phase boundary. (a) Critical Rayleigh
number Rac as a function of Λ and (b) critical wavenumber kc as a function of Λ.

that R∗
T (respectively R∗

S) represents the controlling parameter of the component that is
unstably (respectively stably) stratified. As was done by Balmforth et al. (2006), we
summarize the linear stability of double-diffusive convection from Veronis (1965) as
follows:

steady: R∗
T = R∗

S + Rac0 if σ 2 β∗ + Pr
1 + Pr

< β∗ < 1 or β∗ > 1, (3.20a)

oscillatory: R∗
T = (β∗ + Pr)

(
β∗R∗

S
1 + Pr

+ Rac0(1 + β∗)
Pr

)

if σ 2 β∗ + Pr
1 + Pr

> β∗ and β∗ < 1. (3.20b)

Here, σ 2 = R∗
S/R∗

T and β* is the diffusivity ratio between the stably stratified component
and unstably stratified component. Specifically, β* > 1 corresponds to the fingering
convection in which R∗

T represents RS, whereas β* < 1 corresponds to the diffusive
convection in which R∗

T represents Ra. It is clear that fingering instability always
arises as a steady type of motion whereas in diffusive cases, both steady convective
instability and oscillatory instability may appear, with the transition occurring at
σ 2 =β*(1 + Pr)/(β* + Pr), as shown in (3.20). In addition, assuming that the boundary
is perfectly conducting, one has Rac0 = 1707.763 for the no-slip condition while
Rac0 = 657.511 for the stress-free boundary (Chandrasekhar 1961). To highlight the effect

963 A38-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.319


Effects of phase boundary and shear on diffusive instability

1 × 10–4 1 × 10–3 0.01 0.10 1.00 10.00

1.00

1.02

1.04

1.06

1.08

1.10

Unstable

Stable

O
sc

il
la

to
ry

Veronis (1965)

Veronis (1965)

Present results

RS/Rac0

Ra
/R

a c0

S
te

ad
y

(b)

2 4 6 8 100

2

4

6

8

10

Stable

Ra/Rac0

Veronis (1965)

Present results

R S
/R

Sc
0

Unstable

(a)

Figure 3. Linear stability boundaries of (a) fingering convection and (b) oscillatory convection with no-slip
and perfectly conducting boundaries. Note that RSc0 = Rac0 = 1707.763.
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Figure 4. Diffusive convection in steady instability regime: (a) eigenspectrum; (b) transient energy growth;
(c) perturbed salinity field. The parameters are Ra = 1.005Rc, RS = 0.005Rc, k = γ c, m = 0, Re = 0 and Λ = 0.
Hereafter, Rc = 1707.763, γ c = 3.116 and λ= 2π/k. In panel (b), two additional cases with Ra = 1.0048Rc and
1.0052Rc are shown for comparison.

of the boundary condition, we consider the no-slip condition in this study. As shown in
figure 3, our results are consistent with Veronis (1965).

4. Results of stability analysis

4.1. The classical diffusive convection
While the linear instability of classical diffusive convection (i.e. that in the absence of the
phase boundary and shear) has been well understood, it is necessary to study this problem
from the perspective of transient energy evolution before proceeding to the investigation
on the effects of phase boundary and shear. As mentioned before, diffusive convection
can bifurcate into steady convection for weak salinity stratification or into overstable
motions for intense salinity stratification. These two typical cases are illustrated in figures 4
and 5, in which we show the eigenspectra in the modal analysis, the transient energy
growths in the non-modal analysis and the perturbed salinity fields. Note that when we
consider the hydrostatic base state, we set m = 0. In the steady instability regime, all
the instability modes are located at the core mode which corresponds to a zero phase
speed. The transient energy evolves exponentially with time after an initial rapid growth.
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Figure 5. As with figure 4 but in the oscillatory instability regime. The parameters are Ra = 1.0209Rc,
RS = Rc, k = γ c, m = 0.
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Figure 6. Transient energy growth and transient energy budget versus time. The parameters are as with
figure 5. VT (VS) is the energy transfer between the velocity fluctuation field and temperature (salinity) field,
Prod is the energy production by the basic shear and VD is the viscous dissipation.

The reasons for the initial rapid growth has been examined by Konopliv et al. (2018)
in the fingering regime, which is due to the interaction between double diffusion and
velocity fluctuation field, rather than due to the Orr mechanism or lift-up mechanism. The
situation in the oscillatory instability regime is dissimilar. As shown in figure 5(a), there
exist two most unstable modes lying on the either side of the core mode. They acquire
the identical growth rate but the opposite phase speed. This is because the overstable
motions, a standing oscillation in the form of internal gravity waves, are characterized by
the periodic transitions between the clockwise and counterclockwise circulation patterns
(Veronis 1965; Radko 2013). One of the most unstable modes shown in the eigenspectrum
results in the clockwise rolls while its counterpart results in the counterclockwise rolls.
The periodic transition of overstable motions is evidenced by the oscillation of the
transient energy evolution shown in figure 5(b). In this regard, Schmid & Langre (2003)
have also observed oscillating transient evolution in the analysis of a generic case of
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Figure 7. Time evolution of the perturbed salinity fields in a cycle. The corresponding times stamps of the
plots are specified in figure 6.

coupled-mode flutter, and Predtechensky et al. (1994) have experimentally observed the
periodic behaviour of double-diffusive convection in a Hele-Shaw cell. It is expected that
the perturbed salinity field shown in figure 5(c) is distorted unidirectionally at a given
instant, which is dissimilar to that in the steady instability regime shown in figure 4(c).
Other notable feature distinguishing overstable motions from steady convection are that
the initial transient amplification seems to disappear here, which we will discuss in detail
in § 4.2.2.

To give an insight into the intrinsic transition of overstable motions between the
clockwise and counterclockwise patterns, we perform a transient energy analysis in a
cycle, as shown in figure 6, and plot a sequence of accompanying perturbed salinity
profiles, as shown in figure 7. The transient energy analysis is explained in Appendix A.
As shown in figure 6, there are four energy components, which are VT (VS) for the energy

963 A38-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.319


C. Lu, M. Zhang, X. He, K. Luo and H. Yi

exchange between the hydrodynamic velocity field and the temperature (salinity) field,
VD for the viscous dissipation and Prod for the energy transfer between the perturbed
hydrodynamic field and the base flow.

It is noted that in contrast to VS, VT is always positive, indicating that the temperature
stratification always releases its potential energy into the hydrodynamic field, regardless
of whether the fluid parcel is moving upwards or downwards. This is because the
high diffusivity of heat allows the fluid parcel to quickly adjust its temperature to the
environment. As with the transient energy G, the transient energy budgets also exhibit
periodic oscillation, except that Prod is always zero as we consider a hydrostatic base
state here. The dominant energy balance is between the heat diffusion and viscous
dissipation. However, it is the energy exchange between the hydrodynamic field and
salinity stratification (rather than temperature stratification) that acts in phase with G. This
is because the overstable motions benefit from the low diffusivity of salt (Veronis 1965).
A cycle of overstable oscillation clearly contains two oscillations of the transient energy
G; one corresponds to the clockwise cell while the other to the counterclockwise cell. As
shown in figure 6, the first oscillation of G (let us assume it is clockwise) starts with the
increase of VS which is initially negative. When VS becomes positive, namely the salinity
stratification starts to transform its potential energy into kinetic energy, the transition from
clockwise to counterclockwise cells occurs, which is visualized in figure 7(c–g). After
this transition, the newly generated counterclockwise cell increases in intensity until the
peak (labelled as ‘h’ in figure 6) is reached. As the energy production by salt diffusion
is reduced and finally the salinity field begins to absorb energy from the hydrodynamic
field, the intensity of the counterclockwise rolls is weakened, thereby leading to another
transition from counterclockwise to clockwise cell. The second transition is visualized in
figure 7(k–o).

4.2. The effects of phase boundary
Regarding the effects of an ice–water interface on diffusive convection, we first have a look
at the stability boundary shown in figure 8. Davis et al. (1984) pointed out that the effect of
a steady solid–liquid interface on the buoyancy-driven instability in its underlying liquid
layer is determined by the temperature difference between the liquid and solid layers, i.e.
Λ, which is equal to the solid thickness in the equilibrium state. Since the solid–liquid
interface becomes a worse thermal conductor as Λ increases, the critical Rayleigh number
Rac and the critical wavenumber γ c which mark the onset of flow motion are decreasing
functions of Λ (Davis et al. 1984).

In double-diffusive cases, the effect of a phase boundary on the convection threshold is
more complex, which depends not only on Λ, but also on RS. When RS is relatively low,
as shown in figure 8(a and b), (Rac, γ c) also decreases with larger values of Λ, which
is qualitatively consistent with the results of Hirata et al. (2012) who studied the onset
of double-diffusive convection in an under-ice melt pond. The decrease of Rac can be
explained by a modal energy analysis shown in figure 8(c). The derivation of perturbation
energy equation is given in Appendix A. The notation Prod, VD, VT and VS represent
the same energy components as the transient energy analysis. We highlight the energy
difference between Λ> 0 and Λ = 0, and to isolate the effects of Λ, all the parameters
except Λ are kept constant. It is readily seen that as Λ increases, energy production by heat
diffusion (VT) is increased. The increasing potential energy released from the unstable
temperature stratification is more than that collected and stored by the stable salinity
stratification. A part of this difference is dissipated by viscosity, while the remaining is
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Figure 8. Effects of phase boundary on the convection threshold of diffusive convection: (a–c) low-RS cases;
(d) and (e) high-RS cases. In panel (b), VT (VS) is the energy transfers between the velocity fluctuation field and
temperature (salinity) field, Prod is the energy production by the basic shear and VD is the viscous dissipation.
In panel (e), �Rac denotes the difference between Rac for conducting boundary and phase boundary. Here,
Re = 0 and m = 0.

transferred into the perturbation kinetic energy, driving the amplification of overstable
oscillations.

In high-RS cases, however, we find that the presence of an ice–water interface tends to
stabilize the system, despite that this effect is too small to make a real difference since Rac
is very high in this situation. Therefore, it is deduced that in oceanic systems where RS is
relatively high, the existence of an ice–water interface has negligible effects on the linear
stability of the subglacial diffusive convection. In other contexts, where RS is relatively
low (for example, the solidification of binary alloy), the existence of a phase boundary can
change the heat flux at the interface so that the convection threshold will be decreased in
a certain degree.

It is interesting to study the transition between steady and oscillatory instability regimes.
In figure 9, we plot the magnified view of figure 8(a) in the low-RS regime. According
to (3.20) (Veronis 1965), the transition from steady convective instability to oscillatory
instability occurs at RS/Ra((β + Pr)/(1 + Pr)) = β, which is simplified to be Ra = 91RS
for β = 0.01 and Pr = 10. In the case of a perfectly conducting boundary, our calculation
follows this prediction well, as shown by figure 9(a). However, in the presence of a phase
boundary, the transition is modified and the parameter range in which the conductive state
is linearly unstable to steady convection is expanded, as shown in figure 9(b).

The effects of phase boundary on transient energy growth in the oscillatory instability
regime are illustrated in figure 10. It is seen that the ice–water interface does not change the
oscillatory nature of overstable motions. However, an originally decaying oscillatory mode
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Figure 9. Magnified view of figure 8: (a) case with a conducting boundary; (b) case with a phase boundary.
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Figure 10. (a,b) Effects of phase boundary on transient energy growth; (c) frequency of overstable oscillation
f 1 as a function of Λ. Here, k = γ c and m = 0.

with a perfectly conducting boundary will become linearly unstable when considering an
ice–water interface, which is consistent with the result of the modal analysis in low-RS
cases where the phase boundary can decrease the threshold of diffusive convection.
Furthermore, it is found that with the increase of ice thickness, the frequency of overstable
oscillation will be decreased, as shown in figure 10(c).

4.3. The effects of shear
Now we turn to examine the effects of Kolmogorov flow on the diffusive instability. To
isolate the effects of the shear, we set Λ = 0. Before investigating the thermohaline-shear
instability identified by Radko (2016) from the perspective of instability nature (oscillatory
or steady) and initial transient growth, we first consider cases of RS < 106 for which three
different instabilities are expected to occur for low (∼0.1), moderate (∼1) and high Re
(∼10).

4.3.1. Three instability regimes for RS < 106

When the shear intensity is weak, as shown in figure 11(a), the location of the most
unstable modes in the eigenspectrum is analogous to the unsheared overstable motions
and, compared with the remaining modes, they travel with the largest absolute phase
speed. Moreover, as shown in the inserted perturbed salinity fields in figure 11(a), these
two instability modes are triggered at y = 2/5 and 3/5, which is different from 1/4 and 3/4
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Figure 11. Oscillatory diffusive instability in the presence of Kolmogorov flow: (a) eigenspectra for a growing
and a decaying case; (b) transient energy growths versus time; (c) transient energy budget versus time for
Re = 0.04. The remaining parameters are Ra = 1.027Rc, RS = Rc, Λ = 0, k = γ c × (1/3)0.5, m = γ c × (2/3)0.5.

predicted by Radko (2016). This might be because Radko (2016) considered the instability
of transverse rolls with the vertical direction being periodic, while we consider here
the instability of oblique rolls with the vertical boundary being no-slip. Nevertheless,
it is believed that these two modes pertain to the oscillatory instability instead of the
steady convective or Kelvin–Helmholtz instability, which is evidenced by the oscillatory
behaviour of transient energy growth G and the accompanying energy budget E shown
in figure 11(b and c). However, as shown in figure 11(b), the frequency of overstable
oscillation is decreased for larger values of Re, which implies that the shear is prone to
inhibiting the overstable oscillation here.

It should be clarified that the oscillatory behaviour identified here is dissimilar to that
of Radko (2019). While Radko (2019) also found that the exponential growth of the
quadratic perturbation norm is modulated on small time scales, this modulation in fact
has an angular frequency twice that of the background shear which has a time-dependent
amplitude. Therefore, we argue that the oscillation of Radko (2019) should be attributed to
the time-dependent nature of the basic shear, whereas the oscillation shown in our study
is inherited from the oscillatory nature of the overstable motions.

The diffusive instability in the presence of Kolmogorov flow of moderate intensity is
displayed in figure 12. Unlike the low-Re cases, as shown in figure 12(a), there exists
only one most unstable mode, located on the core-mode branch which has zero phase
speed. This suggests that the instability is triggered at y = 1/2 where the basic velocity
is zero but the shear rate is the largest. Since the Kelvin–Helmholtz instability by the
Kolmogorov flow is negligible for Re = 1, the instability shown here is still buoyancy
driven. Specifically, here the diffusive instability is steady rather than oscillatory, which is
evidenced by the smooth growth of G shown in figure 12(b). The transient energy budget
shown in figure 12(c) suggests that in the presence of moderate-Re Kolmogorov flow, the
energy productions by the basic shear and salt diffusion are negligible in comparison to
the energy balance between the heat diffusion and viscous dissipation. In this situation,
the diffusive convection behaves like a single-component flow (e.g. Rayleigh–Bénard
convection), despite that the circulation patterns in the present case are affected by the
shear. The perturbed salinity field shown in figure 13 indicates that the system develops
initially as the multi-cells pattern which will not persist for long. As time progresses, the
system evolves to a stable circulation pattern, consisting of large-size cells localized at
y = 1/2, and the perturbed energy starts to grows/decays exponentially with time.
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Figure 13. Time evolution of salinity field for the case of Ra = 1.2Rc in figure 12.

Once the intensity of the basic shear is sufficiently strong, the fluid system might be
susceptible to the dynamic instability induced by the basic shear itself, which refers to
Kelvin–Helmholtz instability for Kolmogorov flow. Figure 14 illustrates this situation.
Looking at figure 14(a), one finds that, while the original Kelvin–Helmholtz instability
modes remain and are still the most unstable, the presence of double diffusion generates
a large number of new modes. These new modes lead to the initial fast growth of G,
as shown in figure 14(b). This transient amplification is due to the overstable motions
generated at the initial instant, which is evidenced by the oscillation of transient energy
budget Ek shown in figure 14(c). From figure 14(c), it is seen that the energy production
by the basic shear is always positive, which is consistent with the idea that the high-Re
Kolmogorov flow is a destabilizing forcing in the present system. In the long term,
this forcing is dominant and the kinetic energy transferred from the basic shear into
the perturbed hydrodynamic field is mainly compensated by the viscous dissipation. In
the short term, however, the potential energy released/stored by the double-diffusive
stratification is considerable and has the propensity to govern the initial dynamics. This is
visualized in figure 15 where we display the time evolution of the perturbed salinity field.
At t = 10, a pair of convective rolls arise in the upper region of the domain while the middle
region is nearly uniform, implying that the oscillatory instability is triggered faster than
the Kelvin–Helmholtz instability. As time progresses, this pair of rolls become distorted
and elongated while simultaneously, near the inflection point of basic velocity profile
(i.e. y = 1/2), the Kelvin–Helmholtz vortices set in. Subsequently, the overstable motions
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Figure 15. Time evolution of salinity field for the case with double diffusion in figure 14.

decrease in amplitude and gradually disappear, whereas the emerging Kelvin–Helmholtz
streaks are intensified and eventually become dominant. Therefore, in the asymptotic stage,
one observes in figure 14(b) a smooth growth of G similar to the case without double
diffusion and in figure 15(d), the typical Kelvin–Helmholtz pattern.

Preceding discussions characterize the properties of three instabilities that can arise
in the present system, i.e. the oscillatory, steady and Kelvin–Helmholtz instabilities. To
determine the boundaries distinguishing them, we present the stability maps for various
shear intensity in figure 16. Regarding the transition from oscillatory to steady convective
instability, it is found that there exist two paths of transition in the present system. (i)
For the low-Re case, as shown in figure 16(a), the system first bifurcates into overstable
motions, which, as with in the nonsheared case (Balmforth et al. 2006), will be superseded
by the steady convection once Ra exceeds a critical value. (ii) Likewise, increasing the
shear intensity, one will find a critical Re above which the steady convection is the
only linear instability. This critical Re is located at the so-called codimension-two point
(Predtechensky et al. 1994), which connects the two paths of the transition from oscillatory
to steady instability. The codimension-two points of the neutral curves for various RS
constitute a curve which grows with increasing RS; see figure 16(b). One notable difference
between the two paths is that the first path is valid for rolls with arbitrary orientation,
whereas the second path is only valid for rolls with a transverse component since the shear
has no effect on the longitudinal rolls; see the vertical curve in figure 16(b). In other words,
in the presence of shear, longitudinal rolls are always oscillatory as long as (Ra, RS) are
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Figure 16. (a) Boundaries of oscillatory and steady instabilities of transverse rolls for RS = 100Rc; (b) critical
Re at codimension-two point for various RS, with TRs being the transverse rolls (m = 0), ORs the oblique
rolls (we consider k = m) and LRs the longitudinal rolls (k = 0); (c) transition from diffusive instability to
Kelvin–Helmholtz (KH) instability for RS = 100Rc. The vertical dashed line marks the transition of transverse
rolls from the diffusive instability to the mixed (diffusive and Kelvin–Helmholtz) instability region.

lying in the oscillatory instability regime determined by (3.20b), whereas the transverse
and oblique rolls might be either oscillatory or steady, depending on both the buoyancy
and the shear intensity.

The transition from buoyancy-driven instability to dynamic instability is illustrated
in figure 16(c). Since the modal stability of longitudinal rolls are unaffected by the
shear, longitudinal rolls are always unstable to the diffusive instability. For perturbations
with a transverse component, the transition from diffusive instability to dynamic
instability is observed. As shown in figure 16(c), there exist four distinct regions in the
Ra–Re plane which correspond to the linearly stable region, diffusive instability region,
Kelvin–Helmholtz instability region, and the mixed diffusive and Kelvin–Helmholtz
instability region. In the diffusive instability region, buoyancy is the only destabilizing
factor and likewise, high-Re Kolmogorov flow is the only destabilizing factor in the
Kelvin–Helmholtz instability region. In the mixed region, both buoyancy and shear will
contribute to the destabilization of the system. Since the Kelvin–Helmholtz instability is
two-dimensional with m = 0, the transition to Kelvin–Helmholtz instability occurs at a
higher Re for oblique rolls in comparison to the transverse rolls.

4.3.2. Transient growth for RS < 106

We are now able to explain a contradiction arising in § 4.3.1 which is concerned with
the initial transient growth of G. As mentioned before, Konopliv et al. (2018) evaluated
the initial transient growth of the fingering convection and attributed it to a mechanism
relying on the existence of density gradients. While we also detect this rapid growth in
steady instability regime in the absence of shear and in the Kelvin–Helmholtz instability
regime, it appears to be eliminated in low- and moderate-Re cases shown in figures 11
and 12.

Let us recall the transient growth mechanism of Konopliv et al. (2018), i.e. ‘The
fast initial growth occurs when θ* and s* initially have opposite signs, so they act in
phase on the density field. . . As a result, v* grows strongly, which in turn will cause
θ* and s* to move in the same direction until they eventually are of the same sign and
sufficiently larger for the transient growth to decay.’ This description is highly consistent
with our observation in figure 6 where we show the transient energy budget of overstable
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oscillation, despite that in Konopliv et al. (2018), no stable oscillation in the long term
but only an initial fast growth is observed. This indicates that the so-called transient
growth mechanism of double-diffusive convection by Konopliv et al. (2018) is in fact the
mechanism responsible for the generation of the overstable motions. In other words, in a
double-diffusive system, the optimal initial condition to achieve the maximum transient
growth must be susceptible to the overstable motions, despite that unlike the diffusive
configuration, this periodic flow might not persist too long in fingering convection.
Therefore, it is expected that in the presence of shear, the optimal initial condition must
be the longitudinal rolls since the shear tends to inhibit the oscillatory instability with a
transverse component, as discussed in last section. This is evidenced by figure 17(a) where
we show the contours of G as in the k-m plane in moderate-Re case. Now it is easy to
deduce that the initial transient growth in figures 11 and 12 being insignificant is because
we consider oblique rolls there. Furthermore, a conclusion can be drawn that regardless
of the existence of a shear and of the instability type (oscillatory, steady or dynamic), the
initial transient growth is exactly the first growth of G in a cycle of overstable oscillation,
i.e. the growing stage in figure 6(a–h). In the oscillatory instability regime, particularly,
this transient growth as well as the subsequent decay will repeat themselves over and
over again, thereby leading to the so-called overstable motions. The effects of (Ra, RS,
Re) on the transient growth is shown in figure 17(b). It is seen that the larger values of
Ra or smaller values of RS result in a larger Gm (Gm = max(G) in a decaying or neutral
case) since they correspond to a stronger buoyancy force. However, a more intense shear
intensity also yields a larger Gm, which might be due to the lift-up mechanism, despite that
this mechanism cannot induce the initial transient growth in pure Kolmogorov flow.

It is noted that in many other sheared complex fluid systems, the longitudinal
rolls also achieve the maximum transient growth, e.g. Jerome et al. (2012) for
Rayleigh–Bénard–Poiseuille/Couette flow and Zhang et al. (2015) for electro-convection
with Poiseuille flow. However, transient growth in these systems is subsequently different
than our present system since they are due to the Orr mechanism or lift-up mechanism
and relies on the existence of high-Re shear. In modal analysis, the longitudinal rolls
are unaffected by the background shear, which is valid for the present system as with
the aforementioned sheared convective flows. However, the non-modal results indicate
that the buoyancy or Coulomb force has non-negligible effects on the initial transient
growth by the Orr mechanism or lift-up mechanism. Specifically, in the lift-up mechanism,
the optimal wavenumber to achieve the maximum transient growth is independent of
shear intensity, but is influenced by the strength of the force that drives the convective
motions (Jerome et al. 2012; Zhang et al. 2015). In the transient growth mechanism for a
double-diffusive system (let us call it an overstable mechanism), more complex behaviours
are expected. Regarding the effects of buoyancy on the optimal wavenumber, as shown in
figure 17(c), it is seen that increasing Ra or equivalently decreasing RS results in a larger
optimal wavenumber. As for the effect of shear, it is found that the low- (not shown here)
and moderate-Re Kolmogorov flow has negligible effects on the optimal initial condition
whereas in the case of the high-Re Kolmogorov flow, a larger optimal wavenumber is
required to achieve to the maximum transient growth; see figure 17(d).

4.3.3. Thermohaline-shear instability
In this section, we consider a more realistic situation and investigate the effects of shear
on diffusive instability in the context of oceanography where Ra and RS are much higher
than those considered in §§ 4.3.1 and 4.3.2. The typical parameters of diffusive convection
in high-latitude oceans are 1.5 < Rρ < 10 and 1 < Ri < 10, Pe ∼ 103, where Rρ is the
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Figure 17. (a) Dependence of Gm on the horizontal wavenumber (k, m) with Gm = max(G), Ra = 2385,
RS = 40Rc and Re = 1; (b) Gm as a function of m; (c and d) Gm/max(Gm) as a function of m where Gm = max(G)
for a decaying case. In panel (d), Ra = 1.7Rc and RS = 80Rc.

background density ratio, Ri the Richardson number and Pe the Péclet number (Radko
2016). After a simple transformation from the term of Rρ–Ri–Pe formulation to the term
of Ra–RS–Re formulation, we deduce that 105 < Ra < 106, 1.5 × 107 < RS < 109, Re ∼ 100.
Here we considered RS ∼ 108, while Re and Ra are independent and dependent variables,
respectively. Our aim is to identify whether the thermohaline-shear instability found
by Radko (2016) is oscillatory or steady and to discuss whether the transition between
different instability regimes is realistically expected in the ocean.

In figure 18, we show the stability diagram for the sheared diffusive convection as
a function of Re for RS = 108, τ = 0.01 and Pr = 10. In contrast to figure 16, here the
critical Ra is a decreasing function of Re. This implies that at each point of the stability
boundary within 0 < Re < 140.4, the system is individually stable with respect to diffusive
instability and to Kelvin–Helmholtz instability, but unstable to the superposed instability.
This superposed instability is precisely the thermohaline-shear instability identified by
Radko (2016), which favours the transverse disturbances. The non-modal analysis suggests
that the thermohaline-shear instability is oscillatory for Re lower than 81, above which the
instability is steady. The transition from oscillatory instability to steady instability occurs
at a codimension-two point, which has been specified in figure 18(a). After collecting all
the codimension-two points in a wide range of RS, we obtain the critical Re and critical
Ra marking the transition from oscillatory to steady instability, as shown in figure 18(b).
It is seen that the critical Re and critical Ra are the increasing functions of RS. Moreover,
further increasing Re, the critical Ra will become negative after Re exceeds 140.4, marking
the transition to the Kelvin–Helmholtz instability regime.
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Figure 18. Transition from oscillatory to steady instability in high-RS case: (a) critical Ra as a function of
Re for RS = 108; (b) critical Re and critical Ra for codimension-two point as a function of RS; (c) asymptotic
energy budget along the stability boundary in panel (a).

Here, we perform an asymptotic energy analysis for thermohaline-shear instability.
Different from Radko (2016), in which only Pe is varied and the remaining parameters
are all fixed, we proceed along the linear instability boundary, along which both Ra
and Re are varied. It is seen from figure 18(c) that there exist two different regimes
in which the energy budgets are entirely different, and the transition between these two
regimes coincides with the codimension-two point that distinguishes the oscillatory and
steady instabilities. In the oscillatory instability regime, the ultimate energy resource
to amplify disturbances is the heat diffusion. The energy production by the shear is
negligible or even negative, but the presence of the background shear promotes the
release of energy from the temperature gradient into the perturbed hydrodynamic field.
This is consistent with the hypothesis of Radko (2016) that rationalizes the catalytic
effects of shear on the transfer of potential energy into kinetic energy. In the steady
instability regime, however, the basic shear directly produces energy to the perturbed
hydrodynamic field as with in many dynamic instabilities such as Kelvin–Helmholtz
instability or Tollmien–Schlichting instability. In this sense, different from its oscillatory
counterpart which involves complex interaction between shear and double diffusion (i.e.
the catalytic effect), the steady thermohaline-shear instability resembles more a simple
superposition of instabilities due to buoyancy and shear. Clearly, the condition for the
steady thermohaline-shear instability to occur is more restrictive than the oscillatory one,
since it requires a higher intensity and special velocity profile (containing inflection points)
of the background shear. Therefore, we argue that the generation of thermohaline staircases
in the Arctic Ocean is more likely due to the mechanism inducing the oscillatory instead of
steady thermohaline-shear instability. This argument is consistent with the result of Radko
(2019) that the thermohaline-shear instability can be triggered by the interaction between
double diffusion and an unbounded, time-dependent Couette flow.

Since the codimension-two point occurring in figure 18 is within the parameter ranges
of the real oceanic systems and the sheared transverse rolls in this situation are the least
stable, the transition from oscillatory to steady instability discussed here is realistically
possible. However, the transition into Kelvin–Helmholtz instability regime is realistically
impossible, because it requires a sufficient shear intensity which is not satisfied in oceanic
conditions.

It is necessary to investigate when the transient growth by double diffusion becomes
significant in destabilizing the present system. To this end, we examine the effects of RS
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Figure 19. Effects of RS and Re on the transient growth by double-diffusion. In panel (a), the results for Re = 0
are obtained by setting Re = 1 but considering a hydrostatic base flow. All the cases in panels (a) and (b) are
marginally stable, with the corresponding neutral stability curves shown in figures 8(d) and 18(a).

and Re on Gm, considering transverse rolls. Different from the cases in figure 17, it is
obvious that the optimal initial condition for thermohaline-shear instability favours the
transverse rolls. As shown in figure 19(a), with the increase of RS, Gm first undergoes
nonmonotonic variation and eventually approaches a fixed value that is larger than the
low-RS case but is still of order 10. This is due to the fact that the oscillatory convection is
the low-amplitude motion, independent of the strength of the stabilizing force which refers
to RS here. When considering the presence of a base flow, it is found that Gm is increased
by two orders of amplitude and a sudden jump of Gm at the codimension-two point is
observed. Specifically, in the oscillatory instability regime where Gm is an increasing
function of Re, the transient energy returns to the low-amplitude oscillation after the
initial fast growth, see the case of Re = 40 shown in figure 19(b). In the steady instability
regime where Gm decreases with larger values of Re, however, the transient energy of
a marginally stable case in the long term maintains a level identical to Gm. Therefore,
it is deduced that the initial transient growth has important influence on the oscillatory
thermohaline-shear instability. The reasons are twofold: (i) from the perspective of modal
stability, transverse rolls are the least stable in thermohaline-shear instability and (ii) from
the perspective of non-modal stability, the presence of shear makes the amplitude of initial
transient growth an order higher of the oscillatory convection. In contrast, the transient
growth by double-diffusion has negligible effect on the steady instability which, in the
marginally stable case, is of the amplitude identical to the transient growth. In addition to
the energy resource of instabilities, this is another principle difference between the steady
thermohaline-shear instability and the oscillatory one.

5. Conclusion

In this paper, we have studied the effects of a solid–liquid interface and a Kolmogorov
flow on the diffusive instability, using modal and non-modal stability analyses as well as
energy analysis. In the absence of the phase boundary and shear, we showed that, with
the overstable motions transitioning from the clockwise to counterclockwise circulation
patterns, the transient energy undergoes periodic oscillation, driven by the salinity field
which alternates between releasing and storing potential energy. For steady convective
instability, however, a smooth evolution of transient energy is observed.
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Regarding the effects of the phase boundary, the change of critical Rayleigh number
Rac depends on the thickness of the solid phase and the salinity Rayleigh number RS.
Specifically, for relatively small RS (RS < 106), Rac is decreased with larger values of
solid thickness, due to the increasing energy transfer from the temperature gradient to
the perturbed hydrodynamic field. In the context of ice melting in polar regions where RS
is relatively large, the presence of an ice–water interface tends to stabilize the diffusive
instability. However, in the absence of basic shear, since the buoyancy force required to
drive the convective flow for large RS is very strong, this stabilizing effect is in fact trivial.
However, while the existence of a phase boundary does not change the oscillatory nature
of overstable motions, it makes the underlying fluid more susceptible to steady convection
instead of the oscillatory convection.

In the presence of shear, three instabilities could be dominant for relatively small RS at
different values of Reynolds number Re, which are the oscillatory instability for Re ∼ 0.1,
steady convective instability for Re ∼ 1 and Kelvin–Helmholtz instability for Re > 50. The
properties of these instabilities have been studied from the perspective of transient energy
evolution. Specifically, in the Kelvin–Helmholtz instability regime, it is found that the
dynamic instability develops more slowly than the oscillatory instability. Therefore, in
the early phase, the overstable motions will arise in the low-shear region, and yields an
initial rapid growth and the short-term periodic oscillation of the transient energy. As time
progresses, the buoyancy-driven patterns will be elongated and gradually disappear, while
at the same time, Kelvin–Helmholtz streaks will be generated in the inflection point of the
basic velocity profile and eventually the dynamic instability becomes dominant.

For relatively large RS, we examined the thermohaline-shear instability identified
by Radko (2016). By inspecting the temporal evolution of disturbances, we found
that the thermohaline-shear instability could transition from the oscillatory instability
regime to the steady one, and this transition is realistically possible in the context of
oceanography. The energy analysis along the neutral stability curve of thermohaline-shear
instability suggested that in the oscillatory instability regime, the heat diffusion and
viscous dissipation are dominant in energy balance, with energy production by shear
being negligible. This result confirmed that the hypothesis proposed by Radko (2016) to
explain the catalytic role of shear is reasonable when the thermohaline-shear instability
is oscillatory. In the steady instability regime, however, the mean shear makes direct
and considerable contribution to the energy to intensify instabilities. Therefore, the
steady thermohaline-shear instability is more like a direct superposition of instabilities
by shear and buoyancy. We have also investigated the mechanism of the initial transient
growth driven by double-diffusion (Konopliv et al. 2018). Results imply that the optimal
initial condition to achieve the maximum transient growth must be susceptible to the
overstable motions. For relatively small RS, since the shear inhibits all disturbances with
a transverse component, the optimal initial condition favours the longitudinal rolls. For
relatively large RS when the thermohaline-shear instability is induced, the optimal initial
condition favours the longitudinal rolls, and the initial transient growth, driven by double
diffusion and enhanced by the basic shear, might have significant impact on oscillatory
thermohaline-shear instability.

In the future, it is necessary to numerically/experimentally investigate whether a
thermohaline-shear system that is stable to the oscillatory instability predicted by modal
analysis could be destabilized by the initial transient growth. We intend to investigate the
subcritical bifurcation of double-diffusive convection subject to shear by weakly nonlinear
instability properties and the transition from convective instability to absolute instability
of the present system.
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Appendix A. Asymptotic and transient energy analyses

In many cases, energy analysis is instructive to interpret the mechanisms hiding behind
the observations by modal and non-modal analysis. Generally, depending on the focused
time scale, the energy analysis can be classified into the asymptotic energy analysis and its
transient counterpart, which will be briefly introduced here following Zhang et al. (2015).
The asymptotic energy analysis focuses on the dynamics of perturbation energy in the
limit of an infinite time horizon. The accompanying governing equation is obtained by
multiplying the linearized momentum equation by its complex conjugate velocity v

†
i , i.e.

v
†
i
∂vi

∂t
+ v

†
i vj

∂Ūi

∂xj
+ v

†
i Ūj

∂vi

∂xj
= −v

†
i

∂p
∂xi

+ 1
Re

v
†
i
∂2vi

x2
j

+ Ra
Re2Pr

v
†
i θxi − RSβ

Re2Pr
v

†
i sxi.

(A1)

Taking the complex conjugate of the above equation and then averaging the resulting two
equations, we have

1
2

∂

∂t
v

†
i vi = −1

2
(v

†
i vj + v

†
j vi)

∂Ūi

∂xj
− 1

Re
∂v

†
i

∂xj

∂vi

∂xj

+ 1
2

Ra
Re2Pr

(θv
†
i + θ†vi)xi − 1

2
RSβ

Re2Pr
(v

†
i s + vs†

i )xi

+ ∂

∂xj

[
−1

2
v

†
i viŪj − 1

2
( pv

†
i + p†

i vi)δij + 1
2Re

(
v

†
i
∂vi

∂xj
+ vi

∂v
†
i

∂xj

)]
, (A2)

where v
†
i vi/2 is the perturbation energy density. The terms in the second line exert

no influence on the energy balance for periodic, no-slip and no-penetration conditions

963 A38-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-8354-7129
https://orcid.org/0000-0002-8354-7129
https://orcid.org/0000-0001-9422-3616
https://orcid.org/0000-0001-9422-3616
https://orcid.org/0000-0002-5244-7117
https://orcid.org/0000-0002-5244-7117
https://doi.org/10.1017/jfm.2023.319


Effects of phase boundary and shear on diffusive instability

(Zhang et al. 2015). Therefore, after an integration over a control volume Ω , (A2) becomes

1
2

∫
Ω

∂

∂t
v

†
i vi dV = −1

2

∫
Ω

(v
†
i vj + v

†
j vi)

∂Ūi

∂xj
dV . . . . . . . . . . . . . . . Prod

− 1
Re

∫
Ω

∂v
†
i

∂xj

∂vi

∂xj
dV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VD

+ 1
2

Ra
Re2 · Pr

∫
Ω

(θv
†
i + θ†vi)xi dV . . . . . . . . . . . . .VT

− 1
2

Ra · β

Re2 · Pr

∫
Ω

(sv†
i + s†vi)xi dV . . . . . . . . . . . . .VS, (A3)

where Prod represents the energy transfer between the perturbed hydrodynamic field and
the basic shear, VD the energy dissipated by viscosity, and VT (VS) the potential energy
released from temperature (salinity) stratification into the velocity fluctuation field.

Different from the asymptotic one, transient energy analysis focuses the dynamics of the
perturbed kinetic energy inside a finite time horizon. The evolution of the accompanying
energy density is defined as (e.g. Zhang et al. 2015)

1
|Ω|

∫
Ω

∂Ek

∂t
dV = 1

|Ω|
∫ 1

0

∫ 2π/k

0

∫ 2π/m

0

∂

∂t

(
u2 + v2 + w2

2

)
dV

= 1
|Ω|

∫ 1

0

∫ 2π/k

0

∫ 2π/m

0

[
−uv

dU
dy

− 1
Re

∂ui

∂xj

∂ui

∂xj

+ Ra
Re2Pr

vθ − RSβ

Re2Pr
vs
]

dz dx dy, (A4)

where Ek is the energy density. As before, the four terms in the square brackets in (A4)
are denoted by Prod, VD, VT and VS, respectively, and they represent the same thing as
in (A3).
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